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Abstract 
This paper introduces Twist-routing, a new routing algorithm for faulty on-chip 
networks, which improves Maze-routing, a face-routing based algorithm which uses 
deflections in routing, and archives full fault coverage and fast packet delivery. To 
build Twist-routing algorithm, we use bounding circles, which borrows the idea from 
GOAFR+ routing algorithm for ad-hoc wireless networks. Unlike Maze-routing, 
whose path length is unbounded even when the optimal path length is fixed, in 
Twist-routing, the path length is bounded by the cube of the optimal path length. 
Our evaluations show that Twist-routing algorithm delivers packets up to 35% faster 
than Maze-routing with a uniform traffic and Erdös-Rényi failure model, when the 
failure rate and the injection rate vary. 
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1. Introduction 

The transistor technology scales in microprocessors, and more and more power- 
efficient cores are integrated on a single chip. The communication between these on- 
chip cores should be efficient. Therefore, Networks-on-chips (NoCs), instead of simple 
buses, are becoming a promising choice for on-chip interconnects for their better 
scalability [1]-[6]. Unfortunately, the reliability of the on-chip components is reduced 
as critical dimensions shrink, and a NoC might be a single point of failure [7]. As the 
silicon ages, the error rates become quite high [8], because of oxide breakdown, 
electromigration, and thermal cycling [7]. Hence, it is critical that some failures in the 
network do not cause an entire chip to fail. 

There are some NoC reliability solutions based on architectural protection against 
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faults in the router logic [9] [10] [11]. But not all faults can be toleranted this way [12]. 
In recent works, faults are modeled by disabling such links, and a complete router loss 
is modeled by marking all the links connected to the affected router as faulty. The goal 
is to route packets around faults and finally reach the destination. Recent route-recon- 
figuration solutions to bypass faulty links or routers can be broadly divided into two 
kinds, buffered solutions and deflection solutions. Buffered solutions include Ariadne 
[13], uDirec [12], Hermes [14], which all utilize traditional wormhole routing [15], and 
routing tables. Those algorithms typically take some time to update routing tables when 
a new fault is detected, and incur reconfiguration overhead. The deflection solutions for 
non-faulty chips are introduced by BLESS algorithm [16] to overcome the significant 
energy consumption and design complexity caused by buffer usage. Then, CHIPPER 
[17] and minBD [18] develop the idea of deflection routing. For faulty chips, the Maze- 
routing algorithm provides a deflection routing algorithm, which is the first routing 
algorithm which provides guaranteed delivery in a fully-distributed manner at low cost 
and low reconfiguration overhead [19]. 

The Maze-routing is the state-of-the-art solution of deflection routing for faulty 
chips. However, the path length which is found by Maze-routing is unbounded even 
when the optimal path length is fixed. We proposed a improved algorithm named 
Twist-routing, taking inspiration from the idea of GOAFR+ routing algorithm, which 
was originally proposed for ad-hoc wireless networks [20] [21] [22]. Using our algorithm, 
the path length is bounded by the cube of the optimal path length. Our algorithm 
inherits the property of Maze-routing, and provides guaranteed delivery at low cost and 
the same low reconfiguration overhead. The experiments show that our algorithm is 
35% faster than Maze-routing when the failure rate equals to 0.3, and the injection rate 
is 0.003, and keeps fast when injection rate increases. 

2. Twist-Routing Algorithm 

The Twist-routing algorithm is a practical routing algorithm for faulty NoCs, which is 
based on Maze-routing for faulty NoCs and GOAFR+ routing algorithm for ad-hoc 
wireless networks. The faulty model is described in Section 0. We briefly review the 
Maze-routing algorithm in Section 2.1. In Maze-routing, a packet is alternately in greedy 
and face-routing [23] mode. In Twist-routing, these two modes remains, but we use 
bounding circles to limit the search range in a face-routing step, proposed in Section 
2.3. This enables us to prove a theoretical bound of Twist-routing in Section 2.4. The 
interactions of Twist-routing and deflection are described in Section 2.5. 

2.1. The Model 

The model of the faulty on-chip routing is a mesh, where routers are placed on each 
grid points, and links are available between adjacent routers. Each routers can be good 
or bad, and each links can be healthy or faulty bidirectionally. A bad router is modeled 
by disabling all of its four links. In modern chips, packets are splited into flits, and 
routed from source node to the destination. In the routing algorithm, each router 
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accepts input flits from all nearby healthy links, permute them according to some rules, 
and send them back to all nearby healthy links. Because links are bidirectional, there are 
as many output links as input links, so all flits can go somewhere after the routing. 

2.2. The Maze-Routing Algorithm 

The Maze-routing add a header to each flits, containing some metadata of this flit. They 
are src , the source; dst , the destination; bestmd , the closest Manhattan distance to 
dst  that the packet has reached so far assuming a fault-free mesh; mode , being one of 
greedy , clockwisely face-routing (  ), or counter-clockwisely face-routing ( ); travn  
and travdir , the node and direction which indicates the destination is unreachable if it is 
visited again. 

In Maze-routing, each flit is routed to a productive and healthy output if possible. 
This is called the greedy  mode. If there is no such output, the flit changes itself into 
face-routing mode (randomly chosen from   and  ). In face-routing mode  , the 
flit takes the first healthy output on the left of the ray from cur  to dst , and then goes 
clockwisely. In face-routing mode  , the flit takes the first healthy output on the right 
of the ray, and then goes counter-clockwisely. Effectively, the flit traverses the face 
underlying the ray from cur  to dst . The flit changes back to greedy  mode when it 
goes to a router that can forward it closer to its destination than the node where it 
entered face-routing mode, i.e., the bestmd  in header can be reduced by a neighbor 
link. If the bestmd  cannot decrease until the flit has traversed the whole face, which is 
detected by revisiting travn  on the direction of travdir , then there is no path between 
src  and dst . We can drop this flit, and report this failure to src  using the same 
algorithm as needed. 

2.3. The Use of Bounding Circles  

Twist-routing is based on Maze-routing, with the extra usage of bounding circles. The 
bounding circle is always centered at the destination of the flit, and its radius is 
recorded in the header, namely c. Notice that in Maze-routing, once face-routing mode 
is chosen, the direction is fixed until the flit changes back into greedy  mode. In 
Twist-routing, we draw a bounding circle with 0 ,cur dstc mdα= ⋅  when a flit enters 
face-routing mode. If the flit is going to cross the boundary of the bounding circle, we 
reverse the direction of the flit ( ↔  ), and enlarge the bounding circle (times it by 
α ). Also, travn  and travdir  is set to the node where the reverse happens and the 
direction after being reversed. Then the flit finds all its way back to the beginning node 
of face-routing in the reversed face-routing mode, and goes on in the reversed direction. 
There are three cases for this flit:  

Case 1: It is going to cross the other border of the bounding circle. The bounding 
circle is enlarged again, and the direction of the flit is reverse again and so on. 

Case 2: Its mode changes back to greedy , and bestmd  decreases successfully. 
Case 3: It appears at the travn  again with the direction travdir . This indicates that 

there is no path from src  to dst . 
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The differences between Twist-routing and the original Maze-routing are described in 
Figure 1. Through experiments, for better performance, we use 0 1.5α =  and 4α = . 
We use these values in the our experiments. 

2.4. Proofs of Being Faster  

Maze-routing can be very bad in some cases (see Figure 2 for one example of such 
cases).  

Assume the big tree contains n edges. Maze-routing randomly choose between two 
directions when entering face-routing mode. If Maze-routing chooses the good 
direction, the flit will reach the destination with 4 hops. If Maze-routing chooses the 
bad direction, the flit has to go to the big tree and goes all the way back, and takes 
2 10n +  hops to reach the destination in total. In average, Maze-routing takes 7n +  
hops, which is ( )nΩ . In this example, Twist-routing chooses between two directions, 
too. One direction leads to 4 hops. If we take the other direction, the flit will goes back 
without entering the tree because of the use of the bounding circle, and takes 8 hops to 
reach its destination. On average, it takes 6 hops only. 

In the previous example, the length of the optimal path m is a constant, but Maze- 
routing needs ( )nΩ  hops. So Maze-routing cannot be bounded by any expression of 
m. However, Twist-routing runs in ( )3O m  hops, which is asymptotically better than 
Maze-routing. Now we prove this bound by two theorems.  

Theorem 1. If the destination of a flit is reachable from the source, and m is the 
length of the optimal path of this flit, the radius of the largest bounding circle used 
by Twist-routing without deflection is no more than ( )2

0max ,m cα , where 0c  is 
the initial radius of the bounding circle.  

Proof. There is a case where we never enlarge the bounding circle, so the largest 
circle is the initial one, with radius 0c . Otherwise, we only enlarge the bounding circle 
to 1C  with radius kα  only if we meet a boundary of the bounding circle C with 
radius k. Only if we first meet the other boundary of C later, we may meet the boundary 
of 1C , and enlarge the bounding circle again. So if we found an edge which leads to 
closer to destination within the bounding circle C with radius k, we will not meet the 
other boundary of C, and the radius of the bounding circle never exceeds kα . Assume 
that we use the bounding circles that c m cα≤ < . We want to prove the radius of the 
largest bounding circle never exceeds 2mα , and it is enough to show that it never 
exceeds 2cα . Then it is enough to show that in the bounding circle with radius cα , 
the face routing can always find an edge that goes closer to the destination. Supposing 
not, then we assume in the face routing step, we go through path p. The path p splits 
the bounding circle with radius cα  into two parts, and exactly one of them is 
reachable from the source within the bounding circle of radius cα . In other words, the 
destination is unreachable from the source within the bounding circle with radius cα . 
But since the length of the optimal path from the source to the destination is m, the 
optimal path lays in the bounding circle of radius cα  completely, i.e., the destination 
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is reachable from the source within the bounding circle. That is a contradiction.    □ 
 

 
Figure 1. Maze-routing and Twist-routing algorithm. 
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Figure 2. A setting where Twist-routing performs way better than 
Maze-routing. 

Theorem 2. If the destination of a flit is reachable from the source, and m is the 
length of the optimal path of this flit, Twist-routing can find a path with length 

( )3O m  for this flit without deflection.  

Proof. Twist-routing consists of face routing steps and greedy routing steps. A greedy 
step reduce the bestmd  by one1, and take one hop. A face routing step reduce the 

bestmd  by one, and take ( )2O m  hops. To prove this, notice that in a face routing step, 
when the bounding circle is fixed, we use each edge at most two times due to the 
properties of face routing. So when the bounding circle has fixed radius k, we need 
hops proportional to the total edges in the bounding circle, which is at most ( )2O k  
hops. Since the radius of the largest bounding circle maxc  satisfies  

( ) ( ) ( )2 2
max 0 0max , max ,c m c m m O mα α α≤ ≤ =                   (1) 

and each time we enlarge the bunding circle exponentially, the total hops of one face 
routing step are  

( )
2 2

2 2
2 1m mO m O m

α α

    + + + + =         
                     (2) 

Now consider that 0 bestmd m≤ ≤ , and each reduction of bestmd  takes at most 

( )2O m  hops, so all we need is ( )3O m  hops in total to transport this flit using 
Twist-routing.                                                          □ 

2.5. Deflection Implications  

At one router, there are at most 4 input flits. Some flits have to be buffered or deflected 

 

 

1Actually, the bestmd  decreases in the next greedy step instead of face-routing step, but since each face- 
routing step is always followed by a greedy step, we may regard the next greedy step as if it is part of face- 
routing step, and say face-routing step reduces the bestmd  by one. 
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if the outdir  of them are taken by other flits. If such case happenes, the flit may take a 
non-productive output, exit the face it is traversing, or be buffered and reappears in 
other input ports later. These behaviors result in inconsistency of the bestmd  and 
mode  values of the flit. So when a flit is deflected or buffered, its bestmd  are reset to 

,next dstmd , in which next  is the next router of this flit, and its mode  are reset to 
greedy . This makes the header and the state of this flit consistent. 

To avoid deadlocks and licklocks, our algorithm needs to work with some deflection 
based mechanism proposed in literature. We mostly use minBD due to its high perfor- 
mance. The original method to avoid livelocks in minBD is to circularly make one flit 
golden for a long time L. However, in faulty chips, L needs to be at least as large as the 
longest path in the graph, which can be ( )2O n  large, where the chip is n by n. This 
renders the golden method to avoid locks not efficient. Instead of making one flit 
golden, we prioritize old flits to new flits globally to avoid livelocks. And we disable the 
buffer redirection in minBD because it is not compatible with our oldest-flit-based 
livelock-avoiding method2. 

3. Simulations 

We compared Twist-routing algorithm with the original Maze-routing using an ad-hoc 
simulator3. Note that in Maze-routing, flits are independent to each other, and multiple 
flits are assembled to the original packet when received. For simplicity, we assume there 
is only on flit per packet in our simulator. We implements Maze-routing and minBD 
deflection method with buffer size equals to 4 in our simulator. Meanwhile, we imple- 
mented Twist-routing with minBD, too. In both algorithms, we use oldest-flit based 
livelock-avoiding method and without buffer redirection. 

In order to compare the performance of two algorithms, we computed the average 
flit latency in the network under different injection rates using a uniform traffic4. We 
use 32 32×  networks for evaluation. We use Erdös-Rényi model to generate faulty 
links, where the failure rate of any edge is 0.1 or 0.3. We generate 5 faulty chips for each 
case, and compute the average result across them. For each case, we run the simulations 
for 1000 cycles. 

In a typical setting, the distances to deflect clockwisely or to deflect counter-clock 
wisely can be so much different. By backtracing and trying the other direction when 
running away from the bounding circle, our algorithm should provide better perfor- 
mance than the origin Maze-routing Algorithm. The simulation result shows the 
correctness of this conclusion. After careful measurement, in the case when the failure 
rate equals to 0.3, and the injection rate is 0.003, Twist-routing is 35% faster than Maze- 
routing. When the injection rate increases, Twist-routing keeps being fast (see Figure 3 
for details of all results).  

 

 

2When the buffer redirection is enabled, we cannot avoid redirecting the oldest flit into the buffer, because 
the local information is not enough for us to determine if a flit is globally oldest or not. If the oldest flit enters 
the buffer, the delivery guarantee will be broken. 
3The source code is available at https://bitbucket.org/aceeca1/twist-routing/src/master/src/.  
4Flits that cannot reach its destination are dropped with no contribution to the average flit latency. 

 

https://bitbucket.org/aceeca1/twist-routing/src/master/src/
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Figure 3. Simulation results with failure rate = 0.1, 0.3. 

4. Conclusions  

We improved Maze-routing for faulty on-chip networks, and yielded Twist-routing 
algorithm. We found that through the use of bounding circle and zigzag routes, the 
performance of our routing algorithm is better than Maze-routing, which is the state- 
of-the-art algorithm for faulty on-chip networks. Also, we provided a theoretical bound 
on our algorithm, which is not possible in previous works. 

We conclude that our improvements on Maze-routing algorithm provides a better 
routing algorithm for faulty on-chip networks. 
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