
Journal of Computer and Communications, 2016, 4, 1-10
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2016.414001 November 11, 2016

Twist-Routing Algorithm for Faulty
Network-on-Chips

Kunwei Zhang, Thomas Moscibroda

Tsinghua University, Beijing, China

Abstract
This paper introduces Twist-routing, a new routing algorithm for faulty on-chip
networks, which improves Maze-routing, a face-routing based algorithm which uses
deflections in routing, and archives full fault coverage and fast packet delivery. To
build Twist-routing algorithm, we use bounding circles, which borrows the idea from
GOAFR+ routing algorithm for ad-hoc wireless networks. Unlike Maze-routing,
whose path length is unbounded even when the optimal path length is fixed, in
Twist-routing, the path length is bounded by the cube of the optimal path length.
Our evaluations show that Twist-routing algorithm delivers packets up to 35% faster
than Maze-routing with a uniform traffic and Erdös-Rényi failure model, when the
failure rate and the injection rate vary.

Keywords
Network-on-Chip (NoC), Fault-Tolerant Routing, Maze-Routing Algorithm,
GOAFR+ Algorithm, Bounding Circle

1. Introduction

The transistor technology scales in microprocessors, and more and more power-
efficient cores are integrated on a single chip. The communication between these on-
chip cores should be efficient. Therefore, Networks-on-chips (NoCs), instead of simple
buses, are becoming a promising choice for on-chip interconnects for their better
scalability [1]-[6]. Unfortunately, the reliability of the on-chip components is reduced
as critical dimensions shrink, and a NoC might be a single point of failure [7]. As the
silicon ages, the error rates become quite high [8], because of oxide breakdown,
electromigration, and thermal cycling [7]. Hence, it is critical that some failures in the
network do not cause an entire chip to fail.

There are some NoC reliability solutions based on architectural protection against

How to cite this paper: Zhang, K.W. and
Moscibroda, T. (2016) Twist-Routing Algo-
rithm for Faulty Network-on-Chips. Jour-
nal of Computer and Communications, 4,
1-10.
http://dx.doi.org/10.4236/jcc.2016.414001

Received: September 8, 2016
Accepted: November 8, 2016
Published: November 11, 2016

Copyright © 2016 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
http://dx.doi.org/10.4236/jcc.2016.414001
http://www.scirp.org
http://dx.doi.org/10.4236/jcc.2016.414001
http://creativecommons.org/licenses/by/4.0/

K. W. Zhang, T. Moscibroda

2

faults in the router logic [9] [10] [11]. But not all faults can be toleranted this way [12].
In recent works, faults are modeled by disabling such links, and a complete router loss
is modeled by marking all the links connected to the affected router as faulty. The goal
is to route packets around faults and finally reach the destination. Recent route-recon-
figuration solutions to bypass faulty links or routers can be broadly divided into two
kinds, buffered solutions and deflection solutions. Buffered solutions include Ariadne
[13], uDirec [12], Hermes [14], which all utilize traditional wormhole routing [15], and
routing tables. Those algorithms typically take some time to update routing tables when
a new fault is detected, and incur reconfiguration overhead. The deflection solutions for
non-faulty chips are introduced by BLESS algorithm [16] to overcome the significant
energy consumption and design complexity caused by buffer usage. Then, CHIPPER
[17] and minBD [18] develop the idea of deflection routing. For faulty chips, the Maze-
routing algorithm provides a deflection routing algorithm, which is the first routing
algorithm which provides guaranteed delivery in a fully-distributed manner at low cost
and low reconfiguration overhead [19].

The Maze-routing is the state-of-the-art solution of deflection routing for faulty
chips. However, the path length which is found by Maze-routing is unbounded even
when the optimal path length is fixed. We proposed a improved algorithm named
Twist-routing, taking inspiration from the idea of GOAFR+ routing algorithm, which
was originally proposed for ad-hoc wireless networks [20] [21] [22]. Using our algorithm,
the path length is bounded by the cube of the optimal path length. Our algorithm
inherits the property of Maze-routing, and provides guaranteed delivery at low cost and
the same low reconfiguration overhead. The experiments show that our algorithm is
35% faster than Maze-routing when the failure rate equals to 0.3, and the injection rate
is 0.003, and keeps fast when injection rate increases.

2. Twist-Routing Algorithm

The Twist-routing algorithm is a practical routing algorithm for faulty NoCs, which is
based on Maze-routing for faulty NoCs and GOAFR+ routing algorithm for ad-hoc
wireless networks. The faulty model is described in Section 0. We briefly review the
Maze-routing algorithm in Section 2.1. In Maze-routing, a packet is alternately in greedy
and face-routing [23] mode. In Twist-routing, these two modes remains, but we use
bounding circles to limit the search range in a face-routing step, proposed in Section
2.3. This enables us to prove a theoretical bound of Twist-routing in Section 2.4. The
interactions of Twist-routing and deflection are described in Section 2.5.

2.1. The Model

The model of the faulty on-chip routing is a mesh, where routers are placed on each
grid points, and links are available between adjacent routers. Each routers can be good
or bad, and each links can be healthy or faulty bidirectionally. A bad router is modeled
by disabling all of its four links. In modern chips, packets are splited into flits, and
routed from source node to the destination. In the routing algorithm, each router

K. W. Zhang, T. Moscibroda

3

accepts input flits from all nearby healthy links, permute them according to some rules,
and send them back to all nearby healthy links. Because links are bidirectional, there are
as many output links as input links, so all flits can go somewhere after the routing.

2.2. The Maze-Routing Algorithm

The Maze-routing add a header to each flits, containing some metadata of this flit. They
are src , the source; dst , the destination; bestmd , the closest Manhattan distance to
dst that the packet has reached so far assuming a fault-free mesh; mode , being one of
greedy , clockwisely face-routing (), or counter-clockwisely face-routing (); travn
and travdir , the node and direction which indicates the destination is unreachable if it is
visited again.

In Maze-routing, each flit is routed to a productive and healthy output if possible.
This is called the greedy mode. If there is no such output, the flit changes itself into
face-routing mode (randomly chosen from and). In face-routing mode , the
flit takes the first healthy output on the left of the ray from cur to dst , and then goes
clockwisely. In face-routing mode , the flit takes the first healthy output on the right
of the ray, and then goes counter-clockwisely. Effectively, the flit traverses the face
underlying the ray from cur to dst . The flit changes back to greedy mode when it
goes to a router that can forward it closer to its destination than the node where it
entered face-routing mode, i.e., the bestmd in header can be reduced by a neighbor
link. If the bestmd cannot decrease until the flit has traversed the whole face, which is
detected by revisiting travn on the direction of travdir , then there is no path between
src and dst . We can drop this flit, and report this failure to src using the same
algorithm as needed.

2.3. The Use of Bounding Circles

Twist-routing is based on Maze-routing, with the extra usage of bounding circles. The
bounding circle is always centered at the destination of the flit, and its radius is
recorded in the header, namely c. Notice that in Maze-routing, once face-routing mode
is chosen, the direction is fixed until the flit changes back into greedy mode. In
Twist-routing, we draw a bounding circle with 0 ,cur dstc mdα= ⋅ when a flit enters
face-routing mode. If the flit is going to cross the boundary of the bounding circle, we
reverse the direction of the flit (↔), and enlarge the bounding circle (times it by
α). Also, travn and travdir is set to the node where the reverse happens and the
direction after being reversed. Then the flit finds all its way back to the beginning node
of face-routing in the reversed face-routing mode, and goes on in the reversed direction.
There are three cases for this flit:

Case 1: It is going to cross the other border of the bounding circle. The bounding
circle is enlarged again, and the direction of the flit is reverse again and so on.

Case 2: Its mode changes back to greedy , and bestmd decreases successfully.
Case 3: It appears at the travn again with the direction travdir . This indicates that

there is no path from src to dst .

K. W. Zhang, T. Moscibroda

4

The differences between Twist-routing and the original Maze-routing are described in
Figure 1. Through experiments, for better performance, we use 0 1.5α = and 4α = .
We use these values in the our experiments.

2.4. Proofs of Being Faster

Maze-routing can be very bad in some cases (see Figure 2 for one example of such
cases).

Assume the big tree contains n edges. Maze-routing randomly choose between two
directions when entering face-routing mode. If Maze-routing chooses the good
direction, the flit will reach the destination with 4 hops. If Maze-routing chooses the
bad direction, the flit has to go to the big tree and goes all the way back, and takes
2 10n + hops to reach the destination in total. In average, Maze-routing takes 7n +
hops, which is ()nΩ . In this example, Twist-routing chooses between two directions,
too. One direction leads to 4 hops. If we take the other direction, the flit will goes back
without entering the tree because of the use of the bounding circle, and takes 8 hops to
reach its destination. On average, it takes 6 hops only.

In the previous example, the length of the optimal path m is a constant, but Maze-
routing needs ()nΩ hops. So Maze-routing cannot be bounded by any expression of
m. However, Twist-routing runs in ()3O m hops, which is asymptotically better than
Maze-routing. Now we prove this bound by two theorems.

Theorem 1. If the destination of a flit is reachable from the source, and m is the
length of the optimal path of this flit, the radius of the largest bounding circle used
by Twist-routing without deflection is no more than ()2

0max ,m cα , where 0c is
the initial radius of the bounding circle.

Proof. There is a case where we never enlarge the bounding circle, so the largest
circle is the initial one, with radius 0c . Otherwise, we only enlarge the bounding circle
to 1C with radius kα only if we meet a boundary of the bounding circle C with
radius k. Only if we first meet the other boundary of C later, we may meet the boundary
of 1C , and enlarge the bounding circle again. So if we found an edge which leads to
closer to destination within the bounding circle C with radius k, we will not meet the
other boundary of C, and the radius of the bounding circle never exceeds kα . Assume
that we use the bounding circles that c m cα≤ < . We want to prove the radius of the
largest bounding circle never exceeds 2mα , and it is enough to show that it never
exceeds 2cα . Then it is enough to show that in the bounding circle with radius cα ,
the face routing can always find an edge that goes closer to the destination. Supposing
not, then we assume in the face routing step, we go through path p. The path p splits
the bounding circle with radius cα into two parts, and exactly one of them is
reachable from the source within the bounding circle of radius cα . In other words, the
destination is unreachable from the source within the bounding circle with radius cα .
But since the length of the optimal path from the source to the destination is m, the
optimal path lays in the bounding circle of radius cα completely, i.e., the destination

K. W. Zhang, T. Moscibroda

5

is reachable from the source within the bounding circle. That is a contradiction. □

Figure 1. Maze-routing and Twist-routing algorithm.

K. W. Zhang, T. Moscibroda

6

Figure 2. A setting where Twist-routing performs way better than
Maze-routing.

Theorem 2. If the destination of a flit is reachable from the source, and m is the
length of the optimal path of this flit, Twist-routing can find a path with length

()3O m for this flit without deflection.

Proof. Twist-routing consists of face routing steps and greedy routing steps. A greedy
step reduce the bestmd by one1, and take one hop. A face routing step reduce the

bestmd by one, and take ()2O m hops. To prove this, notice that in a face routing step,
when the bounding circle is fixed, we use each edge at most two times due to the
properties of face routing. So when the bounding circle has fixed radius k, we need
hops proportional to the total edges in the bounding circle, which is at most ()2O k
hops. Since the radius of the largest bounding circle maxc satisfies

() () ()2 2
max 0 0max , max ,c m c m m O mα α α≤ ≤ = (1)

and each time we enlarge the bunding circle exponentially, the total hops of one face
routing step are

()
2 2

2 2
2 1m mO m O m

α α

 + + + + =
 (2)

Now consider that 0 bestmd m≤ ≤ , and each reduction of bestmd takes at most

()2O m hops, so all we need is ()3O m hops in total to transport this flit using
Twist-routing. □

2.5. Deflection Implications

At one router, there are at most 4 input flits. Some flits have to be buffered or deflected

1Actually, the bestmd decreases in the next greedy step instead of face-routing step, but since each face-
routing step is always followed by a greedy step, we may regard the next greedy step as if it is part of face-
routing step, and say face-routing step reduces the bestmd by one.

K. W. Zhang, T. Moscibroda

7

if the outdir of them are taken by other flits. If such case happenes, the flit may take a
non-productive output, exit the face it is traversing, or be buffered and reappears in
other input ports later. These behaviors result in inconsistency of the bestmd and
mode values of the flit. So when a flit is deflected or buffered, its bestmd are reset to

,next dstmd , in which next is the next router of this flit, and its mode are reset to
greedy . This makes the header and the state of this flit consistent.

To avoid deadlocks and licklocks, our algorithm needs to work with some deflection
based mechanism proposed in literature. We mostly use minBD due to its high perfor-
mance. The original method to avoid livelocks in minBD is to circularly make one flit
golden for a long time L. However, in faulty chips, L needs to be at least as large as the
longest path in the graph, which can be ()2O n large, where the chip is n by n. This
renders the golden method to avoid locks not efficient. Instead of making one flit
golden, we prioritize old flits to new flits globally to avoid livelocks. And we disable the
buffer redirection in minBD because it is not compatible with our oldest-flit-based
livelock-avoiding method2.

3. Simulations

We compared Twist-routing algorithm with the original Maze-routing using an ad-hoc
simulator3. Note that in Maze-routing, flits are independent to each other, and multiple
flits are assembled to the original packet when received. For simplicity, we assume there
is only on flit per packet in our simulator. We implements Maze-routing and minBD
deflection method with buffer size equals to 4 in our simulator. Meanwhile, we imple-
mented Twist-routing with minBD, too. In both algorithms, we use oldest-flit based
livelock-avoiding method and without buffer redirection.

In order to compare the performance of two algorithms, we computed the average
flit latency in the network under different injection rates using a uniform traffic4. We
use 32 32× networks for evaluation. We use Erdös-Rényi model to generate faulty
links, where the failure rate of any edge is 0.1 or 0.3. We generate 5 faulty chips for each
case, and compute the average result across them. For each case, we run the simulations
for 1000 cycles.

In a typical setting, the distances to deflect clockwisely or to deflect counter-clock
wisely can be so much different. By backtracing and trying the other direction when
running away from the bounding circle, our algorithm should provide better perfor-
mance than the origin Maze-routing Algorithm. The simulation result shows the
correctness of this conclusion. After careful measurement, in the case when the failure
rate equals to 0.3, and the injection rate is 0.003, Twist-routing is 35% faster than Maze-
routing. When the injection rate increases, Twist-routing keeps being fast (see Figure 3
for details of all results).

2When the buffer redirection is enabled, we cannot avoid redirecting the oldest flit into the buffer, because
the local information is not enough for us to determine if a flit is globally oldest or not. If the oldest flit enters
the buffer, the delivery guarantee will be broken.
3The source code is available at https://bitbucket.org/aceeca1/twist-routing/src/master/src/.
4Flits that cannot reach its destination are dropped with no contribution to the average flit latency.

https://bitbucket.org/aceeca1/twist-routing/src/master/src/

K. W. Zhang, T. Moscibroda

8

Figure 3. Simulation results with failure rate = 0.1, 0.3.

4. Conclusions

We improved Maze-routing for faulty on-chip networks, and yielded Twist-routing
algorithm. We found that through the use of bounding circle and zigzag routes, the
performance of our routing algorithm is better than Maze-routing, which is the state-
of-the-art algorithm for faulty on-chip networks. Also, we provided a theoretical bound
on our algorithm, which is not possible in previous works.

We conclude that our improvements on Maze-routing algorithm provides a better
routing algorithm for faulty on-chip networks.

Acknowledgements

This work was supported in part by the National Basic Research Program of China
Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation of

K. W. Zhang, T. Moscibroda

9

China Grant 61033001, 61361136003.

References
[1] Borkar, S. (2007) Thousand Core Chips: A Technology Perspective. Proceedings of the 44th

Annual Design Automation Conference, San Diego, 4-8 June 2007, 746-749.
http://dx.doi.org/10.1145/1278480.1278667

[2] Dally, W.J. and Towles, B. (2001) Route Packets, Not Wires: On-Chip Interconnection
Networks. Proceedings of the IEEE 2001 Design Automation Conference, Las Vegas, NV,
USA, 18-22 June 2001, 684-689.

[3] Howard, J., Dighe, S., Hoskote, Y., et al. (2010) A 48-Core ia-32 Message-Passing Processor
with dvfs in 45 nm cmos. IEEE International Solid-State Circuits Conference (ISSCC 2010),
Digest of Technical Papers, San Francisco, CA, USA, 7-11 February 2010, 108-109.

[4] Wentzlaff, D., Griffin, P., Hoffmann, H., Bao, L., Edwards, B., Ramey, C., Mattina, M.,
Miao, C.-C., Brown III, J.F. and Agarwal, A. (2007) On-Chip Interconnection Architecture
of the Tile Processor. IEEE Micro, 27, 15-31. http://dx.doi.org/10.1109/MM.2007.4378780

[5] Bell, S., Edwards, B., Amann, J., Conlin, R., Joyce, K., Leung, V., MacKay, J., Reif, M., Bao,
L.W., Brown, J., et al. (2008) Tile64-Processor: A 64-Core soc with Mesh Interconnect. 2008
IEEE International Solid-State Circuits Conference (ISSCC 2008), Digest of Technical Pa-
pers, San Francisco, CA, USA, 3-7 February 2008, 88-598.

[6] Vangal, S.R., Howard, J., Ruhl, G., Dighe, S., Wilson, H., Tschanz, J., Finan, D., Singh, A.,
Jacob, T., Jain, S., et al. (2008) An 80-Tile Sub-100-w Teraflops Processor in 65-nm cmos.
IEEE Journal of Solid-State Circuits, 43, 29-41.

[7] Borkar, S. (2005) Designing Reliable Systems from Unreliable Components: The Challenges
of Transistor Variability and Degradation. IEEE Micro, 25, 10-16.
http://dx.doi.org/10.1109/MM.2005.110

[8] Nightingale, E.B., Douceur, J.R. and Orgovan, V. (2011) Cycles, Cells and Platters: An Em-
pirical Analysis of Hardware Failures on a Million Consumer pcs. Proceedings of the Sixth
Conference on Computer Systems, Salzburg, Austria, 10-13 April 2011, 343-356.

[9] Constantinides, K., Plaza, S., Blome, J., Zhang, B., Bertacco, V., Mahlke, S., Austin, T. and
Orshansky, M. (2006) Bulletproof: A Defect-Tolerant cmp Switch Architecture. The Twelfth
International Symposium on High-Performance Computer Architecture, Austin, Texas, 11-
15 February 2006, 5-16.

[10] Fick, D., DeOrio, A., Hu, J., Bertacco, V., Blaauw, D. and Sylvester, D. (2009) Vicis: A Reli-
able Network for Unreliable Silicon. Proceedings of the 46th Annual Design Automation
Conference, San Francisco, CA, 26-31 July 2009, 812-817.
http://dx.doi.org/10.1145/1629911.1630119

[11] Kim, J., Nicopoulos, C., Park, D., Narayanan, V., Yousif, M.S. and Das, C.R. (2006) A
Gracefully Degrading and Energy-Efficient Modular Router Architecture for On-Chip
Networks. Proceedings of the 33rd annual international symposium on Computer Archi-
tecture, Boston, MA, USA, 17-21 June 2006, 4-15.

[12] Parikh, R. and Bertacco, V. (2013) udirec: Unified Diagnosis and Reconfiguration for Frug-
al Bypass of Nocfaults. Proceedings of the 46th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, Davis, CA, USA, 7-11 December 2013, 148-159.
http://dx.doi.org/10.1145/2540708.2540722

[13] Aisopos, K., DeOrio, A., Peh, L.-S. and Bertacco, V. (2011) Ariadne: Agnostic Recon-Figu-
ration in a Disconnected Network Environment. 2011 International Conference on Parallel
Architectures and Compilation Techniques (PACT), Galveston Island, Texas, USA, 10-14

http://dx.doi.org/10.1145/1278480.1278667
http://dx.doi.org/10.1109/MM.2007.4378780
http://dx.doi.org/10.1109/MM.2005.110
http://dx.doi.org/10.1145/1629911.1630119
http://dx.doi.org/10.1145/2540708.2540722

K. W. Zhang, T. Moscibroda

10

October 2011, 298-309.

[14] Iordanou, C., Soteriou, V. and Aisopos, K. (2014) Hermes: Architecting a Top-Performing
Fault-Tolerant Routing Algorithm for Networks-on-Chips. 2014 32nd IEEE International
Conference on Computer Design (ICCD), Seoul, Korea (South), 19-22 October 2014, 424-
431.

[15] Dally, W.J. and Seitz, C.L. (1986) The Torus Routing Chip. Distributed Computing, 1, 187-
196. http://dx.doi.org/10.1007/BF01660031

[16] Moscibroda, T. and Mutlu, O. (2009) A Case for Bufferless Routing in On-Chip Networks.
Proceedings of the 36th Annual International Symposium on Computer Architecture, Aus-
tin, Texas, USA, 20-24 June 2009, 196-207.
http://dx.doi.org/10.1145/1555754.1555781

[17] Fallin, C., Craik, C. and Mutlu, O. (2011) Chipper: A Low-Complexity Bufferless Deflection
Router. 2011 IEEE 17th International Symposium on High Performance Computer Archi-
tecture (HPCA), San Antonio, TX, USA, 12-16 February 2011, 144-155.
http://dx.doi.org/10.1109/hpca.2011.5749724

[18] Fallin, C., Nazario, G., Yu, X.Y., Chang, K.-P., Ausavarungnirun, R. and Mutlu, O. (2012)
Minbd: Minimally-Buffered Deflection Routing for Energy-Efficient Interconnect. 2012
Sixth IEEE/ACM International Symposium on Networks on Chip (NoCS), Copenhagen,
Denmark, 7-11 May 2012, 1-10.

[19] Fattah, M., Airola, A., Ausavarungnirun, R., Mirzaei, N., Liljeberg, P., Plosila, J., Moham-
madi, S., Pahikkala, T., Mutlu, O. and Tenhunen, H. (2015) A Low-Overhead, Fully-Distri-
buted, Guaranteed-Delivery Routing Algorithm for Faulty Network-on-Chips. Proceedings
of the 9th International Symposium on Networks-on-Chip, Vancouver, 28-30 September
2015, 18.

[20] Kuhn, F., Wattenhofer, R. and Zollinger, A. (2002) Asymptotically Optimal Geometric Mo-
bile Ad-Hoc Routing. Proceedings of the 6th International Workshop on Discrete Algo-
rithms and Methods for Mobile Computing and Communications, Atlanta, GA, USA, 28
September 2002, 24-33. http://dx.doi.org/10.1145/570810.570814

[21] Kuhn, F., Wattenhofer, F., Zhang, Y. and Zollinger, A. (2003) Geometric Ad-Hoc Routing:
of Theory and Practice. Proceedings of the Twenty-Second Annual Symposium on Prin-
ciples of Distributed Computing, Boston, MA, USA, 13-16 July 2003, 63-72.
http://dx.doi.org/10.1145/872035.872044

[22] Kuhn, F., Wattenhofer, R. and Zollinger, A. (2003) Worst-Case Optimal and Average-Case
Efficient Geometric Ad-Hoc Routing. Proceedings of the 4th ACM International Sympo-
sium on Mobile Ad Hoc Networking & Computing, Annapolis, MD, USA, 1-3 June 2003,
267-278.

[23] Bose, P., Morin, P., Stojmenović, I. and Urrutia, J. (2001) Routing with Guaranteed Deli-
very in Ad Hoc Wireless Networks. Wireless Networks, 7, 609-616.
http://dx.doi.org/10.1023/A:1012319418150

http://dx.doi.org/10.1007/BF01660031
http://dx.doi.org/10.1145/1555754.1555781
http://dx.doi.org/10.1109/hpca.2011.5749724
http://dx.doi.org/10.1145/570810.570814
http://dx.doi.org/10.1145/872035.872044
http://dx.doi.org/10.1023/A:1012319418150

Submit or recommend next manuscript to SCIRP and we will provide best service
for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jcc@scirp.org

http://papersubmission.scirp.org/
mailto:jcc@scirp.org

	Twist-Routing Algorithm for Faulty Network-on-Chips
	Abstract
	Keywords
	1. Introduction
	2. Twist-Routing Algorithm
	2.1. The Model
	2.2. The Maze-Routing Algorithm
	2.3. The Use of Bounding Circles
	2.4. Proofs of Being Faster
	2.5. Deflection Implications

	3. Simulations
	4. Conclusions
	Acknowledgements
	References

