
Journal of Computer and Communications, 2016, 4, 1-11
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2016.413001 October 18, 2016

Parallel Quick Search Algorithm for the Exact
String Matching Problem Using OpenMP

Sinan Sameer Mahmood Al-Dabbagh, Nawaf Hazim Barnouti, Mustafa Abdul Sahib Naser, Zaid G. Ali

Software Engineering and Information Technology Department, Al-Mansour University College, Baghdad, Iraq

Abstract
String matching is seen as one of the essential problems in computer science. A va-
riety of computer applications provide the string matching service for their end us-
ers. The remarkable boost in the number of data that is created and kept by modern
computational devices influences researchers to obtain even more powerful methods
for coping with this problem. In this research, the Quick Search string matching al-
gorithm are adopted to be implemented under the multi-core environment using
OpenMP directive which can be employed to reduce the overall execution time of the
program. English text, Proteins and DNA data types are utilized to examine the effect
of parallelization and implementation of Quick Search string matching algorithm on
multi-core based environment. Experimental outcomes reveal that the overall per-
formance of the mentioned string matching algorithm has been improved, and the
improvement in the execution time which has been obtained is considerable enough
to recommend the multi-core environment as the suitable platform for parallelizing
the Quick Search string matching algorithm.

Keywords
String Matching, Pattern Matching, String Searching, Algorithms, Quick Search
Algorithm, Exact String Matching Algorithm, Parallelization, OpenMP

1. Introduction

String matching algorithms are an important class of string algorithms that try to find a
place where one or several strings (also called patterns) are found within a larger string
or text. The fundamental string matching problem is defined as follows: given two
strings a text and a pattern, determine whether the pattern appears in the text [1].
String matching algorithms are applied in many computer applications, such as data
processing, image and voice recognition, information retrieval, computational biology

How to cite this paper: Al-Dabbagh, S.S.M.,
Barnouti, N.H., Naser, M.A.S. and Ali, Z.G.
(2016) Parallel Quick Search Algorithm for
the Exact String Matching Problem Using
OpenMP. Journal of Computer and Com-
munications, 4, 1-11.
http://dx.doi.org/10.4236/jcc.2016.413001

Received: August 15, 2016
Accepted: October 15, 2016
Published: October 18, 2016

Copyright © 2016 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
http://dx.doi.org/10.4236/jcc.2016.413001
http://www.scirp.org
http://dx.doi.org/10.4236/jcc.2016.413001
http://creativecommons.org/licenses/by/4.0/

S. S. M. Al-Dabbagh et al.

2

and chemistry [2]. Furthermore, string matching algorithms have become a significant
component of applications which are used to search nucleotide or amino acid sequence
patterns in biological sequence databases in recent years [3]. Therefore, the perfor-
mance of the string matching algorithms plays a prominent role in the performance of
these computer applications [4]. This research concentrates on the problems which are
related to the performance of the Quick Search string matching algorithm. Therefore,
the main question is “How to reduce execution time of the Quick Search string match-
ing algorithm by using OpenMP parallel method?” Therefore, the sub question of the
main question is “How to prove the performance improvement of the parallel version
of the Quick Search string matching algorithm compared with its performance of the
sequential version of the Quick Search string matching algorithm?” Therefore, the ob-
jective of this paper is to investigate the suitability of parallelizing the Quick Search al-
gorithm on multi-core environment using OpenMP.

2. Related Work
2.1. Parallel Processing

Parallel Processing is defined as the efforts of multiple concurrent processing units that
works together to resolve computational problems [5]. The fundamental idea of the
parallel programing is to divide the task into sub-task which can be solved simulta-
neously on multiple Central Processing Units (CPU’s), each sub-task of the program is
sub divided into several of instructions and just one program of instructions to be car-
ried out at any particular moment in time [6].

2.2. Parallel String Matching Algorithms

Parallel computation holds outstanding potential of enhancing the processing and ex-
ecution times of data in comparison with sequential computation which probably takes
a lot of valuable time to show results. At first, generally there are many numerous pa-
rallel string matching algorithms which have been produced every single one with
the intention of accelerating the overall performance of the algorithms and preserving
time via the application of multi- processors. OpenMP directives is used to parallelize
the string matching algorithms in a multi-core CPU environment which has broad at-
traction several realms of computer science; one example of these fields is the security
applications, in [7] the potential for improving the speed of Intrusion Detection System
(IDS) is mentioned, which is a system use to detect the hacker that try to hack the net-
work and report this act of sabotage to the network administrator. The OpenMP direc-
tives and Pthread API which are Parallelization methods are used to speed up the Quick
Search algorithm and to test the proposed method, which was dependent on analyzing
several factors—such as length of pattern and size of dataset—to select the number of
threads for parallel execution.

Parallel string matching algorithms have also an astonishing position in biological
applications. Therefore, in [8] the author introduces a hybrid OpenMP/MPI parallel
model by utilizing the benefits of shared and distributed memory technologies to the

S. S. M. Al-Dabbagh et al.

3

parallel three types of string matching algorithms. As a result, they were very capable of
obtain optimum results with specific different types of biological databases in their
proposed model. Additionally, in [9] the same author presents a different research in-
dicated that the technique of data partitioning as well as the type of data are extremely
essential factors that control the parallelization efficiency.

3. The Proposed Method

This section includes detailed explanations around the important features along with
the behavior examination of Quick Search algorithm. The key reason of examining
the behavior of the sequential Quick Search algorithm which involve the preprocessing
phase as well as searching phase is to find out the compute-intensive portions of the
code, that could be parallelize using OpenMP.

3.1. Sequential Quick Search Algorithm

Quick Search algorithm is a simplified version of Boyer Moore algorithm solves the
string matching problem. In general, the Quick Search algorithm composes from two
logical phases, pre- processing and searching phase [10]. The preprocessing and search-
ing phases of the Quick Search algorithm, are summarized in the next subsections, as
shown in Figure 1.

3.1.1. Pre-Processing Phase
The main idea behind the preprocessing phase of the Quick Search algorithm is to col-
lect information about the pattern which known in advance, and use this information
during the searching phase. The pattern needs to be skipped a specific amount of cha-
racters whenever a match or a mismatch is taking place during the searching process.
The Quick Search algorithm use a particular structure known as a bad character table
(qsBc) carries the shift information.

Starting with the rightmost character of the pattern, each character placement
(i) subtracts from the value of pattern length (m) and stores in the (qsBc) table. In case
there is duplicating the same character several times in the pattern the first rightmost
occurrence for every character that takes place in the pattern is stored in (qsBc). Ac-
cording to the equation providing below, the (qsBc) table stores the minimum value of
the differences between pattern length m and the rightmost locations of each repeated
character in that pattern.

() [](): 0 and if occurs in
1 otherwise

i i m m i x x PqsBc x
m
 ≤ < − =

=
+

3.1.2. Searching Phase
In this phase, the Quick Search algorithm beginning the matching process from the
leftmost character of the pattern with its corresponding character in the text window. If
a match or mismatch occur the pattern shift to the right side depending on the value
stored in (qsBc) table of the character positioned after the rightmost character of the
text window, if the character that immediately follow the rightmost character in the text

S. S. M. Al-Dabbagh et al.

4

Figure 1. Quick search algorithm overview flowchart.

window is takes place in the pattern, the pattern shifts to align its own character with
the character that located immediately after the rightmost character of the text win-
dow. However, in the case the character that positioned after the text window is not
occurred in the pattern, the whole pattern shifts to the right side of the character that
follow the rightmost character of the text window, and start a new matching process.

3.2. Parallel Quick Search Algorithm Evaluation

This section discusses the main objective of this study, which is the parallelization me-
thod of Quick Search algorithm. The Quick Search algorithm is implemented on a mul-
ti-core environment platform. The OpenMP library programming interface is used to
implement the code.

According to the analysis of the sequential Quick search algorithm in previous sec-
tion, the most expensive section of a string matching algorithm is to examine if the
character of the pattern matches the character of the text window [11]. To avoid this
cost the searching phase which contains the matching process between the characters of
the pattern and the text window will parallelize using OpenMP directive.

The searching phase in the Quick Search string matching algorithm is carried out
using multi-core environments platform, as well as the OpenMP which is the pro-
gramming environments. The OpenMP platform executed the program by divided the

S. S. M. Al-Dabbagh et al.

5

entire input data into subdivided parts through fork and join operations, the master
thread distributed the works to the worker threads. The parallel Quick Search algo-
rithm start execution the program in sequential fashion conducted by the master thread
until the algorithm reach the searching phase function, at this moment slave threads
generated for searching phase function, the number of threads is seven because our ex-
periment was conducted using laptop with Core™ with 7 cores and 8 GB RAM The op-
erating system used is Microsoft Windows 8.1. The slave threads executing the search-
ing phase functions and return the partial result to the master thread, the master thread
will assemble all the result with the help of join operation and show the output, this op-
eration performed in sequential fashion, the slave threads will terminate itself automat-
ically after send the results to the master thread as shown in Figure 2.

Figure 2. The proposed searching phase of the quick search algorithm.

S. S. M. Al-Dabbagh et al.

6

4. Experimental Results and Discussion

The main idea behind parallelization the Quick Search algorithm is to enhance its per-
formance, to measure the improvement in the performance of parallel Quick Search
algorithm over its sequential version there is the execution time factor to evaluate the
performance gain. In order to examine the performance of parallel algorithm, a stan-
dard benchmark data is used which is represented the common used of string matching
algorithm, which are English text, Proteins sequence and DNA sequence. These different
data types that have been downloaded from (http://pizzachili.dcc.uchile.cl/texts.html)
are differences in the size of alphabets, as a way to analyze the algorithm behaviors
with various alphabet sizes. The sequential and parallel program of Quick search algo-
rithm was run with data size 200 MB. Moreover, various pattern lengths were used to
assess the behaviors of the algorithm. These lengths are: 10, 20, 30, 40, 50, 60, 70, 80, 90
and 100 characters that are chosen randomly from words inside the text, the sequential
and parallel program executed 5 times and the average time for all the attempts is se-
lected [12].

4.1. Parallel Performance Evaluation
4.1.1. English Text Data Type
The execution time of the sequential and parallel Quick Search algorithm using English
text data type which compose of more than 100 different alphabet types is shown in
Table 1 and Table 2 respectively.

Figure 3 shows the execution time (average time) of the sequential and parallel
of Quick Search algorithm using English text data type. The Quick Search algorithm
show unstable behavior when compared to the proteins and DNA data types, this is due
to the size of the alphabet used where the English text it consist more than 100 charac-
ters, which considered a large alphabet. The unstable behavior appear clearly in the
pattern length 40 and 60, which gives the worst time and best time respectively. The
execution time of parallel program show better performance compare to the execution
time of sequential program.

Table 1. Sequential performance using English text data type.

Pattern
length

Sequential quick search algorithm

Shot 1 Shot 2 Shot 3 Shot 4 Shot 5 Average

10 15.236 20.805 15.168 14.277 13.62 15.8212

20 14.559 15.752 13.245 14.366 14.346 14.4536

30 21.867 18.094 12.739 12.726 12.539 15.593

40 14.297 15.017 13.658 14.879 15.449 14.66

50 14.423 14.927 14.14 13.425 14.024 14.1878

60 14.811 15.481 15.031 16.772 14.312 15.2814

70 15.663 14.746 15.455 15.966 14.892 15.3444

80 17.375 13.512 14.688 15.632 16.277 15.4968

90 16.637 15.446 15.307 15.129 15.603 15.6244

100 14.59 13.816 20.276 13.954 16.099 15.747

http://pizzachili.dcc.uchile.cl/texts.html

S. S. M. Al-Dabbagh et al.

7

Table 2. Parallel performance using English text data type.

Pattern
length

Parallel quick search algorithm

Shot 1 Shot 2 Shot 3 Shot 4 Shot 5 Average

10 6.27 10.077 6.501 7.328 5.362 7.1076

20 11.043 8.527 5.293 5.612 5.673 7.2296

30 8.039 8.289 8.116 7.949 8.015 8.0816

40 6.237 5.606 23.524 13.493 4.37 10.646

50 8.855 7.868 7.741 7.653 7.672 7.9578

60 8.253 5.317 5.754 7.69 5.007 6.4042

70 8.973 8.681 7.625 8.555 8.636 8.494

80 9.918 8.388 6.596 14.011 8.792 9.541

90 13.921 9.107 8.843 9.552 6.77 9.6386

100 19.627 7.258 4.909 6.495 6.746 9.007

Figure 3. Execution time using English text data type.

4.1.2. Protein Sequence Data Type
The execution time of the sequential and parallel Quick Search algorithm using Protein
sequence data type which compose of 20 amino acids is shown in Table 3 and Table 4
respectively.

Figure 4 show the execution time (average time) of the sequential and parallel
of Quick Search algorithm using Proteins sequence data type. The Quick Search algo-
rithm show stable behavior when compared to the English text and DNA data types,
this is due to the size of the alphabet used where the Proteins sequence data type it con-
sist with 20 characters, which considered a medium alphabet. The execution time of
parallel program show better performance compare to the execution time of sequential
program.

S. S. M. Al-Dabbagh et al.

8

Table 3. Sequential performance using protein sequence data type.

Pattern
length

Sequential quick search algorithm

Shot 1 Shot 2 Shot 3 Shot 4 Shot 5 Average

10 12.354 12.987 13.115 13.208 12.993 12.9314

20 12.453 12.459 12.541 12.47 13.036 12.5918

30 13.499 12.302 12.374 13.099 13.206 12.896

40 12.259 12.141 12.122 11.971 11.713 12.0412

50 12.378 12.37 12.026 12.099 12.39 12.2526

60 12.025 12.362 11.886 11.696 11.706 11.935

70 12.451 12.23 12.045 12.051 12.048 12.165

80 12.491 12.469 11.81 11.554 11.801 12.025

90 12.392 12.221 12.064 12.003 12.246 12.1852

100 11.546 11.803 11.512 11.509 11.578 11.5896

Table 4. Parallel performance using protein sequence data type.

Pattern
length

Parallel quick search algorithm

Shot 1 Shot 2 Shot 3 Shot 4 Shot 5 Average

10 3.899 3.523 3.574 3.473 3.463 3.5864

20 3.842 3.474 3.413 3.063 3.069 3.3722

30 3.901 4.152 3.811 6.121 4.018 4.4006

40 3.531 3.373 3.212 3.147 3.338 3.3202

50 4.321 3.607 3.261 3.673 3.754 3.7232

60 3.7 3.697 3.425 3.367 3.448 3.5274

70 3.947 3.306 3.285 3.703 3.613 3.5708

80 3.427 3.288 3.182 3.627 3.158 3.3364

90 3.529 3.234 3.589 3.359 3.175 3.3772

100 3.283 3.31 3.129 3.159 3.619 3.3

Figure 4. Execution time using protein sequence data type.

S. S. M. Al-Dabbagh et al.

9

4.1.3. DNA Sequence Data Type
The execution time of the sequential and parallel Quick Search algorithm using DNA
sequence data type which compose of 4 characters that indicate the chemical founda-
tions of the cell nucleus is shown in Table 5 and Table 6 respectively.

Figure 5 shows the execution time (average time) of the sequential and parallel
of Quick Search algorithm using DNA sequence data type. The Quick Search algorithm
show stable behavior when compared to the English text and Proteins sequence data
types, this is due to the size of the alphabet used where the DNA sequence data type it
consist only 4 characters, which considered a small alphabet. The execution time of pa-
rallel program show better performance compare to the execution time of sequential
program.

Table 5. Sequential performance using DNA sequence data type.

Pattern
length

Sequential quick search algorithm

Shot 1 Shot 2 Shot 3 Shot 4 Shot 5 Average

10 15.541 15.524 15.22 15.696 15.592 15.5146

20 14.687 15.426 14.752 14.342 13.736 14.5886

30 13.055 13.36 16.34 13.336 13.022 13.8226

40 13.997 13.9 13.904 14.132 13.794 13.9454

50 13.791 13.479 13.277 13.173 13.667 13.4774

60 14.163 13.872 13.735 13.602 13.909 13.8562

70 13.671 13.814 13.311 13.14 13.492 13.4856

80 13.533 13.639 13.341 13.427 13.73 13.534

90 13.947 13.702 13.639 13.662 13.844 13.7588

100 14.814 14.901 14.695 14.501 14.573 14.6968

Table 6. Parallel performance using DNA sequence data type.

Pattern
length

Parallel quick search algorithm

Shot 1 Shot 2 Shot 3 Shot 4 Shot 5 Average

10 5.664 6.667 5.807 5.904 5.632 5.9348

20 5.319 5.072 5.392 5.731 5.903 5.4834

30 4.402 4.48 4.005 3.98 4.042 4.1818

40 5.01 4.896 4.806 5.008 5.046 4.9532

50 4.954 4.892 4.476 4.465 4.596 4.6766

60 5.462 5.422 5.253 4.862 4.86 5.1718

70 4.923 4.692 4.892 4.733 4.67 4.782

80 4.623 4.933 4.715 4.615 4.72 4.7212

90 5.41 5.178 5.122 5.153 5.198 5.2122

100 6.088 6.319 5.984 5.783 6.079 6.0506

S. S. M. Al-Dabbagh et al.

10

Figure 5. Execution time using DNA sequence data type.

5. Conclusion

This study aims to parallelize the Quick Search exact string matching algorithm. Based
on the design presented in Section 3, the parallelization method produced a parallel
Quick Search algorithm using OpenMP directive. From the results in Section 4, we can
note that when parallelizing the Quick Search algorithm by using OpenMP directive
under multi-core environment, the parallel program shows better performance com-
pared to the sequential program in terms of execution time when using different data
types with different patterns length. In addition, the experimental results show that
when using English text data type the Quick Search algorithm gives unstable results due
to the size of the alphabet which is considered a large alphabet, but it gives a stable re-
sult when using medium and small alphabet as proteins and DNA data types. As a con-
clusion, we recommend the multi-core environment as the suitable platform for paral-
lelizing the Quick Search string matching algorithm. For future work the parallel Quick
Search algorithm could be enhanced by parallelizing the preprocessing phase with the
searching phase.

References
[1] Faro, S. and Külekci, O. (2015) Efficient Algorithms for the Order Preserving Pattern

Matching Problem. arXiv:1501.04001.

[2] Faro, S. and Lecroq, T. (2013) The Exact Online String Matching Problem: A Review of the
Most Recent Results. ACM Computing Surveys (CSUR), 45, 2.
http://dx.doi.org/10.1145/2431211.2431212

[3] Navarro, G. (2011) A Guided Tour to Approximate String Matching. ACM Computing
Surveys (CSUR), 33, 31-88. http://dx.doi.org/10.1145/375360.375365

[4] Raju, S.V., Babu, A.V. and Mrudula, M. (2006) Backend Engine for Parallel String Match-
ing Using Boolean Matrix. International Symposium on Parallel Computing in Electrical
Engineering, 13-17 September 2006. http://dx.doi.org/10.1109/PARELEC.2006.20

[5] Zha, X.Y. and Sahni, S. (2013) GPU-to-GPU and Host-to-Host Multipattern String Match-
ing on a GPU. IEEE Transactions on Computers, 62, 1156-1169.

http://dx.doi.org/10.1145/2431211.2431212
http://dx.doi.org/10.1145/375360.375365
http://dx.doi.org/10.1109/PARELEC.2006.20

S. S. M. Al-Dabbagh et al.

11

http://dx.doi.org/10.1109/TC.2012.61

[6] Buyya, R. (2000) The Design of PARAS Microkernel. [Online].
http://www.cloudbus.org/ raj/microkernel/

[7] Hnaif, A.A., et al. (2008) Parallel Quick Search Algorithm to Speed Packet Payload Filtering
in NIDS. Executive Development, 21, 22.

[8] Kouzinopoulos, C.S., Margaritis, K.G. and Michailidis, P.D. (2011) Parallel Processing of
Multiple Pattern Matching Algorithms for Biological Sequences: Methods and Performance
Results. INTECH Open Access Publisher.

[9] Kouzinopoulos, C. and Margaritis, K. (2009) Parallel Implementation of Exact Two Dimen-
sional Pattern Matching Algorithms Using MPI and OpenMP. 9th Hellenic European Re-
search on Computer Mathematics and Its Applications Conference.

[10] Sunday, D.M. (1990) A Very Fast Substring Search Algorithm. Communications of the
ACM, 33, 132-142. http://dx.doi.org/10.1145/79173.79184

[11] Charras, C. and Lecroq, T. (2004) Handbook of Exact String Matching Algorithms. King’s
College.

[12] Kadhim, H.A. and Abdul Rashidx, N.A. (2014) Maximum-Shift String Matching Algo-
rithms. International Conference on Computer and Information Sciences (ICCOINS).

Submit or recommend next manuscript to SCIRP and we will provide best service
for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jcc@scirp.org

http://dx.doi.org/10.1109/TC.2012.61
http://dx.doi.org/10.1145/79173.79184
http://papersubmission.scirp.org/
mailto:jcc@scirp.org

	Parallel Quick Search Algorithm for the Exact String Matching Problem Using OpenMP
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	2.1. Parallel Processing
	2.2. Parallel String Matching Algorithms

	3. The Proposed Method
	3.1. Sequential Quick Search Algorithm
	3.1.1. Pre-Processing Phase
	3.1.2. Searching Phase

	3.2. Parallel Quick Search Algorithm Evaluation

	4. Experimental Results and Discussion
	4.1. Parallel Performance Evaluation
	4.1.1. English Text Data Type
	4.1.2. Protein Sequence Data Type
	4.1.3. DNA Sequence Data Type

	5. Conclusion
	References

