
Journal of Computer and Communications, 2015, 3, 41-54 
Published Online August 2015 in SciRes. http://www.scirp.org/journal/jcc 
http://dx.doi.org/10.4236/jcc.2015.38005  

How to cite this paper: Chaibou, A. and Sie, O. (2015) Improving Global Performance on GPU for Algorithms with Main 
Loop Containing a Reduction Operation: Case of Dijkstra’s Algorithm. Journal of Computer and Communications, 3, 41-54. 
http://dx.doi.org/10.4236/jcc.2015.38005  

 
 

Improving Global Performance on GPU for 
Algorithms with Main Loop Containing a 
Reduction Operation: Case of Dijkstra’s  
Algorithm 
Amadou Chaibou1, Oumarou Sie1,2  
1Laboratoire de Mathématiques et Informatique (LAMI), Université de Ouagadougou, Ouagadougou, Burkina 
Faso 
2Département de Mathématiques et Informatique, Université de Ouagadougou, Ouagadougou, Burkina Faso 
Email: chaibouam@univ-ouaga.bf, chaibouam@yahoo.fr, sie@univ-ouaga.bf 
 
Received 17 July 2015; accepted 17 August 2015; published 20 August 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
In this paper, we study the impact of copying data in GPU computing. GPU computing allows im-
plementing parallel computations at low cost: a GPU can be purchased at under USD 500. Many 
studies have shown that GPU can be used to speed up the calculations. But for algorithms requir-
ing doing a part of the calculations on GPU and another part on CPU, alternately, latency due to the 
copy of the data is a performance degradation factor. To illustrate this, we consider the Dijkstra’s 
algorithm on the shortest path used in solving optimization problems. This algorithm is very 
heavy to run on sequential machine. So, we are considering a parallel approach on GPU. Note that 
Dijkstra’s algorithm has been subject of many implementations on GPU. In the present work, we 
use two platforms with external GPU. Graphs are represented in adjacency matrix. During the 
computation of this algorithm, intermediates results are copied from GPU to CPU or from CPU to 
GPU. The purpose of this work is to measure the impact of these copies in the overall performance 
of the algorithm. For that we calculate time due to the copying data’s implementation; then we 
compare results with implementation computing only on CPU memory (zero-copy). The real im-
pact shown by experiments demonstrates the interest of this study. GP-GPU programmers have to 
think that they will use either memory zero-copy or GPU memory. The challenge for GPU’s manu-
facturers is how to reduce this impact. 

 
Keywords 
GP-GPU, Parallel Computing, CUDA C, Dijkstra, BGL, Grid 

 

http://www.scirp.org/journal/jcc
http://dx.doi.org/10.4236/jcc.2015.38005
http://dx.doi.org/10.4236/jcc.2015.38005
http://www.scirp.org
mailto:chaibouam@univ-ouaga.bf
mailto:chaibouam@yahoo.fr
mailto:sie@univ-ouaga.bf
http://creativecommons.org/licenses/by/4.0/


A. Chaibou, O. Sie 
 

 
42 

1. Introduction 
In this paper, we examine the impact of copying data on the global acceleration of an algorithm in which 
tasks are shared between CPU and GPU. We use Dijkstra’s algorithm on the shortest path [1] to illustrate 
the problem. Dijkstra’s algorithm has already been a subject of many parallel implementations on GPU 
[2]-[11]. 

Others forms of parallel implementations were proposed using mulprocessing and/or multithreading as in 
[12]-[14]. In Boost1, optimized versions of Dijkstra’s algorithm are proposed for various representations of 
graphs. BGL2 library [15] [16], based on incidence graph representation, uses multithreading concept to paral- 
lelize applications.  

Edmond et al. [17] propose parallel implementation of Dijkstra’s algorithm, consisting to three super steps. In 
each super-step, processors communicate to select node u with minimum weight µ, µ = mind(u) u ∈ list of 
unvisited nodes. In this approach more parallelism is obtained when all nodes satisfying d(u) > µ are removed 
and their outgoing nodes are relaxed. 

The “Eager” Dijkstra’s Algorithm [18] uses a relatively easy heuristic to determine the nodes to relax during a 
super-step. A constant factor is set: λ = min {weight(e)/e ∈ E, list of edges} and in each superstep the processors 
remove all node u such that ( )d u µ λ≤ + , ordered by ascending values of d(u) (u = mind(u) u ∈ list of 
unvisited nodes). In this method, parallelization degree depends on λ. 

Crauser et al.’s algorithm [12] uses more accurate heuristic to increase the number of nodes to remove every 
super-step without reintroducing nodes already deleted: the criterion for outgoing nodes calculates a threshold 
based on the weights of the outgoing edges in the graph: L = min{d(u)+ weight(u,w): u is queued and (u,w) ∈ E}. 
The criterion for entering nodes calculates a threshold based on the nodes entering:  

if ( ) ( ) ( ){ }min , : ,d v d u v u v E µ− ∈ ≤  

(where µ  is the global minimum of nodes contained in the waiting list). The two criteria can be combined. 

Nodes satisfying one of the two criteria are removed. This method needs ( )
1
3 logO N N

 
  
 

 time with high 

probability. 
Okuyama et al. [9] propose a Dijkstra implementation on GPU with 3.4 to 15 times faster than the prior 

method. They use on-chip memory, to eliminate approximately 20% of data loads from off-chip memory. 
In their work, Ortega-Arranz et al. [10] significantly speed up the computation of the SSSP from 13× to 220× 

with respect to the CPU version and a performance gain of up to 17% with respect to the GPU-Martin’s algorithm. 
Our works focus on Dijkstra’s algorithm on graph represented in adjacency matrix. We use two platforms and 

two parallel versions of the algorithm. The paper is organized as follows. In Section 2, it is an overview of the 
Dijkstra algoritm, graph representation and CUDA3 programming model. Section 3 presents the approach used 
and experimental materials. Section 4 presents the results of the implementation and Section 5 presents conclusion 
and future work.  

2. Background 
Algorithm’s category concerned 

This study concerns algorithms with iterative main loop (while, for, etc.), inside which there is at less a join 
operation. Join operation can be done on CPU or on GPU as a reduction. So operations can be shared between 
CPU and GPU. The general execution form of those algorithms is illustred in Figure 1. Dijkstra’s algorithm on 
the shortest path and Ford-Fulkerson’s algorithm are exemples of this class. The reduction operation in Dijkstra 
algorithm is when global minimum is researched. For the rest, we will consider Dijkstra’s algorithm on the 
shortest path. 

 

 

1Boost is a set of free software libraries written in C++ to replace the C++ Standard Library.  
2Boost Graph Library. 
3Compute Unified Device Architecture.  



A. Chaibou, O. Sie 
 

 
43 

 
Figure 1. General form of concerned algorithms.                          

2.1. Presentation of the Algorithm  
As noted in [1], Dijkstra’s single-source shortest paths algorithm is used to determine the shortest path between 
two vertices of a connected graph weighted, directed or not. Each edge of the graph has a positive or zero weight. 
This algorithm is usually used to solve optimization problems.  

Principle of the algorithm 
From the start vertex, Dijkstra’s algorithm constructs a subgraph consisting of vertices to visit in order to 

reach the top destination. The weight of the shortest path connecting the start vertex to finish destination is equal 
to the sum of the weights of the edges followed. In simple, the algorithm can be summarized in three steps:  
 Fix the starting vertex and assign zero distance (0); adjacent vertices to it have distances equal to the weight 

of the arc that connects them to the starting vertex. The other vertices have infinite distances (+∞), meaning 
that the exact distance is not determined. Then, the minimum distance of adjacent vertices is selected and the 
vertex concerned is added to the list of visited vertices.  

 Update the distances of the vertices adjacent to the visited node. If the new calculated distance is less than 
which already exists, it replaces the old value.  

 Selecting again the vertex with the minimum distance and insert it to the list of visited vertices. This process 
continues from the last vertex added until exhaustion of all vertices or when the destination is reached.  

Figure 2 shows flowchart of Dijkstra’s algorithm. 

2.2. Example of Using Dijkstra’s Algorithm  
In Figure 3, nodes represent cities identified by a letter and numbers on edges indicate the distances. We seek 
the shortest road connecting the cities E and S. Table 1 provides the shortest path from E to S with 6 as weight. 
It is composed by E-A-C-S. 

2.3. Graph Representaion  
A graph G consists of a finite set of vertices (or nodes) denoted by V and a subset E of V × V whose elements are  
called edges. We note G = (V, E). Similarly, we note the number of vertices N in graph G ( )N V=  and M the 

number of edges of the graph ( )M E= . For the graphs we deal with in this paper, we assume that 2M N≤   

which means that between two vertices u and v, there are only two possible oriented edges: u → v or v → u. 
There are many possibilities to represent shortest graphs [19]. Two structures are in the list of most widespread:  

Adjacency list  
Each vertex contains a list of its adjacent vertices. In this representation the space occupied by the graph is 

proportional to the number of edges of the graph but an edge occupies a relatively large space.  
Adjacency matrix.  
Graph is represented in a square matrix of order N, indexed by row and column vertices. For two vertices u 

and v, the input (u,v) of the matrix gives the weight of the edge from u to v if it exists. When there's no edge 
from u to v, the input (u,v) equal to +∞.  

Representation used  
In this paper, we use adjacency matrix representation of graph because of its usefull. In addition to the 

adjacency matrix, the algorithm uses three vectors of size N:  
1) D contains optimum weight from start node (S) to another node i. This weight is stored in D[i].  
2) M indicates if a vertex is visited or not. When a vertex is visited M[i] equal to 1 else 0.  



A. Chaibou, O. Sie 
 

 
44 

 
Figure 2. Operational flowchart of Dijkstra’s algorithm.                                                         

 

 
Figure 3. A graph exemple: nodes represent cities, numbers are distances between them.                                  

 
Table 1. Steps of Dijkstra’s algorithm applied on graph in Figure 3.                                               

Steps E A B C D S 

Initialization 0 +∞ +∞ +∞ +∞ +∞ 

1st iteration 0 2E 3E ∞ +∞ +∞ 

2nd iteration - - - 4A +∞ +∞ 

3rd iteration - - - - 10B +∞ 

4th iteration - - - - - 6C 

 
3) P contains the previous vertex of each vertex (when possible) during the execution of the algorithm.  
For graph in Figure 3, N = 6. At the initialization step, we obtain adjacency matrix G, weights vector D, 

status vector M and predecessors vector P as given in Table 2. 

2.4. GP-GPU’s Computation 
In the past, GPU is destined only for video games because of its graphics processors. Since few years, GPU is 
also used in massively parallel computing. In fact, GPU’s properties provide opportunities for parallel compu- 
ting. New interest of using GPU for parallel computing is due to their very low costs for very high performance.  



A. Chaibou, O. Sie 
 

 
45 

Table 2. (a) Initialization of the adjacency matrix; (b) D weights vector; (c) M, status vector; (d) P, predecessors vector. Ver-
tices are implicitly represented by matrix’s indices. In this example E → 1; A → 2; B → 3; C → 4; D → 5; S → 6.          

(a) 

G 1 2 3 4 5 6 

1 0 +∞ +∞ +∞ +∞ +∞ 

2 +∞ +∞ +∞ +∞ +∞ +∞ 

3 +∞ +∞ +∞ +∞ +∞ +∞ 

4 +∞ +∞ +∞ +∞ +∞ +∞ 

5 +∞ +∞ +∞ +∞ +∞ +∞ 

6 +∞ +∞ +∞ +∞ +∞ +∞ 

(b) 

 1 2 3 4 5 6 

D 0 +∞ +∞ +∞ +∞ +∞ 

(c) 

 1 2 3 4 5 6 

M 1 0 0 0 0 0 

(d) 

 1 2 3 4 5 6 

P −1 −1 −1 −1 −1 −1 

2.4.1. CUDA Programming 
From 2006, NVIDIA released a DirectX-based on GPU with CUDA. CUDA architecture includes components 
for general treatments on GPU. CUDA programming consists to reprogram C code with CUDA extension as we 
do in OpenMP or MPI for instance. CUDA needs a graphics card with a NVIDIA Fermi processor,  
GForce8XXX/Tesla/Quadro, and CUDA C compiler, NVCC [20]-[25].  

2.4.2. Memory and Threads Organization on GPU 
As shown in Figure 4, thread is the basic level of computation on GPU. Threads executing concurrentially are 
grouped into block. Blocks are grouped in the grid. Each thread has its own local memory and its own working 
registers. Shared memory is dedicated to each block and is only accessible to threads of the same block. In 
addition each block has a private memory for saving block's general elements. At last, a global memory is 
dedicated for the whole GPU. It is used by the grid and provides communication between the GPU (device) and 
the CPU(host) [20]. 

2.4.3. Grid, Block and Threads: Disposition 
Before launching a kernel4, we must define the grid on which it will be executed [21] [22]. A grid is a set of 
blocks arranged in one, two or three dimensions. A block is a multiprocessing unit (cores). One must specify the 
number of threads contained in a block and the number of blocks constituting the grid. GridDim variable is used 
to set the number of blocks. Block can be arranged in one, two or three dimensions. The variable blockIdx.x 
component indicates the first size, blockIdx.y provides the second dimension and blockIdx.z returns the third 
dimension. Each block has an identifier representing its number, ranging from 0 to gridDim.x-1. 

As the block, the thread is organized in three ways:  
 in table of single dimension. Threads are identified using a single variable x. The number of threads per 

block is given by block-Dim.x.  

 

 

4Program running on GPU. In its description, it appears as a process preceded by the keyword “__global__”.  



A. Chaibou, O. Sie 
 

 
46 

 
Figure 4. Principle of CUDA architecture [23].                

 
 in two-dimensional array. Threads are determined by two variables (x, y).  
 or in three-dimensional array. The identifier of each thread is a function of three variables (x, y, z).  

Thus, blocks and threads are structured in Dim3 a special structure with three elements (x, y, z) used 
particularly in CUDA. When one of these values is not set, system assigns the default value 1. For instance 
Dim3 grid(256) corresponds to a grid size 256 × 1 × 1 and Dim3 block(64, 64) corresponds a block of size 64 × 
64 × 1 (Figure 5).  

3. Proposed Approach and Materials 
To make parallel calculations performed on the matrix’s graph for determining the shortest path, we proceed in 
two steps as below:  

1) transformation of the graph in to a matrix-vector-linear. Indices of elements of this vector will be used to 
designate threads identifier.  

2) allocation of enough computation units, such that each element of the vector (matrix-graph) is managed by 
a calculation unit.  

3.1. Transformation of the Graph Matrix 
Graph G is represented in adjacency matrix. This matrix is carried out using an array: an edge of the graph 
connecting vertices(u, v) is represented by element indiced ( )1u v v∗ − +  of an array of size N2. Thus, for 
instance the matrix graph shown in Table 3(a) is transformed as in Table 4. 



A. Chaibou, O. Sie 
 

 
47 

 
Figure 5. Structure of the grid computing.                                                    

 
Table 3. At the end of the algorithm, we have G’ as graph result (a) containing the shortest paths, weights D’ (b), node’s 
status M’ (c) and predecessor’s vector P’ (d) which is used to construct final solution.                                   

(a) 

G’ 1 2 3 4 5 6 

1 0 2 3 +∞ +∞ +∞ 

2 2 0 3 2 +∞ +∞ 

3 3 3 0 2 7 +∞ 

4 +∞ 2 2 0 3 2 

5 +∞ +∞ 7 3 0 3 

6 +∞ +∞ +∞ 2 3 0 

(b) 

 1 2 3 4 5 6 

D’ 0 2 3 4 10 6 

(c) 

 1 2 3 4 5 6 

M’ 1 1 1 1 1 1 

(d) 

 1 2 3 4 5 6 

P’ −1 1 1 2 3 4 

 
Table 4. Representation of the graph in a vector-matrix of N2 elements.                                             

 



A. Chaibou, O. Sie 
 

 
48 

3.2. Distribution of Computations between Units 
Parallelizing calculations requires a thorough examination of the dependencies between them [25]. Dijkstra’s 
algorithm on the shortest path is structured in three (3) loops for:  
 A main loop which cannot be parallelized. This loop treat the vertices one by one ordered ascending weight 

from the source vertex to the destination vertex.  
The two other inner loops can be parallelized.  
 The first inner loop selects among all the adjacents vertices not marked, the one with the minimum weight. 

At this step, the set of vertices to be processed is divided into groups. Each group is processed by a computer 
unit (block). When calculations are finished, each unit returns its relative minimum vertex. At last the global 
minimum is selected. 

This processing is performed on the GPU. It consists to a reduction operation where the minimums are 
compared gradually to extract the global minimum. Its code is given in Algorithm 1. 
 The second inner loop updates the weights of vertices. It is parallelized: each computer unit processes a 

group of vertices for updating, as described in Algorithm 2. 
In Algorithm 1, 2 and 3, we assume: 
G: a graph; 
M: status vector indicating if a node is visited or not; 
Ind: array of vertices numbers; 
k: integer; 
gindice : array of vertices numbers on the GP-GPU: 
N: size of vector (number of vertices in the graph); 
u: node of G; 
D: vector of provisories weights to the start node; 
block_size: number of threads in a block; 
num_blocks: number of blocks contained in the grid; 
GPU1, GPU2: kernels (Figure 6). 

 

 
 

 
(a)                                           (b) 

Figure 6. Overall occupancy of the computing units: global minimum using Algorithm 1 and the update of edges 
weights is shared between computing units as described in Algorithm 2.                                    



A. Chaibou, O. Sie 
 

 
49 

 
 

 

3.3. Material and Datas 
Our research took place in two stages. During the first stage, we used platform 2 and experienced the two 
parallel implementations of Dijkstra’s algorithm: one based on the CPU memory (zero-copy memory) and the 
other one uses GPU memory (with copying data). Unfortunately, this platform does not allowed us to test large 
graphs (containing more than 16,384 vertices) because of its limited power. That is why, experiments were re- 
peated on platform 1 and graphs containing 65,536 vertices were tested. So, results of platform 1 have con- 
firmed those obtained on platform 2, for large graphs. 

Characteristics of experimental platforms are as follow:  
Platform 1: 
The CPU is an Intel CoreTM2 Duo 3Ghz x64, operating at 1.333Gz and 4GiB memory. The nvidia Geforce 

GTX 570 HD has 480 cores, 1280 Mo for global memory, 48 Mo of shared memory, 64 Mo of constant memory. 
The compilator used is gcc vs 4.4.6 under Ubuntu 11.10, x86_64. 

Platform 2: 
The CPU is an Pentium Dual-Core CPU E5500 operating at 2.80Ghz and 2.80 Ghz with 3 GiB of memory. 

The nvidia GeForce GTX 670 has 1344 cores, 2048 Mo of global memory, 48 Mo of shared memory and 64 Mo 
of constant memory. The compilator used is gcc vs 4.5.2 under Ubuntu 11.04, natty i686_64. 

Code used 
The prior Dijkstra’s algorithm used is based on adjacency matrix. It was modified to take under consideration 

the data structure and platforms. On both platforms codes were written in c++ with Nvidia’s CUDA language 
extensions for the GPU. 

Data source 
Graphs used in our tests have different sources: 
-downloaded from the 9th DIMACS Implementation Challenge and US Census Bureau website [26] [27]; 
-obtained by running:  
 GTgraph , a random graph generator program type (n, m) [28];  
 GTgraph with RMAT type using a probability for the production of graphs;  
 and RandomGraph.  

Graph number of vertices are of form 2xN = , where x is an integer, because we use a reduction function on 
GPU [24].  



A. Chaibou, O. Sie 
 

 
50 

4. Results and Modeling 
4.1. Results 
Table 5 and Table 6 provide a summary of the realized measurements. It is noted that on platform1 the prior 
version of the algorithm is accelerated 3 to 10 times for algorithm version with copy and 4 to 30 times for 
version with zero-copy. On platform 2, version with copy processing perform 1.5 to 9 times and version without 
copy 3 to 18 times. 

Figure 7 and Figure 8 show the time’s variation of the experiment results. In Figure 9 and Figure 10, 
accelerations of the two implementations on the two platforms are presented. On these figures plots in red color 
show the relative acceleration obtained between with-copy version and zero-copy version. 

 

 
Figure 7. Performance on platform1 for various size of graphs.                

 

 
Figure 8. Performance on platform 2.                                            

 
Table 5. Results of experiments realized on the platform 1.                                                         

Numb. of vertices Numb. of edges CPU 1 (ms) 
GPU 1 (ms) 

With copy Zero-copy 

8192 19,142 0.842 0.284 0.206 

16,384 40,858 1.947 0.329 0.211 

32,768 82,554 4.718 0.481 0.217 

65,536 161,358 7.246 0.717 0.238 



A. Chaibou, O. Sie 
 

 
51 

 
Figure 9. Variation of the acceleration on the platform 1 ac-
cording to the size of the graph.                               

 

 
Figure 10. Variation of the acceleration on the platform 2 (La-
mi), according to the size of the graph.                          

 
Table 6. Results of experiments realized on the platform 2 (Lami, Ouagadougou, Burkina).                             

Numb. of vertices Numb. of edges CPU 2 (ms) Dijs 
GPU 2 (ms) 

With copies Zero-copy 

1024 2086 0.148 0.1015 0.0507 

2048 4356 0.274 0.1304 0.0637 

4096 8490 0.545 0.1471 0.0700 

8192 19,142 1.090 0.173 0.0765 

16,384 40,858 2.181 0.2406 0.1218 

 
The two platforms present a similarity between the curves of data: performance for implementation with 

zero-copy memory is better than the implementation with data copy. However, copying data’s time constitute an 
important factor which reduce global algorithm’s performance.   

Thanks: experiences of platform1 were done on the machine IBM Power 6, at Labsticc of Université de 



A. Chaibou, O. Sie 
 

 
52 

Bretagne-Sud (UBS), Lorient-France. 
Remark: On platform 2, we have been limited in trying to go beyond this size of graph due to our calculation 

capabilities. All measures were done more than 20 times and averages were calculated. 

4.2. Mathematical Modeling of the GPU’s Time 
In a calculation on GPU, program main starts running on CPU. GPU begins running when a kernel is en- 
countered. So, the begining of a kernel program indicates that processing control is to GPU, and at its end CPU 
takes control. Datas treated by GPU can be either on GPU memory or on CPU memory if the GPU has 
capabilities for using CudaHostAlloc(), a cuda function to map CPU memory for GPU. 

We assume: 
N: number of vertices in the graph; 
α: kernel initialization time; 
Te: execution time of a single iteration; 
λ: memory bandwidth of the GPU. 
CPU’s execution time: The theoretical execution time of the Dijkstra’s algorithm calculations on a sequential 

machine is given in (1), it is order of ( )2O N . 

( ) 2
CPU 2e e eT N T N T N T N= + =                                     (1) 

Implementation with zero-copy’s execution time: The theoretical time to compute the Dijkstra’s algorithm 
on GPU with zero-copy is given in expression (2). So, ( )( )GPUT O N lb N= ⋅ , where lb()5 is the binary logarithm 
(or logarithm on base 2).  

( )( ) ( ) ( )GPU_zero-copy 2 2log log 1e e eT N N T T T N Nα α α = + + + = + +                    (2) 

Thus, the theoretical acceleration achieved on GPU without copying memory is order of 
( )
NO

lb N
 
  
 

. 

Implementation with copying data’s execution time: Solution with copying data implies to take into account 
the time used while doing copy. The theorical quantity of datas copied are estimated as follow: 

At the begening of the computation we have to copy, weights vector (N elements), marked vector (N elements), 
and the matrix-graph ( 2N  elements). 

While running the loop main, we have to copy, the marked vector from CPU to GPU, the weights vector from 
device to device, and the marked vector (second time) from CPU to GPU. 

At the end of the loop, we have to copy marked vector and weights vector. Expression (3) represents memory 
quantity to be copied during algorithm execution;  

( ) [ ] ( )2 2
CopyMemory 2 3 2 4 4N N N N N N N = + + + = +                        (3) 

Thus, the supplementary time due to copies is ( )2O N , and can not be ignored if 2Nλ � .  
Remark: Note that to speed up the calculations, parameters block_size, num_blocks in algorithms 9 were set 

to suitable values for the sizes of graphs we handle. So, we conclude that it is suitable to use CPU memory 
(zero-copy) for algorithms with main loop containing a reduction operation (many copying data). However, 
memory zero-copy impacts also CPU performance because since it uses a part of CPU memory.  

5. Conclusions 
In the present work, we study the impact of copying data when executing algorithms on GPU. In particular, we 
exam class of algorithms which runs a part time on GPU and another part time on CPU copying data and inter- 
mediates results. The computation of Dijkstra’s algorithm on the shortest path for graphs represented in adjacency 
matrix is took as an example. Two implementations are examined: one uses memory zero-copy (so the memory 
is located on CPU) and another one uses copying data on GPU. Performances are analysed on two differents 
machines with external GPU. The results obtained show the interest of our study. Computations are performed 2 
times in solution with zero-copy compared to solution with copying data. 

 

 

5Notation recommended by ISO. lb(x) = ln(x)*lb(e) and lb(e)' 1,442695041. 



A. Chaibou, O. Sie 
 

 
53 

So the copying data’s time is equal to or greater than the computational’s time. This study shows an important 
impact of copying data on the global performance of an algorithm in GPU computing. 

The new challenge for GPU’s manufacturers is how to reduce this impact. 
In our future work prospects, we plan to: 
 redo this experiment on internal GPU. In this architecture, CPU and GPU have memory at the same space.  
 extend to Dijkstra’s algorithm for graphs represented in adjascency list. This graph’s representation provides 

better memory use and can handle very large graphs.  
 extend to the algorithms of Ford-Fulkerson and Edmond-Karp on the cut of graphs. 

References 
[1] Dijkstra, E.W. (1959) A Note on Two Problems in Connexion with Graphs. Numerische Mathematik, 1, 269-271. 

https://repository.cwi.nl/noauth/search/fullrecord.php?publnr=9256  
[2] Davidson, A., Baxter, S., Garland, M. and Owens, J.D. (2014) Work-Efficient Parallel GPU Methods for Single-Source 

Shortest Path. IEEE 28th International Parallel and Distributed Processing Symposium, Phoenix, 19-23 May 2014, 
349-359.http://dx.doi.org/10.1109/ipdps.2014.45 

[3] Hajela, G. and Pandey, M. (2014) Parallel Implementations for Solving Shortest Path Problem Using Bellman-Ford. 
International Journal of Computer Applications (0975-8887), 95, 1-6. 

[4] Singla, G., Tiwari, A. and Singh, D.P. (2013) New Approach for Graph Algorithms on GPU Using CUDA. Interna-
tional Journal of Computer Applications (0975-8887), 72, 38-42. 

[5] Singh, D.P. and Khare, N. (2012) A Study of Different Parallel Implementations of Single Source Shortest Path Algo-
rithms. International Journal of Computer Applications, 54, 26-30.  

[6] Kumar, S., Misra, A. and Tomar, R.S. (2011) A Modified Parallel Approach to Single Source Shortest Path Problem 
for Massively Dense Graphs Using CUDA. 2nd International Conference on Computer and Communication Technol-
ogy (ICCCT), Allahabad, 15-17 September 2011, 635-639. 

[7] Buluc, A., Gilbert, J.R. and Bulak, C. (2010) Solving Path Problems on the GPU. Parallel Computing, 36, 241-253. 
http://dx.doi.org/10.1016/j.parco.2009.12.002 

[8] Martin, P., Torres, R. and Gavilanes, A. (2009) CUDA Solutions for the SSSP Problem. In: Allen, G., Nabrzyski, J., 
Seidel, E., van Albada, G., Dongarra, J. and Sloot, P.M.A., Eds., Computational Science—ICCS 2009, Vol. 5544, 
Springer, Berlin, 904-913. http://dx.doi.org/10.1007/978-3-642-01970-8 

[9] Okuyama, T., Ino, F. and Hagihara, K. (2008) A Task Parallel Algorithm for Computing the Costs of All-Pairs Shortest 
Paths on the CUDA-Compatible GPU. International Symposium on Parallel and Distributed Processing with Applica-
tions, Sydney, 10-12 December 2008, 284-291. http://dx.doi.org/10.1109/ispa.2008.40 

[10] Ortega-Arranz, H., Torres, Y., Llanos, D.R. and Gonzalez-Escribano, A. (2013) A New GPU-Based Approach to the 
Shortest Path Problem. International Conference on High Performance Computing and Simulation, Helsinki, 1-5 July 
2013, 505-511.  

[11] Harish, P. and Narayanan, P.J. (2007) Accelerating Large Graph Algorithms on the GPU Using CUDA. Lecture Notes 
in Computer Science 4873. Springer, Berlin, 197-208. http://dx.doi.org/10.1007/978-3-540-77220-0_21 

[12] Crauser, A., Mehlhorn, K., Meyer, U. and Sanders, P. (1998) A Parallelization of Dijkstra’s Shortest Path Algorithm. 
In: Brim, L., Gruska, J. and Zlatuska, J., Eds., Mathematical Foundations of Computer Science (MFCS), Lecture Notes 
in Computer Science, Vol. 1450, Springer, Berlin, 722-731. http://dx.doi.org/10.1007/bfb0055823 

[13] Harishm, P., Vineet, V. and Narayanan, P.J. (2009) Large Graph Algorithms for Massively Multithreaded Architec-
tures. Centre for Visual Information Technology, International Institute of Information Technology, Hyderabad, Tech-
nical Report No. IIIT/TR/2009/74. 

[14] Crobak, J.R., Berry, J.W., Madduri, K. and Bader, D.A. (2007) Advanced Shortest Paths Algorithms on a Massive-
ly-Multithreaded Architecture. IEEE International Parallel and Distributed Processing Symposium, 2007. IPDPS 2007, 
Long Beach, 26-30 March 2007, 1-8. http://dx.doi.org/10.1109/IPDPS.2007.370687 

[15] Gregor, D. and Lumsdaine, A. (2005) The Parallel BGL: A Generic Library for Distributed Graph Computations. Pa-
rallel Object-Oriented Scientific Computing (POOSC). 

[16] Gregor, D., Edmonds, N., Barrett, B. and Lumsdaine, A. (2005) The Parallel Boost Graph Library.  
http://www.osl.iu.edu/research/pbgl  

[17] Edmond, N., Breuer, A., Gregor, D. and Lumsdaine, A. (2006) Single-Source Shortest Paths with the Parallel Boost 
Graph Library. 9th DIMACS Implementation Challenge, Shortest Paths, Piscataway, November 2006. 

[18] Gregor, D. and Lumsdaine, A. (2005) Lifting Sequential Graph Algorithms for Distributed-Memory Parallel Computa-

https://repository.cwi.nl/noauth/search/fullrecord.php?publnr=9256
http://dx.doi.org/10.1109/ipdps.2014.45
http://dx.doi.org/10.1016/j.parco.2009.12.002
http://dx.doi.org/10.1007/978-3-642-01970-8
http://dx.doi.org/10.1109/ispa.2008.40
http://dx.doi.org/10.1007/978-3-540-77220-0_21
http://dx.doi.org/10.1007/bfb0055823
http://dx.doi.org/10.1109/IPDPS.2007.370687
http://www.osl.iu.edu/research/pbgl


A. Chaibou, O. Sie 
 

 
54 

tion. Proceedings of the 2005 ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and 
Applications (OOPSLA’ 05), San Diego, October 2005, 423-437. 

[19] Rétvári, G., Bró, J.J. and Cinkler, T. (2007) On Shortest Path Representation. IEEE/ACM Transactions on Networking, 
15, 1293-1306. http://dx.doi.org/10.1109/TNET.2007.900708 

[20] Sanders, J. and Kandrot, E. (2001) CUDA par l’exemple: Une introduction à la programmation parallèle de GPU. 
Pearson, 27 mai 2011. 

[21] NVIDIA CUDATM (2012) CUDA C Best Practices Guide. 
[22] NVIDIA CUDATM (2012) Nvidia Cuda C Programming Guide. 
[23] Pironneau, O. (2009) Calcul Parallèle et CUDA. LJLL, Mars 2009. 
[24] Harris, M. (2008) Optimizing Parallel Reduction in CUDA. NVIDIA. 
[25] Grama, A., Gupta, A., Karypis, G. and Kumar, V. (2003) Introduction to Parallel Computing. 2nd Edition, Addison- 

Wesley, Boston. 
[26] DIMACS 9th DIMACS Implementation Challenge—Shortest Paths. 

http://www.dis.uniroma1.it/challenge9/download.shtml  
[27] United States Census Bureau Http://www2.census.gov  
[28] Bader, D.A. and Madduri, K. (2006) GTgraph: A Suite of Synthetic Graph Generators.  

http://dx.doi.org/10.1109/TNET.2007.900708
http://www.dis.uniroma1.it/challenge9/download.shtml
http://www2.census.gov/

	Improving Global Performance on GPU for Algorithms with Main Loop Containing a Reduction Operation: Case of Dijkstra’s Algorithm
	Abstract
	Keywords
	1. Introduction
	2. Background
	2.1. Presentation of the Algorithm 
	2.2. Example of Using Dijkstra’s Algorithm 
	2.3. Graph Representaion 
	2.4. GP-GPU’s Computation
	2.4.1. CUDA Programming
	2.4.2. Memory and Threads Organization on GPU
	2.4.3. Grid, Block and Threads: Disposition


	3. Proposed Approach and Materials
	3.1. Transformation of the Graph Matrix
	3.2. Distribution of Computations between Units
	3.3. Material and Datas

	4. Results and Modeling
	4.1. Results
	4.2. Mathematical Modeling of the GPU’s Time

	5. Conclusions
	References

