
Journal of Computer and Communications, 2015, 3, 11-19
Published Online August 2015 in SciRes. http://www.scirp.org/journal/jcc
http://dx.doi.org/10.4236/jcc.2015.38002

How to cite this paper: do Lago Pereira, S., dos Santos, L.F.Z. and de Lira, L.N. (2015) A Dialogue System for Coherent Rea-
soning with Inconsistent Knowledge Bases. Journal of Computer and Communications, 3, 11-19.
http://dx.doi.org/10.4236/jcc.2015.38002

A Dialogue System for Coherent Reasoning
with Inconsistent Knowledge Bases
Silvio do Lago Pereira, Luiz Felipe Zarco dos Santos, Lucio Nunes de Lira
Department of Information Technology, FATEC-SP/CEETEPS, São Paulo, Brazil
Email: slago@fatecsp.br, luiz.santos58@fatec.sp.gov.br, lucio.lira@fatec.sp.gov.br

Received 3 July 2015; accepted 9 August 2015; published 12 August 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Traditionally, the AI community assumes that a knowledge base must be consistent. Despite that,
there are many applications where, due to the existence of rules with exceptions, inconsistent
knowledge must be considered. One way of restoring consistency is to withdraw conflicting rules;
however, this will destroy part of the knowledge. Indeed, a better alternative would be to give
precedence to exceptions. This paper proposes a dialogue system for coherent reasoning with in-
consistent knowledge, which resolves conflicts by using precedence relations of three kinds: expli-
cit precedence relation, which is synthesized from precedence rules; implicit precedence relation,
which is synthesized from defeasible rules; mixed precedence relation, which is synthesized by
combining explicit and implicit precedence relations.

Keywords
Defeasible Reasoning, Inconsistent Knowledge, Precedence Relation, Dialogue System

1. Introduction
A knowledge base is a set of rules representing the knowledge of an expert in a specific domain. Traditionally,
the Artificial Intelligence (AI) community assumes that a knowledge base must be free of inconsistency; other-
wise, it turns out to be useless for an automated reasoning system. This assumption is motivated by the ex falso
quodlibet principle [1], which establishes that “from a falsehood, anything follows”. According to this principle,
an inconsistent knowledge base should force an automated reasoning system to collapse.

Despite that, there are many practical applications of automated reasoning where, due to the existence of rules
with exceptions, inconsistent knowledge must be used (e.g., law, politics, and medicine) [2]. For example, let ∆
be a knowledge base with the following pieces of knowledge: “penguins do not fly”, “birds fly”, and “Tweety is
a bird”. Then, since there is no counter evidence, it is coherent to infer “Tweety flies” from ∆ . Now, suppose

http://www.scirp.org/journal/jcc
http://dx.doi.org/10.4236/jcc.2015.38002
http://dx.doi.org/10.4236/jcc.2015.38002
http://www.scirp.org
mailto:slago@fatecsp.br
mailto:luiz.santos58@fatec.sp.gov.br
mailto:lucio.lira@fatec.sp.gov.br
http://creativecommons.org/licenses/by/4.0/

S. do Lago Pereira et al.

12

that the new piece of knowledge “Tweety is a penguin” is inserted into ∆ , resulting in a new knowledge base
′∆ . Then, both “Tweety flies” and “Tweety does not fly” can be inferred from ′∆ , and that is not a coherent

reasoning. One way of restoring the consistency of ′∆ is to withdraw one of its conflicting pieces of know-
ledge [3], but this will destroy part of the knowledge. A better alternative would be to give precedence to the
exception “penguins do not fly”. In this case, only “Tweety does not fly” can be coherently inferred from ′∆ .
Indeed, by using precedence relations, coherent reasoning in presence of inconsistency turns out to be possible.

In the last decades, reasoning with inconsistent knowledge has attracted great interest in the AI community.
Nowadays, argumentation [4] is a common approach for coherent reasoning in presence of inconsistency, and
several different formal models of argumentation have been proposed in the literature (e.g., [5]-[8]).

This paper proposes a system for coherent reasoning, based on dialogical argumentation and defeasible rea-
soning, which resolves conflicts by using precedence relations of three kinds: explicit precedence relation, which
is synthesized from precedence rules; implicit precedence relation, which is synthesized from defeasible rules;
mixed precedence relation, which is synthesized by combining explicit and implicit precedence relations.

The paper is organized as follows: Section 2 introduces the fundamentals of defeasible reasoning and explains
how the three kinds of precedence relations are synthesized in our system; Section 3 describes the dialectical
proof procedure on which our system is based; Section 4 presents some features of the dialogue system proto-
type implemented in Prolog; finally, Section 5 presents the conclusion of the paper.

2. Background
In this section, we start by defining the language used to specify knowledge bases in our dialogue system; then,
we present the principles of defeasible reasoning with inconsistent knowledge; and, finally, we discuss how to
synthesize three different kinds of precedence relations from the information declared in a knowledge base.

2.1. Knowledge Representation
An atom denotes an atomic proposition. A literal λ is an atom α or a negated atom α¬ . Two literals λ
and λ′ are complementary literals if λ α= and λ α′ = ¬ , or λ α= ¬ and λ α′ = . The literal denotes
a true proposition and it has no complementary literal. A conjunction is an expression 1 kλ λ∧ ∧� , where each

iλ ()1 i k≤ ≤ is a literal. Technically, a conjunction 1 kϕ λ λ= ∧ ∧� is only a syntactic sugar notation for the

set () { }1, , kϕ λ λΛ = � . Particularly, the trivial conjunction ϕ = denotes the set ()ϕΛ = ∅ .
A defeasible rule is an expression ϕ λ→ , where ϕ is a conjunction, called antecedent, and λ ≠ is a

literal, called consequent. Intuitively, a defeasible rule states that the literals in ()ϕΛ are reasons to believe in
λ , if there is no evidence contrary to λ . A defeasible rule is consistent if the set () { }ϕ λΛ ∪ has no comple-
mentary literals. A defeasible rule λ→ is a presumption. A labeled defeasible rule is an expression :π� ,
where π is a defeasible rule and � is a unique label identifying π .Two labeled defeasible rules :π� and

:π′ ′� are called conflicting defeasible rules, denoted by ′◊� � , if they have complementary consequents. Evi-
dence against the consequent of a defeasible rule can emerge from its conflicts with other defeasible rules.

A precedence rule is an expression ′� ≺ � , where � and ′� are labels of conflicting defeasible rules, stat-
ing that the rule � precedes the rule ′� (i.e., that the priority of rule � is higher than the priority of the rule
′�). Since precedence rules do not involve atoms of the logical language, they are considered as me-

ta-knowledge, whose only purpose is to provide information necessary to resolve conflicts between defeasible
rules.

A knowledgebase ∆ is a finite set of consistent labeled defeasible rules and precedence rules. For example,

{ }1 1: , 2 : ,3 : , 4 : ,3 2p b b f p f p∆ = → → →¬ → ≺

is a knowledgebase, where p , b , and f stand, respectively, for “penguin”, “bird”, and “fly”. In this know-
ledge base, the defeasible rule 2 : b f→ states that “birds fly”, the defeasible rule 3 : p f→¬ states that
“penguins do not fly”, and the precedence rule 3 2≺ states that the defeasible rule 3 has precedence over the
defeasible rule 2.

2.2. Defeasible Reasoning
As already said, a defeasible rule ϕ λ→ states that the literals in ()ϕΛ are reasons to believe in the literal

S. do Lago Pereira et al.

13

λ , if there is no counter evidence to λ . In this context, the symbols ¬ , ∧ and → are not interpreted as in
classical logic, since neither modus ponens (i.e., { },ϕ ϕ λλ→), nor modus tollens (i.e., { }, ϕϕ λ λ→ ¬ ¬)
holds for defeasible rules. In fact, even when the antecedent of a defeasible rule is true, its consequent may be
false.

Defeasible reasoning is based on an inference rule called modus non excipiens [9]. This inference rule differs
from modus ponens because it has an implicit premise stating that the consequent of a defeasible rule follows
from its antecedent, provided that there is no exception to the rule. Therefore, defeasible reasoning is a kind of
reasoning that produces only a contingent demonstration of a literal λ . Anyway, a necessary (although not suf-
ficient) condition to believe in a literal λ is that it can be, at least, defeasibly derived from the knowledge base.

A defeasible derivation tree of a literal λ from a knowledge base ∆ , denoted by ()λ∆ϒ , is a tree such
that:
 The root of ()λ∆ϒ is labeled with the literal λ .
 For each node of ()λ∆ϒ labeled with a literal λ′ , there exists a defeasible rule ϕ λ′→ ∈∆ .
 If ϕ = , then the node labeled with λ′ is a leaf in ()λ∆ϒ ; otherwise, if 1 kϕ λ λ= ∧ ∧� , then that node

has exactly k children nodes, which are labeled with 1, , kλ λ� , respectively.
A defeasible derivation tree is generated by a backward search procedure, similar to SLD-refutation [10]. For

example, a defeasible derivation tree of the literal u from 2∆ is depicted in Figure 1.

{ }2 , 2 : ,3 : , 41: : ,5 : ,6 :p q r p q s r t s t u→ → → ∧ → → →∆ = ∧

A literal λ is defeasibly derivable from ∆ if, and only if, there exists a defeasible derivation tree ()λ∆ϒ .
For example, as shown in Figure 2, both literals f (“Tweety flies”) and f¬ (“Tweety does not fly”) are de-
feasibly derivable from the knowledge base 1∆ .

Notice that defeasible derivation is a monotonic process, since the extension of ∆ with new knowledge
cannot avoid the derivation of previously derived literals. Nevertheless, defeasible reasoning is a non-monotonic
process, since the extension of ∆ with new knowledge can make a previously coherent conclusion becomes
incoherent, and vice-versa. For example, consider the following knowledge base:

{ }3 1: , 2 : ,3 : , ,34 : , 2, 4 35 :c b b f c f c s f c∆ = → → →¬ ∧ →→ ≺ ≺

where c , b , f , and s stand for “chicken”, “bird”, “fly”, and “scared”, respectively. Clearly, both f and

f¬ are defeasibly derivable from 3∆ , since { }1 , ,c c b f fA b→ → →= and { }2 ,c cA f f→ →¬= ¬ .
However, because 3 2≺ , 2A is considered stronger than 1A and, hence, only f¬ is a coherent conclusion
from 3∆ . In other words, arguments 1A and 2A attack each other, but 2A defeats 1A . Now, suppose that

3∆ is extended, becoming { }3 3: 6 : s= ∆ →∆ ∪ . Then, a third argument { }3 , ,c s c s f fA → → ∧= →
can be constructed based on the extended 3∆ and, since 4 3≺ , the new argument 3A defeats 2A , and reins-
tates 1A . As a result, the previously coherent conclusion f¬ becomes an incoherent conclusion, and the pre-
viously incoherent conclusion f becomes a coherent conclusion. This idea is illustrated in Figure 3.

It is worthy noticing that, without the precedence rules 3 2≺ and 4 3≺ , the conflicts between the argu-
ments could not be resolved and, consequently, neither f , nor f¬ could be accepted as a coherent conclu-
sion from 3∆ . When two conflicting defeasible rules have the same strength, we say that they block each other.

Figure 1. Defeasible derivation tree of u from 2∆ ..

S. do Lago Pereira et al.

14

Figure 2. Defeasible derivation trees of f and f¬ from 1∆ .

Figure 3. Attack, defeat and reinstatement.

2.3. Precedence Relations
Let L∆ be the set of labels used in a knowledge base ∆ . A strict partial order over L∆ is a binary relation ≺
such that /� ≺ � (irreflexivity), and if ′� ≺ � and ′ ′′� ≺ � , then ′′� ≺ � (transitivity), for all , , L∆′ ′′∈� � � .
Clearly, if ≺ is an irreflexive and transitive relation, it is also an asymmetric relation (i.e., if ′� ≺ � , then
′ /� ≺ �).
Let { }e

∆ ′Π = ∈∆� ≺ � be the set of precedence rules explicitly declared in ∆ . We assume that the transitive

closure of e
∆Π , denoted by c

∆ , is a strict partial order over L∆ . Moreover, since precedence rules between

non-conflicting defeasible rules are useless, we define { }:c
∆ ∆′ ′= ∈ ◊� ≺ � � � . Indeed, the set ∆ is an expli-

cit precedence relation over defeasible rules declared in ∆ . For example, consider the following knowledge
base:

{
}

4 1: , 2 : ,3 : , 4 : ,5 : ,

6 : ,7 : ,8 : ,9 : ,10 : ,11:

a f a w f c f c s f c w f

b f b w c b w c s

∆ = →¬ ∧ → →¬ ∧ → ∧¬ →¬

→ → → →¬ → →

where a , f , w , c , s , and b stand for “animal”, “fly”, “winged”, “chicken”, “scared”, and “bird”, re-

spectively. Let 5∆ be { }4 2 1,3 2,4 3∆ ∪ ≺ ≺ ≺ . Then, we have:

 { }5 2 1,3 2,4 3e
∆

Π = ≺ ≺ ≺

 { }5 2 1,3 1,3 2,4 1,4 2,4 3c
∆
= ≺ ≺ ≺ ≺ ≺ ≺

 { }5 2 1,3 2,4 1,4 3
∆
= ≺ ≺ ≺ ≺

An implicit precedence relation over defeasible rules declared in ∆ , based on the criterion of specificity [11],
can also be defined. In this work, we adopt a criterion of specificity that favors two aspects of a defeasible rule:
precision (amount of information in the rule’s antecedent) and conciseness (number of steps to reach the rule’s
antecedent). Let 1 1 1 :ϕ λ→� and 2 2 2 :ϕ λ→� be conflicting defeasible rules in ∆ ; let

(){ }0 :ϕ λ ϕ∆ = → ∈∆ ≠ be the set of defeasible rules of ∆ that are not presumptions; let

(){ }1 0 1:λ λ ϕ∆ = ∆ → ∈Λ∪ be a knowledge base where all presumptions are reasons to believe in 1λ ; and

let (){ }2 0 2:λ λ ϕ∆ = ∆ → ∈Λ∪ be a knowledge base where all presumptions are reasons to believe in 2λ .

Then 1� is more specific than 2� , denoted by 1 2� � � , if and only if each literal ()2λ ϕ∈Λ is defeasibly

derivable from 1∆ , and there is at least one literal ()1λ ϕ∈Λ that is not defeasibly derivable from 2∆ . Intui-
tively, 1 2� � � means that the antecedent of 2� can be derived from the antecedent of 1� , but not the other
way around (i.e., 1� is an exception of 2�). For example, considering 4∆ , 4 : c s f∧ → is more specific
than 3 : c f→¬ (since c is derivable from c s∧ , but c s∧ is not derivable from c). Intuitively, rule 4 is

S. do Lago Pereira et al.

15

more precise than rule 3. Analogously, 3 : c f→¬ is more specific than 2 : a w f∧ → (since a w∧ is de-
rivable from c , but c is not derivable from a w∧). Intuitively, rule 3 is more concise than rule 2.

Let { }: , andL∆ ∆′ ′= ′∈� ≺ � � � � � � be the set of implicit precedence rules automatically synthesized from
the defeasible rules declared in ∆ .Clearly, ∆ is an irreflexive relation (since the specificity criterion is de-
fined only for conflicting rules), ∆ is an asymmetric relation (since, if ′� � � , the antecedent of ′� is de-
feasibly derived from the antecedent of � , but not vice-versa), and ∆ is a transitive relation, with respect to
conflicting rules (since, if ′� � � , ′ ′′� � � and ′′ ′′′� � � , then ′′′◊� � and the antecedent of ′′′� is defeasibly
derivable from the antecedent of � , but not vice-versa).Therefore, ∆ is an implicit precedence relation over
defeasible rules declared in ∆ . For example, considering 4∆ , we have:
 { }4 2 1,3 2,4 1,4 3,5 2,7 9

∆
= ≺ ≺ ≺ ≺ ≺ ≺

The synthesis of an implicit preference relation is based only on the syntax of the defeasible rules declared in
a knowledge base and, therefore, it has the advantage of being a criterion independent of the application domain.
However, not all precedence rules can be defined in terms of specificity and, frequently, a knowledge base also
contains explicit precedence rules defined by a domain expert. In this case, a mixed preference relation (synthe-
sized by combining explicit and implicit preference relations) may be used. Notice, however, that ∆ ∆∪ is
not necessarily a strict partial order over L∆ (since explicit and implicit precedence relations can disagree about

the relative precedence of two defeasible rules). For example, for the knowledge base { }5 4 5 4,9 7= ∆∆ ≺ ≺∪ ,

5 5∆ ∆
∪ is not a strict partial order over 5L

∆
, as can be easily verified:

 { }5 5 4,9 7
∆
= ≺ ≺

 { }5 2 1,3 2,4 1,4 3,5 2,7 9
∆
= ≺ ≺ ≺ ≺ ≺ ≺

To solve this problem, we propose an algorithm that combines explicit and implicit preference relations, by
giving preference to explicit precedence rules. This algorithm starts with :m

∆ ∆ ∆Π = ∪ . Then, while m
∆Π is a

cyclic relation, it finds the set W of the weakest edges in a shortest cycle in m
∆Π , and defines :m m W∆ ∆Π = Π − .

Given a cycle 1 2 1, , kC = � ≺ � � � ≺ � , the setW of weakest edges in C is

{ }, : andC C∆ ∆′ ′ ′ ′∈ ∉ ∈ ∈′ ′ ′′� ≺ � � ≺ � � ≺ � � ≺ � . When the algorithm stops, m
∆Π is an acyclic relation and

m
∆ ∆⊆ Π . Therefore, the transitive closure of m

∆Π , denoted by c
∆ , is a strict partial order over L∆ and

{ }:c
∆ ∆′= ∈ ◊ ′� ≺ � � � is a mixed precedence relation over defeasible rules declared in ∆ .The general idea

of this process is depicted in Figure 4, considering an arbitrary situation involving eight labels. In this figure,
explicit and implicit preference rules are represented by plain and dotted lines, respectively, and the precedence
rules resulting from the transitive closure of the acyclic relation are represented by dashed lines. Particularly, for

5∆ , we have { }5 2 1,3 2,4 1,4 3,5 2,5 4,9 7
∆
= ≺ ≺ ≺ ≺ ≺ ≺ ≺ .

3. The Dialectical Proof Procedure
As discussed in Section 2.2, arguments for and against a conclusion can be extracted from defeasible derivation
trees. Arguments are similar to proofs but, since they can be defeated by stronger counterarguments, their con-
clusions cannot be warranted under all circumstances. In this section, we present the fundamentals of the dialec-
tical proof procedure on which our system is based. Given a knowledge base ∆ , this proof procedure can

(a) (b) (c)

Figure 4. Mixed precedence relation synthesis.. (a) Weakest edges in cycles in ∆∆ ∪ ; (b) Corresponding acyclic rela-

tion m
∆Π ; (c) Mixed precedence relation ∆ .

S. do Lago Pereira et al.

16

decide whether a conclusion can be coherently inferred from ∆ , by analyzing its pros and cons. The dialectical
proof procedure is a kind persuasion dialogue [12], based on two main components: a communication language
and a protocol. These components are explained in the next subsections.

3.1. The Communication Language
To communicate its viewpoint about an issue, an agent must use a locution. The communication language speci-
fies the locutions that the agents can utter in a conversation [13]. In this work, we adopt the following locutions,
where ∆ is a knowledge base and λ is a literal:
 ()claim λ , to claim that λ is a coherent conclusion from ∆ .

 ()why λ , to ask for reasons to believe that λ is a coherent conclusion from ∆ .

 ():since ϕ λ→� , to argue that ϕ is a reason to believe that λ is a coherent conclusion from ∆ .

 ()agree λ , to agree that λ is a coherent conclusion from ∆ .

 ()retract λ , to retract the claim about λ being a coherent conclusion from ∆ .
The dialectical proof procedure is modeled as a dialogue between agents pro and con . A speech act is a

pair formed by an agent and a locution. A dialogue starts with a speech act ():pro claim λ . The role of pro is
to utter locutions defending the claim that λ is a coherent conclusion from ∆ , and the role of con is to utter
locutions raising doubt about the truth of that claim. The attitude of pro is credulous, while the attitude of
con is skeptical.

3.2. The Protocol
A dialogue is a finite sequence of speech acts. The record of all speech acts uttered by the agents, since the be-
ginning of a dialogue until a specific moment, is a narrative. A protocol specifies, for each narrative, the next
legal speech act. A legal dialogue is a dialogue consisting only of legal speech acts, according to the protocol.

The protocol used in this work is succinctly described in Table 1. In this table, speech act is the last utterance
in the current narrative, and A and B are agents with adversary roles. For each speech act, this protocol spe-
cifies a legal reply, which can be an attacking or a surrendering reply. The protocol enforces that each reply
must be coherent with the all previous locutions uttered by the agents, according to the current narrative.

The turn taking policy is implicitly defined by the reply structure imposed by the protocol (also specified in
Table 1). An agent can give more than one reply to a speech act, repeated locutions are not allowed, and tenta-
tive replies must obey the order in which they are defined in Table 1.

During a dialogue, a dialectical tree with all relevant pros and cons for the initial claim is recursively built.
The dialogue terminates when no legal reply in the current narrative is possible. A speech act is a winner if all
its replies are losers; otherwise, if it has at least a winner reply, it is a loser. By definition, speech acts with the
locutions ()agree λ and ()retract λ are losers. When a reply is a loser, the agent can backtrack and try
another reply. At the end, the initial claim, about λ being a coherent conclusion from ∆ , is true if ():pro claim λ
is a winner.

For example, consider the following knowledge base:

Table 1. Protocol: speech acts and reply structure..

Speech act Attack Surrender

():A claim λ ():B why λ ():B agree λ

():A why λ (): :B since ϕ λ→� , for :ϕ λ→ ∈∆� ():B retract λ

(): :A since ϕ λ→�
():B why λ′ , for ()λ ϕ′∈Λ

():B agree λ
(): :B since ϕ λ′ ′ ′→� , for :ϕ λ′ ′ ′→ ∈∆� , if λ and λ′ are complementary literals

():A agree λ nil nil

():A retract λ nil nil

S. do Lago Pereira et al.

17

{ }6 1: , 2 : ,3 : , 4 : ,5 : , 2 1,3 2b f c f c s f c b c∆ = → →¬ ∧ → → → ≺ ≺

where b , f , c , and s stand for “bird”, “fly”, “chicken”, and “scared”, respectively. Figure 5 shows a di-
alectical tree warranting that f¬ is a coherent conclusion from 6∆ . Winners and losers are marked with W
and L , respectively.

As said before, the agents play different roles in a dialogue: while pro defends the claim that λ is a cohe-
rent conclusion from ∆ , con tries to raise doubts about that claim. Notice, however, that con does not de-
fend the opposite claim (i.e., that the complement of λ is a coherent conclusion from ∆). Therefore, to win a
dispute, pro must defeat the rules used by con ; whereas, to win a dispute, con can defeat or block the rules
used by pro . Moreover, when pro wins a dispute, λ is accepted (and, consequently, the complement of λ
is rejected); on the other hand, when con wins a dispute, λ is rejected (and there is no warranty that the
complement of λ is accepted). Indeed, this proof procedure adheres to the open-world assumption [14], ac-
cording to which the value of a literal can be unknown. For example, both p and p¬ are rejected as coherent
conclusions from { }7 1: , 2 :p p∆ → ¬= → , since the rules 1 and 2 block each other (notice that pro can
agree with p and p¬ because it is a credulous agent) (Figure 6).

4. The Dialogue System Prototype
A prototype1 of the proposed dialogue system was implemented in Prolog [15]. It runs in interpreted mode, and
its commands are executed as standard Prolog queries. The main commands offered by this prototype are de-
scribed in Table 2. By default, the system uses a mixed precedence relation and runs in verbose mode.

In the knowledge representation language used in the prototype, the symbols ¬ , ∧ , → , and ≺ are re-
placed by the operators not, and, then, and precedes, respectively, the literal is replaced by the keyword true,
and defeasible rules can contain free variables. For instance, Figure 7 (left, top) shows a knowledge base coded
in this new representation language and saved in a file named kb.pl.

Figure 5. Dialectical tree warranting that f¬ is a coherent conclusion from 6∆ .

Figure 6. The open-world assumption..

1Available at www.ime.usp.br/~slago/dsp.zip.

http://www.ime.usp.br/%7Eslago/dsp.zip

S. do Lago Pereira et al.

18

Figure 7. Dialogue System Prototype: knowledge base representation, precedence relations and query’s output..

Table 2. Main commands offered by the dialogue system prototype..

Command Description

kb # literal Asks the system whether literal is a coherent conclusion from kb.

precedence_relations (kb) Shows all the three precedence relations synthesized from kb.

explicit Choose explicit precedence relation to resolve conflicts.

implicit Choose implicit precedence relation to resolve conflicts.

mixed Choose mixed precedence relation to resolve conflicts.

verbose Alternate between verbose and non-verbose mode. If the verbose mode is active, the user can
see each step of the reasoning process; otherwise, he can see only the final result of that process.

The command implemented by the predicate precedence_relations/1 shows the three kinds of precedence re-

lations synthesized from a specific knowledge base. For instance, the precedence relations for the knowledge
base kb.pl are shown in Figure 7 (left, bottom).

The command implemented by the predicate #/2 allows the user asking whether a literal is a coherent conclu-
sion from a knowledge base. Only ground literals are allowed in queries and, at each query, each defeasible rule
with variables is automatically replaced by one of its ground instances, according to the literal used in the query.
For instance, the result of the query kb # fly (tina) is shown in Figure 7 (right).

The implemented prototype was tested with a series of benchmarking examples found in the literature and in-
tuitively coherent results were obtained for all of them.

As future steps, we plan to study the formal properties of the dialogue system prototype, with respect to well
known semantics for argumentation systems [5], as well as to develop a graphical interface to show the dialec-
tical tree structure and the relations between its arguments and counterarguments.

5. Conclusions
The ability of dealing with inconsistent knowledge bases is relevant for many practical applications. As it is well
known, in such applications, inconsistency arises mainly due to the existence of rules with exceptions. Thus, one
way of coping with inconsistency is to give precedence to exceptions. Based on this idea, this paper proposes a
dialogue system for coherent reasoning with inconsistent knowledge bases, which resolves conflicts among de-
feasible rules by using precedence relations of three different kinds.

More specifically, this paper 1) shows how explicit and implicit precedence relations can be automatically
synthesized from an inconsistent knowledge base and also how they can be combined to synthesize a mixed
precedence relation (where explicit precedence rules can override conflicting implicit precedence rules); 2)
presents a dialectical proof procedure that can be used to decide whether a specific conclusion can, or cannot, be

S. do Lago Pereira et al.

19

coherently inferred from an inconsistent knowledge base; 3) implements a prototype system for coherent rea-
soning with inconsistent knowledge bases.

Future extensions of this work are the study of the formal properties of the proposed system and the develop-
ment of a graphical interface for it.

Acknowledgements
This research (project number 800476/2014-0) is supported by CNPq (Brazilian National Counsel of Technolo-
gical and Scientific Development), under grant numbers 305484/2012-5 and 102869/2015-4.

References
[1] Carnielli, W.A. and Marcos, J. (2001) Ex Contradictione Non Sequitur Quodlibet. Proceedings of the II Annual Con-

ference on Reasoning and Logic, Bucharest, July 2001, 89-109.
http://wslc.math.ist.utl.pt/ftp/pub/MarcosJ/01-CM-ECNSQL.pdf

[2] Walton, D. (2006) Fundamentals of Critical Argumentation. Cambridge University Press, Cambridge.
[3] Potyka, N. and Thimm, M. (2014) Consolidation of Probabilistic Knowledge Bases by Inconsistency Minimization.

Proceedings of the 21st European Conference on Artificial Intelligence, Prague, 27 May 2014, 729-734.
http://www.mthimm.de/pub/2014/Potyka_2014.pdf

[4] Efstathiou, V. (2010) Algorithms for Computational Argumentation in Artificial Intelligence. Ph.D. Thesis, University
College London, London. http://discovery.ucl.ac.uk/1301992/1/1301992.pdf

[5] Dung, P.M. (1995) On the Acceptability of Arguments and Its Fundamental Role in Nonmonotonic Reasoning, Logic
Programming and N-Person Games. Artificial Intelligence, 77, 321-357.
http://www.sciencedirect.com/science/article/pii/000437029400041X

[6] Modgil, S.J. and Prakken, H. (2014) The ASPIC+ Framework for Structured Argumentation: A Tutorial. Argument and
Computation, 5, 31-62. http://www.cs.uu.nl/groups/IS/archive/henry/ASPICtutorial.pdf

[7] Gorogiannis, N. and Hunter, A. (2011) Instantiating Abstract Argumentation with Classical Logic Arguments: Post-
ulates and Properties. Artificial Intelligence, 175, 1479-1497. http://www0.cs.ucl.ac.uk/staff/a.hunter/papers/arglog.pdf
http://dx.doi.org/10.1016/j.artint.2010.12.003

[8] García, A.J. and Simari, G.R. (2004) Defeasible Logic Programming: An Argumentative Approach. Theory and Prac-
tice of Logic Programming, 4, 95-138. http://cs.uns.edu.ar/~ajg/papers/2004TPLPGarciaSimari.pdf
http://dx.doi.org/10.1017/S1471068403001674

[9] Verheij, B. (1999) Logic, Context and Valid Inference or: Can There Be a Logic of Law? In: Jaap van den Herik, H., et
al., Eds., Legal Knowledge Based Systems, GNI, Nijmegen, 109-121.
http://www.ai.rug.nl/~verheij/publications/pdf/jurix99.pdf

[10] Kowalski, R. (1974) Predicate Logic as a Programming Language. Information Processing, North Holland Publishing
Co., Amsterdam, 569-574. http://www.doc.ic.ac.uk/~rak/papers/IFIP%2074.pdf

[11] Stolzenburg, F., et al. (2002) Computing Generalized Specificity. Journal of Applied Non-Classical Logics, 12, 1-27.
http://link.springer.com/chapter/10.1007/978-94-017-1737-3_4

[12] Besnard, P. and Hunter, A. (2008) Elements of Argumentation. MIT Press, Cambridge.
https://mitpress.mit.edu/sites/default/files/titles/content/9780262026437_sch_0001.pdf

[13] Prakken, H. (2006) Formal Systems for Persuasion Dialogue. Knowledge Engineering Review, 21, 163-188.
http://www.cs.uu.nl/groups/IS/archive/henry/dgreview.pdf
http://dx.doi.org/10.1017/S0269888906000865

[14] Russell, S. and Norvig, P. (2010) Artificial Intelligence: A Modern Approach. 3rd Edition, Prentice Hall, Upper Saddle
River.

[15] Bratko, I. (2011) Prolog Programming for Artificial Intelligence. 4th Edition, Pearson, Canada.

http://wslc.math.ist.utl.pt/ftp/pub/MarcosJ/01-CM-ECNSQL.pdf
http://www.mthimm.de/pub/2014/Potyka_2014.pdf
http://discovery.ucl.ac.uk/1301992/1/1301992.pdf
http://www.sciencedirect.com/science/article/pii/000437029400041X
http://www.cs.uu.nl/groups/IS/archive/henry/ASPICtutorial.pdf
http://www0.cs.ucl.ac.uk/staff/a.hunter/papers/arglog.pdf
http://dx.doi.org/10.1016/j.artint.2010.12.003
http://cs.uns.edu.ar/%7Eajg/papers/2004TPLPGarciaSimari.pdf
http://dx.doi.org/10.1017/S1471068403001674
http://www.ai.rug.nl/%7Everheij/publications/pdf/jurix99.pdf
http://www.doc.ic.ac.uk/%7Erak/papers/IFIP%2074.pdf
http://link.springer.com/chapter/10.1007/978-94-017-1737-3_4
https://mitpress.mit.edu/sites/default/files/titles/content/9780262026437_sch_0001.pdf
http://www.cs.uu.nl/groups/IS/archive/henry/dgreview.pdf
http://dx.doi.org/10.1017/S0269888906000865

	A Dialogue System for Coherent Reasoning with Inconsistent Knowledge Bases
	Abstract
	Keywords
	1. Introduction
	2. Background
	2.1. Knowledge Representation
	2.2. Defeasible Reasoning
	2.3. Precedence Relations

	3. The Dialectical Proof Procedure
	3.1. The Communication Language
	3.2. The Protocol

	4. The Dialogue System Prototype
	5. Conclusions
	Acknowledgements
	References

