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Abstract 
A tag-collision (or missed reads) in RFID system (Radio Frequency Identification) system degrades 
the identification efficiency. The so-called tag collision is that a reader cannot identify a tag when 
more than one tags respond to a reader at the same time. There are some major anti-collision 
protocols on resolving tag collision, e.g., ALOHA-based protocol, binary tree protocol, and Query 
Tree (QT) protocol. Up to date, most tag anti-collision protocols are QT protocols. QT protocols are 
categorized into M-ary query tree (QT). In the previous literature, choosing M = 3 (i.e., a ternary QT 
(TQT)) was proven to have the optimum performance for tag identification. Recently, Yeh et al. 
used parallel response approach to reduce the number of collisions. In this paper, we combine the 
partial response and TQT to propose an effective parallel response TQT (PRTQT) protocol. Simu-
lation results reveal that our PRTQT outperforms Yeh et al.’s protocol and TQT protocol. 
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1. Introduction 
Radio frequency identification (RFID) system consists of readers, tags and backend database server [1]. This 
technology can be applied in inventory control, distribution industry, supply chain management,∙∙∙, and etc. 
However, there are two types of collision problems in RFID system, the tag collision and the reader collision [2] 
[3]. Tag collisions occur when multiple tags respond to a reader simultaneously and the reader cannot differen-
tiate these tags correctly. In this paper, we deal with the tag-collision problem. When tags communicate with a 
reader through wireless transmission, they should be uniquely identified one by one. After the successful identi-
fication, a reader then sends the collected data from tags to a data processing system (backend database server), 
for the further application need. 

There are two types of two tag anti-collision protocol to address tag-collision problem. One is ALOHA-based 
protocol [4] and the other is tree-based protocol. ALOHA protocol reduces the tag collisions since it has the 
starvation problem (a tag cannot be identified for a long time). Tree-based protocols can be classified to the bi-
nary tree (BT) and the query tree (QT). In BT protocols [5]-[8], a tag generates a random bit. If the bit is “0”, 
tags transmit their Electronic Product Codes (EPCs) to the reader, and tags having “1” transmit later. By repeat-
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ing this process, all tags can be uniquely identified. 
QT protocols [9]-[12] are sending a query string to identify the tags. If just one tag ID matches the query 

string, then the tag is identified. When multiple tags have the same query string, they are collided with each oth-
er. Otherwise, this situation is idle. Usually, QT protocol is implemented as binary QT (BQT) protocol that 
query tree is binary tree. Also, M-ary QT (MQT) were proposed in [10]-[12] with arbitrary number M. Repre- 
senting binary tuples to a decimal digit, a QT can be used as MQT for M = 2, 4, 8∙∙∙etc. Using large M-ary tree 
reduces the number of collisions, but increases the number of idle situations. Obviously, MQT protocol is re-
duced to BQT protocol for M = 2. Mathys et al. claimed the optimum performance of MQT is M = 3, i.e., ter-
nary QT (TQT) [13]. However, in real environment, readers and tags communicate through binary code. TQT 
protocol is hard to implement from binary EPC. In [14], the authors adopted a conversion of 3B2T (3 binary 
code to 2 ternary code), to practically implement TQT protocol.  

Recently, Yeh et al. [15] proposed a parallel response query tree scheme that combines the frequency shift 
keying (FSK) modulation and Manchester coding to provide two subcarriers for tags communicating with reader 
in parallel. In this paper we adopt the parallel subcarriers of Yeh’s protocol and the optimal performance of TQT 
protocol to design a parallel response ternary query tree (PRTQT) protocol. The remainder of this work is orga-
nized as follows. In Section 2, we review previous woks, Yeh et al.’s protocol and 3B2T conversion in TQT 
protocol. In Section 3, we propose the PRTQT algorithm for tag anti-collision. Performance and comparison are 
given in Section 4. Finally, our conclusion is drawn in Section 5. 

2. Previous Works 
2.1. Partial Response in Query Tree 
Yeh et al. [15] used frequency shift keying (FSK) modulation technique combining Manchester code to provide 
two subcarriers for tags to communicate with reader in parallel. In [16], two subcarrier tones in f0 = 2.2 MHz and 
f1 = 3.3 MHz based on the baseband carrier in 900 MHz is provided for a reader could receive two separate sig-
nals at the same time. The responded bits of tags are encoded as Manchester code, in which a low-to-high transi-
tion stands for 0, and a high-to-low transition stands for 1, as shown in Figure 1(a) and Figure 1(b). By this pa-
rallel two subcarrier responding and partial parallel prefix matching, Yeh et al.’s protocol performs like 4-ary 
QT protocol. However, Yeh et al.’s enhance the performance of 4-ary QT protocol since using two subcarriers. 

A simple example with 8 tags with IDs {(0000100), (0010100), (0011010), (0011101), (1010110), (1011000), 
(1100111), (1101110)}. When reader send a query string S = (00), tags with prefix (00) and (11) will respond. 
 

 
Figure 1. Tag’s responses of Yeh et al.’s protocol with two subcarriers. 
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Also, the MSB + R1 = 0 (respectively, 1) will use subcarrier f0 (respectively, f1) to respond, where MSB is the 
first bit of ID and R1 is the first bit of the tag remainder exclusive S. In Figure 1(c), since MSB + R1 = 0 for the 
tag (0000100), and MSB + R1 = 1 for other tags of (0010100), (0011010), (0011101), (1100111), and (1101110), 
thus the tag (0000100) respond using subcarrier f0 to sender and uniquely identified. Other five tags respond us-
ing f0 and collide with each other. By the same argument, reader continuously sends the query string S = (0010). 
This procedure is repeated until all tags are successfully identified. 

2.2. 3B2T Conversion in TQT 
A ternary tree is impossible directly implemented in QT protocol to identify a binary EPC. So using TQT deliv-
ers a problem how to efficiently convert 96-bit (EPC)2 to a ternary (EPC)3. 

The tradition method of convert binary digits to ternary digits is difficult to implement, and it would waste 
more time. The 3B2T conversion divides 96 bits EPC to 32 parts of three binary digits. And each three digits 
can map to two ternary digits by conversion table, this is shown in Figure 2. Actually, 96 binary bits just needs 
61 ternary digits for conversion. Using 96 × (2/3) = 64 ternary digits for conversion is not the optimal choice, 
but this way could finish conversion faster than the traditional conversion. By 3B2T conversion divides all bits 
to be 32 parts, and each part is independent with others. Thus, we do not need to turn covert all EPC at once, and 
just convert the part we use.  

3. The Proposed PRTQT Protocol 
As we know, in [13], the authors showed that TQT (M = 3) has the optimum performance (i.e., the less identifi-
cation time). The proposed PRTQT is motivated by the parallel subcarriers of Yeh’s protocol and the optimal 
performance of TQT protocol. We use a more complex reader that could distinguish three responded signals 
with different frequencies from tags, and meantime process each response in parallel. Notations and their de-
scriptions used in the proposed PRTQT protocol are defined below. 

The proposed PRTQT protocol combines the parallel subcarrier response method and TQT protocol. In the 
proposed PRTQT, we have to convert binary IDs to ternary IDs for all tags by using 3B2T conversion. A tag 
with ternary digit t = (t1, t2,∙∙∙, t64), where ti∈{0, 1, 2} and 1 ≤ i ≤ 64. Readers first push (Q, 0) into a NULL 
queue Q. When the queue Q is not null, readers pop a ternary string q (|q| = x) from Q to broadcast. If ti = qi, for 
1 ≤ I ≤ x − 1. Then the tag responds by using subcarrier c, where c is tx. There are three outcomes may occur in 
subcarrier. When more than one tags respond with the same subcarrier, the collision occurs. Then, readers would 
push (Q, q’||c||0) into the queue Q, where q’ = (q1, q2,∙∙∙, qx−1). On the other hand, if only one tag responds with 
the subcarrier, the tag would be uniquely identified. After the successful identification, tag sends its ID to the 
reader. This procedure is repeated until the queue Q is empty. In the proposed PRTQT, all binary digits of ID are 
not necessarily converted to ternary digits at first. We just need 3B2T conversion when the query strings need to 
be used, so that the performance can be improved. The proposed PRTQT algorithm is shown in Figure 3. 

Example 1. We use eight tags with 12-bit ID: (000101010010), (000111010111), (001101110000), 
(001110010110), (010110100001), (101010110001), (110000100010), and (110001110011), to test the pro- 
 

 
Figure 2. 3B2Tconversion. 

...
2 digits

96bits

2×32=64 digits

3bits

...
3bits 3bits

2 digits 2 digits

3B     2T
000    00
001    01
010    02
011    10
100    11
101    12
110    20
111    21

conversion table



C.-N. Yang et al. 
 

 
75 

 
Figure 3. The Proposed PRTQT. 

 
posed PRTQR protocol.  

At first, the first three bits of all tags are converted into two ternary digits: (00), (00), (01), (01), (02), (12), 
(20), and (20) by 3B2T conversion. Readers then push (0) into a NULL queue Q for initialization. Readers pop a 
ternary string q = 0 from queue Q and broadcast the query string to all tags. Five tags with ternary prefix (00), 
(01) and (02), where t1 = 0, respond to this query using subcarrier 0, and collide with each other since they re-
spond with the same subcarrier 0. However, two tags with ternary prefix (20), where t1 = 2, respond with sub-
carrier 2, and collide with each other since they respond with the same subcarrier 2. The tag with ternary prefix 
(12), where t1 = 1, responds with subcarrier 1, and is uniquely identified. Thus, the tag (101010110001) with 
ternary prefix (12) is identified successfully. Readers then push (Q, 00) and (Q, 20) into the queue Q. When tags 
respond with the same subcarrier c, readers push string (q’||c||0) into the queue Q. After the first query cycle, the 
remainder of queue Q is {00, 20}. Hence, in the second query cycle, readers pop the string q = (q1, q2) = (00) 
and broadcast to all tags. Table 1 lists the detail of identifying procedure for all eight tags, and Figure 4 is its 
corresponding tree plot. Since we use three subcarriers to send the ternary digits, and thus there are no idle situa-
tions in the proposed PRTQT protocol. Finally, there are total 7 interrogation cycles. 

4. Performance Evaluation 
In this section, we conduct two experiments to evaluate the performance of BQT, TQT and the proposed 
PRTQT. Suppose tag’s ID is using EPC (96-bits). And we have n tags need to be identified, where n = 100, 200, 
300, 400, 500, 1000 and 2000. In Experiment A, n tags are randomly chosen that is for real situation. Experi-
ment B is special case for test the performance with similar EPC. In [17], we consider the RFID warehouse dis-
tribution. It is reasonable to assume that the EPC data of most items from the same warehouse will be very sim-
ilar since the items are manufactured by the same company, and are stacked together in a large warehouse. So, 
tags have very similar EPCs for this case. Both experiments are showing the number of collision cycles NC, idle 
cycles NI and total cycles NT. 

Experiment A. Three protocols are tested: BQT, TQT, Yeh et al.’s protocol (denoted as PRQT), and the 
proposed PRTQT. Also, 96-bit EPCs of test tags are randomly generated. 

Algorithm : PRTQT
/* initialize Q */
if (Q = NULL) 

Push(Q, 0);
end
begin

While (Q!=NULL)
     q=Pop(Q);
     let q' =(q1, q2, …, qx−1);
     reader broadcasts q to tags; /* reader queries tags */    
     tag compares its ID with the query q' ;
     /* the (ID)2 is converted to gain the required ti by 3B2T */
     if (V(q' , t)=1) 
         tag responds in subcarrier c; /* c is tx */
         for (c is from 0 to 2)
             if (collision in subcarrier c) /* two or more tags respond */
                 Push(Q, q' ||c||0);
             else if (only one tag responds in subcarrier c)
                tag transmit its (ID)2 to reader;
             end
         end                  
     end

end while
end 
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Figure 4. The query tree of PRTQT for Example 1. 

 
Table 1. Identification of nine tags in Example 1 using the proposed PRTQT. 

Cycle q Response Queue Q 

0 NULL Initialization 0 

1 0 

subcarrier 0 collision 

00,20 subcarrier 1 1 (101010110001*) 

subcarrier 2 collision 

2 00 

subcarrier 0 collision 
20,000, 

010 subcarrier 1 collision 

subcarrier 2 02 (010110100001*) 

3 20 

subcarrier 0 collision 
000,010, 

200 subcarrier 1 − 

subcarrier 2 − 

4 000 

subcarrier 0 − 

010,200 subcarrier 1 001 (000101010010*) 

subcarrier 2 002 (000111010111*) 

5 010 

subcarrier 0  

200 subcarrier 1 011 (001101110000*) 

subcarrier 2 012 (001110010110*) 

6 200 

subcarrier 0 collision 

2000 subcarrier 1 − 

subcarrier 2 − 

7 2000 

subcarrier 0 2000 (110000100010*) 

NULL subcarrier 1 2001 (110001110011*) 

subcarrier 2 − 
*successfully identified 

0 1 2

00 20
0 1 2 0 1 2

0 1 20 1 20 1 2

000 010 200

collision one tag respond

0

0 1 2

2000
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In BQT and TQT, the leaf in a query tree just can be one of identification, collision, or idle node, where iden-
tification node is that one tag is uniquely identified. Hence NT = n + NC + NI. For example, when n = 100, the 
BQT has 140 collisions and 42 idle times. The number of total interrogation cycles is NT = 282 (= 100 + 140 + 
42). However, in the proposed PRTQT, when n = 100, we have 61 collisions and no idle times. The number of 
total interrogation cycles is NT = 95 (≠100 + 0 + 61). In fact, the PRTQT protocol can identify more than one tag 
in a cycle. Since three subcarriers are used in the proposed PRTQT, at most three tags can be simultaneously 
identified within one cycle. Thus, for PRTQT, NT ≈[n/3] + NC + NI = [n/3] + NC (∵no idle cycle). For example, 
the PRTQT has NT = 1836 interrogation cycles, while [n/3] + NC = 667 + 1164 = 1831. Both values are almost 
the same. For the case n = 2000, there 5534 and 5282 interrogation cycles for BQT protocol and TQT protocol, 
respectively. Our PRTQT uses parallel response method and ternary query tree, and there are total 1836 interro-
gation cycles, and enhance the NT = 2729 in PRQT. Table 2 shows all the values of NC, NI, and NT, and Figure 5 
illustrates the number of total collisions for 100 ≤ n ≤ 2000. Obviously, our PRTQT protocol has the less inter-
rogation cycles among all protocols. 

Experiment B. Redo Experiment A, but use test tags with the very similar EPC data. 
As we know, EPC embraces four sections: header (H: 8 bits), GMN (G: 28 bits), object class (O: 24 bits), and 

serial number (S: 36 bits). In fact, lf and ls are the first half and the second half in an EPC. Thus, in the so-called 
very similar EPC, we use the same first lf = 60 bits (H + G + O) cascaded with the random ls = 36 bits (S) for all 
tags. Experimental data are shown in Table 3. Compared with Experiment A using random EPC, the numbers of 
NT for BQT, TQT, PRQT, and PRTQT increase when using similar EPC. Figure 6 illustrates the number of total 
 

 
Figure 5. Total cycles of each protocol for Experiment A. 

 
Table 2. NC, NI AND NT for tags with random EPC. 

 BQT TQT PRQT PRTQT 

n NC NI NT NC NI NT NC NI NT NC NI NT 

100 140 42 282 94 79 273 50 20 134 61 0 95 

200 280 82 562 183 146 530 106 42 284 117 0 184 

300 417 119 836 278 224 802 156 63 424 177 0 279 

400 545 147 1093 366 286 1052 208 74 560 234 0 367 

500 703 205 1408 465 374 1339 261 105 703 296 0 466 

1000 1378 380 2750 921 731 2652 505 192 1372 579 0 922 

2000 2766 768 5534 1835 1447 5282 1000 354 2729 1164 0 1836 
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Figure 6. Total cycles of each protocol for Experiment B. 

 
Table 3. NC, NI AND NT FOR TAGS WITH SIMILAR EPC. 

 BQT TQT PRQT PRTQT 

n NC NI NT NC NI NT NC NI NT NC NI NT 

100 205 107 413 135 158 393 84 54 205 104 0 136 

200 351 153 784 236 245 681 141 78 350 170 0 237 

300 498 200 998 332 324 957 193 99 498 228 0 333 

400 609 211 1220 410 373 1183 233 105 615 276 0 411 

500 776 278 1555 526 485 1511 301 134 778 355 0 527 

1000 1487 489 2976 990 864 2855 559 253 1493 655 0 991 

2000 2852 854 5706 1898 1556 5454 1060 417 2852 1217 0 1899 

 
collisions for 100 ≤ n ≤ 2000. It is observed that our PRTQT also has the better performance. No matter what 
types of tags (random EPC or similar EPC) are tested, our protocols has the less NT. For example, for n = 2000, 
our PRTQT has NT = 1899, less than NT = 5706, 5454, and 2852 in BQT, TQT, and PRQT, respectively.  

5. Conclusion 
In this paper, we proposed a PRTQT protocol to address the tag collision in RFID system. We adopt the paral-
lel-subcarrier approach into TQT, so that tags can be identified in parallel subcarriers. Experiments reveal that 
the proposed PRTQT has better performance than BQT protocol, TQT protocol, and PRQT protocol. 
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