
Journal of Computer and Communications, 2014, 2, 39-49
Published Online October 2014 in SciRes. http://www.scirp.org/journal/jcc
http://dx.doi.org/10.4236/jcc.2014.212005

How to cite this paper: Yadav, R., Patel, R. and Kothari, A. (2014) Reverse Engineering Tool Based on Unified Mapping Me-
thod (RETUM): Class Diagram Visualizations. Journal of Computer and Communications, 2, 39-49.
http://dx.doi.org/10.4236/jcc.2014.212005

Reverse Engineering Tool Based on Unified
Mapping Method (RETUM): Class Diagram
Visualizations
Rashmi Yadav1, Ravindra Patel2, Abhay Kothari3
1Department of Computer Science & Engineering, Acropolis Technical Campus, Indore, India
2Department of Computer Application, RGTU, Bhopal, India
3Department of Computer Science & Engineering, Acropolis Institute of Technology & Research, Indore, India
Email: rashmi.yadaver@gmail.com, ravindra@rgtu.net, kothari_abhay21@yahoo.com

Received 28 July 2014; revised 1 September 2014; accepted 2 October 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
In this research paper, we evaluate an assortment of tools and intend to investigate multifarious
characteristic of Imagix-4D Reverse Engineering Tool and on the basis of investigation find out
inadequacy of Imagix-4D Reverse Engineering Tool (illustrate only abstract Class Diagram, and it
has no support to illustrate ER-Diagram and Sequence Diagram) and propose a Reverse Engineer-
ing Tool based on Unified Mapping Method (RETUM) for prominence of Class Diagram Visualiza-
tions which surmount the limitation (class diagram which is intricate in visualization) of Imagix-
4D Reverse Engineering Tool.

Keywords
Reverse Engineering, Imagix-4D Reverse Engineering Tool, Class Diagram

1. Introduction
Understanding the intricate relationships that exist between the source code components of a software system
can be an arduous task. In the preceding years, several tools [1] have emerged to support program understanding,
software maintenance, reverse engineering, and reverse engineering activities. A large part of such tools extract
their information mainly from the source code via static analysis. This includes a set of operations ranging from
code parsing and fact extraction, fact aggregation and querying, up to interactive visualization. Many require-
ments were met through previous Reverse Engineering Tool that was accepted by software industry, for designing
purpose. Reverse Engineering Tool (Figure 1) is important for Lexical analyzer or scanner, its function to read
the source program in the form of character stream and also grouping the logically related characters together

http://www.scirp.org/journal/jcc
http://dx.doi.org/10.4236/jcc.2014.212005
http://dx.doi.org/10.4236/jcc.2014.212005
http://www.scirp.org/
mailto:rashmi.yadaver@gmail.com
mailto:ravindra@rgtu.net
mailto:kothari_abhay21@yahoo.com
http://creativecommons.org/licenses/by/4.0/

R. Yadav et al.

40

that are known as lexemes. Syntax analysis: parser uses the token_name taken from the token stream to generate
the output in the form of a tree-like structure known as syntax tree or parse tree and semantic analysis: semantic
analyzer uses the parse tree and symbol table for checking the semantic consistency of the language definition of
the source program. The main function of the semantic analysis is type checking in which semantic analyzer
checks whether the operator has the operands of matching type. Next phase is intermediate code generation
phase: in intermediate code generation phase, the parse tree representation of the source code is converted into
low-level or machine-like intermediate representation. Next phase is symbol table which is a data structure used
by the compiler to record and collect information about source program constructs like variable names and all of
its attributes, which provide information about the storage space occupied by a variable (name, type, and scope
of the variables). A symbol table should be designed in an efficient way so that it permits the compiler to locate
the record for each token name quickly and to allow rapid transfer of data from the records. Next phase is Error
handler: Error handler is invoked whenever any fault occurs in the compilation process of source program. Both
the symbol table management and Error handling mechanisms are associated with all phases of the compiler.

When assessing the superiority and maintainability of large C, C++ and Java source code bases, tools are
needed for extracting several facts [2] from the source code, such as: Language Support, Pre-Processing, Lexical
Analysis, Parsing, Repository and Extracting capabilities of tools.

In this paper, we present our experience in the architecting of Imagix-4D that is a source code analysis tool
from Imagix Corporation [3], used primarily for understanding, documenting and evolving existing C, C++ and
Java software. Imagix-4D applied technologies include full semantic source analysis. Software visualization
supports program comprehension. Static data flow analysis-based verifications detect problems in variable usage,
task interactions and concurrency. Software metrics measure design quality and identify potential testing and
maintenance issues. The Imagix-4D Reverse Engineering Tool has some inadequacies. That illustrates only ab-
stract Class Diagram which is not easily understood by other developers and users. Imagix-4D does not illustrate
ER-Diagram and Sequence Diagram. In this paper we highlight only first inadequacy of Imagix-4D reverse en-
gineering tool.

2. Tool Selection Criteria
In this section we will describe the applied tool selection criteria, the reasons why we have selected particular
tools into the study their basic characteristics [4] and Table 1 features extension.

Figure 1. Reverse Engineering Tool based on Unified Mapping Method (RETUM).

R. Yadav et al.

41

Table 1. Behavioral and analytical comparison of existing reverse engineering tools.

RE
Tools Key Attributes Source

Environment Merits Demerits

Rigi [5]

Fault-tolerance
Completeness
Correctness
Performance
Extensible
Scalability
Portability
Availability
Usability

C, C++

1) The major advantages of the tool are that it
features new technologies (e.g. layered views,
Shrimp view, layout algorithms etc.).
2) The tool provides supporting Capabilities (e.g.
filters, metrics, groups, etc.) and it is extensible
in some way.
3) The only tool that allows to save the generated
views and represent at-ions.

1) The major drawback of Rigi is
the provided parser which can only
parse functions and structure data
Types.
2) This limits the views that can
be generated mainly to functional
views (call graph).
3) Another Problem is that the
tool because it is a research
prototype is not too stable.

Doclike
Viewer

[6]

Performance
Scalability
Portability
Usability

C, C++ 1) Doclike Viewer is best to be used within
software life cycle.

1) It uses Rigi parser. It does not
have its own parser.

SNIFF+
[7]

Fault-tolerance
Scalability
Portability
Usability

C, C++

1) Sniff+ provides an efficient and portable
environment with a comfortable user interface.
2) Sniff+ also provides good printing capabilities.
3) Sniff+ is the only tool that also supports
browsing between all generated views which
comes in handy sometimes.

1) In view, is limited to that
connections can only go in one
direction from an entity, therefore,
resulting in many representations
of one item (e.g. function) if the
item is referenced somewhere else.
2) Because of this limitation of the
views, highly connected entities
cannot be identified and the
reading of the views can get
complicated with large graphs.

Shrimp
[8]

Performance
Extensible
Scalability
Portability
Availability

C, C++

1) Tool provides a customizable and Interactive
environment for navigating and browsing
complex information spaces.
2) It employs a fully zoom able interface for
exploring software.

1) Adapting SHriMP to new data
domains within Eclipse, and
applying the idea of terminals to
program visualization [9].

Code
crawler

[10]

Extensible
Scalability
Portability
Availability
Usability

C, C++, java
small talk

1) It supports reverse engineering through the
combination of metrics and software
visualization.
2) In this we can see screen shot also.

1) The visualization will be
performed: for every node and edge
the user can choose from a
selection of metrics is contain little
complexity.

CSV
[11]

Correctness
Performance
Extensible
Scalability
Portability
Availability
Usability

C, C++

1) In this user can choose colour for
Syntax elements as if statements in C++.
2) Supports gradual zooming up to the point
where a line of text becomes 1 pixel.

1) Excludes option for lexical
highlighting.

Solidsx
[12]

Available
Portable
Usable
Scalable
Performance
Completeness
Fault-tolerance

C,
C++, .NET/c#
and Java code
bases

1) It tightly integrates several visual techniques
HEBs, tree maps, table lenses with several
reverse engineering and analysis in a single
environment.
2) The most important feature for user
acceptance of Solidsx is integration ease.
3) Solidsx was used in several industrial reverse
engineering and program comprehension Projects.

1) Tool is too generic; needs
customized wizards that should
address specific questions [13].

Dalli
[14]

Compliance
Full coverage
Completeness
Scalability
Portability

Language
independence

1) Dalli is recoverable because parsing and
lexical technique which is highly versatile.
2) Dalli tool is versatile in light weight then
other base technique.

1) It provides low accuracy.
2) Dalli itself cannot extract the
complete source code as there is
no one tool that can successfully
extract the complete source code/
architecture model.
3) Dalli tool required to
preprocessing as it allows
and analyst to interact with the
recovered information by
accessing the result of
reconstruction effort.

R. Yadav et al.

42

Continued

GUPRO
[15]

Compliance
Crossref
completeness
Scalability
Portability
Availability

C, C++, Java,
and RDBMS

1) It uses a schema independent querying mechanism.
2) This model implies (conceptual model) the
structure of the graph-based GUPRO-repository.
Source code is extracted into the repository and the
repository graphs can be viewed by an integrated
querying and browsing facility.
3) GUPRO has a complete treatment of
preprocessor facilities [16].

1) Due to large software
system all facts are source
cannot fill at once due to
Limited repository size, fact
extractors for
multi-languages systems
follow a four step parsing
approach [17].

DEFCTO
[18]

Fault tolerance
Completeness
Compliance
Crossref
Preprocessor
Completeness
Availability
Portability

Language
independent

1) Arbitrary factual annotation can be added to the
grammar; it is independent from any preconceived
analysis model and is fully general.
2) The method is succinct and its notational
efficiency has been demonstrated by comparison
with other method.

1) This technique does not
rely on a specified grammar
formalism or parser.

COLUMBS
[19]

Fault tolerance
Completeness
Compliance
Crossref
Preprocessor
Completeness
Portability

C/C++
projects and to
extract their
UML Class
Model and
call graph

1) It supports project handling, data extraction, data
representation and data storage. Furthermore, client
entering methods can be used to produce
comprehensible (clear-cut) diagrams from the
extracted information.
2) Recoverable fault tolerance because data
extraction is pre-processed.
3) It is compliance because it is highly adoptable
from user as it is a professional tool covering
Reverse Engineering Tool in a single package [20].

1) Costly and not ease to
availability.

Imagix-4D
[7] [3]

Availability
Portability
Usability
Scalability
Performance

1) It is used
primarily for
understanding,
documenting
and evolving
existing C,
C++ and Java
software.
2) It is also
used in
Software
metrics
measure
design quality
and identify
potential
testing and
maintenance
issues.

1) It provides views to rapidly check and
systematically study software.
2) Presents key information on software in a
3D-graphical format which enables the user to
quickly focus on particular areas of interest.
3) It helps software developers comprehend
complex or legacy C, C++ and Java source code.
4) By using Imagix-4D to reverse engineer and
analyze our code, we are able to speed your
development, enhancement, reuse, and testing.
5) It eliminates bugs due to faulty understanding.
6) It enables us to rapidly check or systematically
study your software on any level from its high level
architecture to the details of its build, class and
function dependencies.
7) We can visually explore a wide range of aspects
about your software-control structures, data usage,
and inheritance. All based on its precise static
analysis of your source.
8) Using this tool we are able to find and focus on
the relevant portions of your source code through
its querying capabilities.
9) Using this tool we are able to find and focus on
the relevant portions of your source code through
its querying capabilities [21].

1) The disadvantage of
smaller graph is that highly
connected graphs get
complicated and unreadable.
2) The hand designed class
and function diagrams
sometimes does not get
match with the tool designed
diagrams (Class Diagram).
3) The parser lacks of
important information about
method/function calls which is
due to inability of interpreting
template parameters
(Sequence Diagram).
4) It is unable to resolve the
function to which the
invocation resolves during
compilation time (Sequence
Diagram).
5) Imagix-4D requires many
hours of analysis for larger
code-bases.
6) Imagix-4D does not
produce a full executable
slice, since it does not perform
analysis of relevant conditions
for the identified statements.
7)) In Imgix-4D has draw
Class diagram but it is limited
in nature it not give all
relationship (Association,
Aggregation, Dependencies,
Generalization Realization).

R. Yadav et al.

43

Continued

Reveal
Tool [22]

Classes,
Relationship
Dependencies
Associations
Generalization
Realization
Aggregation

Input from
C++ Code
and output as
Class
Diagram

1) Method based on Keystone.
2) Mechanism used Bottom Up & Backtracking
Parse Algorithm Token Decoration.
3) Detection/Mapping attributes based on
ambiguity level: Classes it has low ambiguity.
4) Semantically Accuracy in C++ to UML
plotting more accurate in and Classes and
Association.
5) Ease and sufficient generation of Reverse
models.

1) Detection/Mapping
attributes based on ambiguity
level: Relationships contains
high ambiguity (Dependencies
contains high ambiguities,
Associations contains high
ambiguity, Generalization
contains ambiguity,
Realization contains medium
ambiguity), Aggregation
contains high ambiguity.

Rational
Rose Tool

[23]

Classes,
Relationship
Dependencies
Associations

Input from
C++ Code
and output as
UML
Diagram.

1) Method based on parsing.
2) Mechanism used disassembler.
3) Detection/Mapping attributes based on
ambiguity level: Classes it has low ambiguity.

1) Detection/Mapping
attributes based on
ambiguity level:
Relationships contains high
ambiguities (Dependencies
contains high ambiguities,
and Associations contains
high ambiguities).
2) Exact Mapping is not
done and less accurate.
3) UML does not include
internal dependencies such
as method invocations and
variable accesses. Those
dependencies are necessary
in the problem detection and
reorganization phases of the
re-engineering life cycle.
Thus, choosing UML would
violate the requirement of
being a sufficient basis of
re-engineering operations.

Super
Womble

[24]
Classes

Input from
C++ Code
and output as
Class
Diagram.

1) Method based on parsing.
2) Mechanism used Abstract Syntax Tree, Token
Stream, Lexical Analyzer.
3) Detection/Mapping attributes based on
ambiguity level: Classes it has low ambiguity and
Object Diagrams Contains low ambiguity.

Exact Mapping is not done
and less accurate.

Pilfer [25]

Classes
Relations
Dependencies
Association,
Generalization
Realization
Aggregation

Input from
C++ Code
and output as
Class
Diagram.

1) Method based on parsing.
2) Detection/Mapping attributes based on
ambiguity level: Classes it has low ambiguity
3) Light weight Detection.
4) More accurate in graph generation.

Detection/Mapping attributes
based on ambiguity level:
Relationships contains high
ambiguity Dependencies
contains high ambiguities,
Associations contains high
ambiguity, Generalization
contains ambiguity,
Realization contains medium
ambiguity, and Aggregation
contains high ambiguity.

Tool Selection Criteria
Because there are numerous tools for reserve engineering purposes it is not possible to analyze all of them in a

single study. We have decided to focus on some properties of those tools Table 1 show details fruition of prop-
erties they are: well-known freely available tools which support C, C++ or Java languages. The languages have
been selected since they are among both the most commonly used and supported ones. The selected tools should
also be either under active current development or be related to scientific publications of software maintenance.

The C programming language is still very important in this context since it is used in numerous important
legacy systems which are under maintenance. It is also the only language for which there exist multiple empiri-
cal studies on information needs [1] [4]. Object-orientation (OO) is important in the development of new sys-

R. Yadav et al.

44

tems which will be legacy system in the future. The most commonly used OO-languages include C++ and java.
Most of the reserve engineering tools support C language. Some of them support also at least some of the OO-
languages, most notably C++ or Java, so on bases on above basic properties of the tools we will select Imagix-
4D Reverse Engineering Tool environment.

3. Proposed Reverse Engineering Tool Based on Unified Mapping Method (RETUM)
The below architecture in Figure 1 is proposed for applying reverse engineering on legacy codes of C, C++
class libraries of object oriented or procedure oriented codes. Thus initially the code samples are passed into the
code analysis module. This code analysis module takes the code of various languages and makes them separated
according to the type of keyword used and store them into a temporary storage. There has been considerable
progress in code analysis phase for C, C++, Java, and COBOL. Code analysis phase parse source or interme-
diate (e.g., byte code) code and produce a database of code entities (e.g., Functions and variables) and relation-
ships (e.g., method invocation, Number of calls, Inheritances, Interfaces, Classes Associations, Aggregations and
object instantiation). Form here a symbol tree is constructed for correct analysis of tokens according to their uses
in codes. Then the work generates various tokens for mapping. These tokens acts as a data extraction compo-
nents form source codes. In proposed system, there are totally ten components needs to be extracted for accurate
mapping of different entity relationships, class and objects instances.

After these components is correctly extracted from UML mining module then a local parse tree is generated
and the information is stored in repository for its further usage. Now the direct mapping is possible after this
phase but to customize the requirement the proposed work is also adding some more features like code annota-
tion module in which the identified results is further refined by using two specific methods Filtering and Multi-
View. This result is then forwarded to exporter which later on plots the identified extracted patterns in a form of
Class diagram, Sequence diagram or Call graph as an output.

After analysis it seems that in near future, suggested tool will proves its efficiency and usability in terms of its
language supportability (C++/C# and, Java) diagram supportability input range (Class and Activity), detection
and mapping mechanism (Various Parameters for accurate mapping). After applying the updated concepts at in-
itial level of work, it is identified that the approach will proves as an unambiguous UML generation from source
code and is more accurate, easy and complete.

4. Proposed Algorithm Reverse Engineering Tool
We proposed a algorithm for design Reverse engineering tool of RETUM.

Step 1: First we take legacy codes (object oriented or procedure oriented codes) as input.
Step 2: Legacy code samples are passed into the code analysis module as input. These code analysis modules

takes the code of various languages and makes them separated according to the type of keyword used and store
them into a temporary storage and symbol tree is constructed for correct analysis of tokens according to their
uses in codes.

Step 3: Next step the takes input from code analysis phase and generate token with the help of token generator
(generates various tokens for mapping).

Step 4: These tokens acts as a data extraction components form source codes. Extraction components needs to
be extracted for accurate mapping from UML mining of different entity relationships, class and objects in-
stances.

Step 5: After these components is correctly extracted from mining module UML mining then a local parse
tree is generated and the information is stored in repository for its further usage.

Step 6: Now for the customize the requirement the proposed work is also adding some more features like code
annotation module in which the identified results is further refined by using two specific methods Filtering and
Multi-View.

Step 7: This result is then forwarded to exporter which later on plots the identified extracted patterns in a form
of object oriented diagram or procedure oriented diagram as an output.

We realize of above algorithm for design simplification adaptation of class diagram.

5. Algorithm for Class Diagram Visualizations
Step 1: Initially starts with legacy code or source code as input.

R. Yadav et al.

45

Step 2: Here we take the specific java file as input.
Step3: The UML Doclet API will process the java file (Any additional UMLGraph or javadoc arguments can

be added at the end of the command line. This command will read the specification file (e.g. Test.java) and gen-
erate directly a diagram of the appropriate type).

This option provides the maximum flexibility. In order to run, javadoc needs to access tools jar.
1. Specify the location of tools.jar as a part of Java’s classpath and specify the full name of the UML Graph

doclet as an argument to Java. This is an invocation example under Windows java -classpath”lib/UmlGraph;
jar, c:\program files\java\jdk 1.6.0_02\lib\Tools.jar” org.umlagraph.doclet.Uml Graph – package Test.java
and under Unix java -classpath ‘/usr/share/lib/UmlGraph.jar:/opt/java-1.6/lib/tools.jar’\org.umlgraph.doclet.
UmlGraph -package Test.java

2. Place the UmlGraph.jar file in a directory that also contains the Java SDK tools.jar file.java -jar /path/to/
UmlGraph.jar yourfile 1.java...

Step 4: The UML graph & UML tool API will extract the relevant data from java file.
javadoc -docletpath UmlGraph.jar -doclet org.umlgraph.doclet.UmlGraph -private Simple.java
4.1 Add command line option umlgen (generates UML diagrams if the source documentation contains) and

umltypegen (generates UML diagrams for all documented classes and interfaces).
4.2 Add command line umlpackagegen (generates UML diagrams for all documented packages).
4.3 Add command line umloverviewgen (generates project overview UML diagrams).
4.4 Add command line umlautogen (generates all types of UML diagrams).
Step 5: After step 4, the Maven API is added by UML Doclet.
Step 6: The class diagram is generated and display to the user.
Above algorithm specific used for class diagram generation, which take input as java file and produce output

as graphical form details in appendix.

6. Conclusion
In this research paper, we investigate various features of Imagix-4D, and concentrate on class diagram visualiza-
tion of Imagix-4D. In Imagix-4D class diagram visualization which is more complex, it is not easy to understand
a proposed tool RETUM which works on this inadequacy of above tool and illustrates simple comprehensive
Class Diagram and we will propose here extension of Imagix-4D Reverse Engineering Tool to draw sequence
diagram and ER-Diagram which are Extend Feature of Imagix-4D.

References
[1] Von Mayrhauser, A. and Vans, A.M. (1995) Industrial Experience with an Integrated Code Comprehension Model.

Software Engineering Journal, 10, 171-182. http://dx.doi.org/10.1049/sej.1995.0023
[2] Berndt, B. and Harald, G. (1998) An Evaluation of Reverse Engineering Tool Capabilities. Journal of Software Main-

tenance: Research and Practice, 10, 305-331.
[3] http://www.Imagix.com
[4] Yadav, R., Kothari, A. and Patel, R. (2013) Design Generic Architecture for Software Engineering “Extractor” Tool.

International Journal of Scientific & Engineering Research, 4, 1490-1495.
[5] Muller, H.A. and Kienle, H.M. (2010) Rigi—An Environment for Software Reverse Engineering, Exploration, Visua-

lization, and Redocumentation. Science of Computer Programming, 75, 247-263.
[6] Suleiman, S. (2005) Doclike Viewer: A Software Visualization Tool. Proceeding of 1st Malaysian Software Engineer-

ing Conference (MySEC’05), Penang, 12-13 December 2005, 263-265.
[7] Bellay, B. and Gall, H. (1998) An Evaluation of Reverse Engineering Tool Capabilities. Journal of Software Mainten-

ance: Research and Practice, 10, 305-331.
http://dx.doi.org/10.1002/(SICI)1096-908X(199809/10)10:5<305::AID-SMR175>3.0.CO;2-7

[8] Storey M.-A. and Michaud, J. (2001) Shrimp Views: An Interactive Environment for Exploring Multiple Hierarchical
Views of a Java Program, in ICSE 2001 (Workshop on Software Visualization).

[9] Rayside, D., Litoiu, M. and Storey, M.-A. (2001) Integrating SHriMP with the IBM WebSphere Studio Workbench.
Proceedings of the Conference of the Centre for Advanced Studies on Collaborative Research, Toronto, Ontario, 5-7
November 2001, 79-93.

[10] Lanza, M. (2003) CodeCrawler—Lessons Learned in Building Software Visualization Tool. Proceeding of 7th Euro-

http://dx.doi.org/10.1049/sej.1995.0023
http://www.imagix.com/
http://dx.doi.org/10.1002/(SICI)1096-908X(199809/10)10:5%3C305::AID-SMR175%3E3.0.CO;2-7

R. Yadav et al.

46

pean Conference on Software Maintenance and Reengineering, Benevento, 28 March 2003, 409-418.
[11] Moberts, I.B. (2005) Code Structure Visualization. Master Thesis, Department of Mathematics and Computer Science,

Technische Universiteit Eindhoven, Eindhoven.
[12] Auber, D., Melancon, G., Munzner, T. and Weiskopf, D. (2010) SolidSX: A Visual Analysis Tool for Software Main-

tenance. Poster Abstracts at Eurographics/ IEEE-VGTC Symposium on Visualization.
[13] Reniers, D., Voinea, L., Ersoy, O. and Telea, A. (2014) The Solid Toolset for Software Visual Analytics of Program

Structure and Metrics Comprehension: From Research Prototype to Product. Science of Computer Programming, 79,
224-240. http://dx.doi.org/10.1016/j.scico.2012.05.002

[14] Kazman, R. and Carriere, S.J. (1999) Playing Detective: Reconstructing Software Architecture from Available Evi-
dence. Journal Automated Software Engineering, 6, 107-138.

[15] Riediger, V. (2000) Analyzing XFIG with GUPRO. 7th Working Conference on Reverse Engineering, Brisbane, 23-25
November 2000, 23-25. http://dx.doi.org/10.1109/WCRE.2000.891466

[16] Ebert, J., Kullbach, B., Riediger, V. and Winter, A. (2002) GUPRO: Generic Understanding of Programs: An Over-
view. Electronic Notes in Theoretical Computer Science, 72, 47-56.

[17] Kienle, H. and Muller, H.A. (2008) 1st International Workshop on Advanced Software Development Tools and Tech-
niques (WASDeTT).

[18] Basten, H.J.S. and Klint, P. (2008) Defacto: Language-Parametric Fact Extraction from Source Code SLE. Lecture
Notes in Computer Science, 5452, 265-284.

[19] Ferenc, R., Beszedes, A., Tarkiainen, M. and Gyimothy, T. (2002) Columbus-Reverse Engineering Tool and Schema
for C++. Proceedings of the 18th International Conference on Software Maintenance, Timisoara, 12-18 September
2010, 172-181.

[20] Boerboom, F.J.A. and Janssen, A.A.M.G. (2006) Fact Extraction, Querying and Visualization of Large C++ Code Ba-
ses. Master Thesis, Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, Eindhoven.

[21] Alexandru, T., Byelas, H. and Voinea, L. (2009) A Framework for Reverse Engineering Large C++ Code Bases. Elec-
tronic Notes in Theoretical Computer Science, 233, 143-159.

[22] Matzko, S., Clarke, P.J., Gibbs, T.H., Malloy, B.A. and Power, J.F. (2002) Reveal: A Tool to Reverse Engineer Class
Diagrams. Proceeding of the 40th International Conference on Tools Pacific: Objects for Internet, Mobile and Em-
bedded Applications, Australia, 1 February 2002, 13-21.

[23] Schweizer, D., Nierstrasz, O. and Ducasse, S. Exporting MOOSE Models to Rational Rose UML Software Composi-
tion Group Institute of Computer Science and Applied Mathematics. http://www.iam.unibe.ch/_dschwzr/

[24] Jackson, D. and Waingold, A. (2001) Lightweight Construction of Object Models from Bytecode. IEEE Transactions
on Software Engineering, 27, 156-169. http://dx.doi.org/10.1109/32.908960

[25] Sutton, A. and Maletic, J.I. (2005) Mappings for Accurately Reverse Engineering UML Class Models from C++.
WCRE’05: Proceedings of the 12th Working Conference on Reverse Engineering, Washington DC, 7 November 2005,
175-184.

http://dx.doi.org/10.1016/j.scico.2012.05.002
http://dx.doi.org/10.1109/WCRE.2000.891466
http://www.iam.unibe.ch/_dschwzr/
http://dx.doi.org/10.1109/32.908960

R. Yadav et al.

47

Appendix

Appendix 1: Discussion and Enlightenment of Class Diagram Tool Phase: Class diagrams characterizing the
static data and class structure of Java source code. To achieve such a diagrammatic representation, translation
rules are defined that transform Java syntax into class diagram.

This diagram is showing Figure 2 the output of our code when we click on attach button then it give the fol-
lowing output, it must be noted here that this attachment will only accept the .java extension file.

This dialog box will appear Figure 3 when user will try to click the convert button without selecting the java
file. Also this will notify him to add file only after this issue further procedure will be carried out.

This dialog box will appear Figure 4 only when the attach button is click and by using the browse button user
will be able to add the appropriate file i.e., this is simply for choosing a file from documents.

Similarly, this dialog box will appear Figure 5 when a file is being attached here, after clicking the attach
button a java file named vinay.java is uploaded.

Here when we click on convert button after attaching the required file (.java) then we get a dialogue box
showing in Figure 6 that the diagram has been created also with the destination address where the diagram is
created in the memory.

class Person {
String Name;
public static void main(String a[]){}
 }
class Employee extends Person {
public static void main(String a[]){}
}
class Client extends Person {
public static void main(String a[]){}
}

Standard Class Diagram Generated by RETUM Tool

In Imagix-4D generated class diagram Figure 7 program doesn’t show of internal details of classes’ attributes,
member function, access mode and data type ,so class diagram generated by Imagix-4D is not understandable by
navies developer/user which play crucial role in software quality. Standard class diagram generated by RETUM
tool, class diagram which is obtained when the source code named Person.java is made to attach and the con-
verted. This diagram shows in Figure 8 the relationship among the classes and also it is showing the inheritance
relationship between them. It must be noted here that a default constructor has been created here but it was not
included in the source code because the program doesn’t contain any default constructor but whenever a pro-
gram is made to run firstly its default constructor gets executed. In this diagram there are three classes which are
named as Person, Employee and Client. Among them the Person is the super class and the rest of the classes
namely Employee and Client are sub classes. Person class consists of Person() function, where as the Employee
class consists of Employee() and main() similarly the client class consist of client() and main() function respon-
sible for its execution.

Figure 2. Attachment of the JAVA file.

R. Yadav et al.

48

Figure 3. Dialog box alerting to add file.

Figure 4. Attach dialog box.

Figure 5. Upload a java file.

R. Yadav et al.

49

Figure 6. Creation of class diagram.

Figure 7. Class diagram generated by Imagix-4D.

Figure 8. Class diagram generated by RETUM Tool.

http://www.scirp.org/
http://www.scirp.org/
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
mailto:submit@scirp.org

	Reverse Engineering Tool Based on Unified Mapping Method (RETUM): Class Diagram Visualizations
	Abstract
	Keywords
	1. Introduction
	2. Tool Selection Criteria
	3. Proposed Reverse Engineering Tool Based on Unified Mapping Method (RETUM)
	4. Proposed Algorithm Reverse Engineering Tool
	5. Algorithm for Class Diagram Visualizations
	6. Conclusion
	References
	Appendix

