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Abstract 
Two key points of pixel-level multi-focus image fusion are the clarity measure and the pixel coeffi- 
cients fusion rule. Along with different improvements on these two points, various fusion schemes 
have been proposed in literatures. However, the traditional clarity measures are not designed for 
compressive imaging measurements which are maps of source sense with random or likely ran- 
dom measurements matrix. This paper presents a novel efficient multi-focus image fusion frame- 
work for compressive imaging sensor network. Here the clarity measure of the raw compressive 
measurements is not obtained from the random sampling data itself but from the selected Hada- 
mard coefficients which can also be acquired from compressive imaging system efficiently. Then, 
the compressive measurements with different images are fused by selecting fusion rule. Finally, 
the block-based CS which coupled with iterative projection-based reconstruction is used to re- 
cover the fused image. Experimental results on common used testing data demonstrate the effec- 
tiveness of the proposed method. 
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1. Introduction 
Multi-focus image fusion, which is a major branch of multi-sensor data fusion, is aimed to produce an all-in- 
focused image from a sequence images with focus on different parts. The multi-focus image fusion can be per- 
formed in the transform domain or the spatial domain. In the transform domain, image fusion algorithms are 
fully implemented via a certain transform technique. In Refs [1] wavelet transform and curvelet transform are 
applied to image fusion. Refs [2] also exploited a multi-focus image fusion method based on Laplacian pyramid. 
Moreover, the nonsubsampled contourlet transform (NSCT) is presented in Refs [3]. In spatial domain, fusion 
rules are directly applied to image pixels or image regions [4]. The simplest fusion method in spatial domain is 
to take the average of the source images pixel by pixel [5] [6]. A multi-focus image fusion technique proposed 
by Li et al. [7] is that input images are divided into blocks and better focused ones are selected to compose a re- 
sultant image by majority filtering of the source image. Refs [8] proposed an algorithm that focused blocks can 
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be detected via measuring blurriness. In Refs [9], focus measurements are obtained by sum of gradient values of 
all pixels in each block. Refs [10] presented a simple method using a morphology-based focus measure in a 
quad-tree structure. The schemes using divided blocks can make calculation simple and fast.  

In recent years, the compressive sensing theory (CS) presented by D. L. Donoho, E. Candès, and T. Tao has 
attracted many attentions [11] [12], and [13]. Based on CS, various compressing imaging (CI) systems have been 
presented. Single-pixel camera architecture [14] implements random linear measurement process of the scene 
under view that combines sampling and compression. Wan et al. firstly introduced a CS-based image-fusion al-
gorithm which uses “double-star” sampling pattern in a 2-D Fourier domain and shows the recovery via a total 
variation optimization [15]. However, the partial Fourier matrix is only incoherent with signals that are sparse in 
the time domain, restricting its practical applications. Ref [16] presented an image fusion scheme under SBHE 
fast CI that fuses the measurements through a linearly weighted average according to the entropy of measure- 
ments. However, as long as the entropies of the measurements did not carry enough information, it could not 
construct a good reconstructed image. Luo et al. revealed a method that directly performed fusion on the mea- 
surement vectors from multiple CI sensors according to the similarity classifications [17]. However, data simi- 
larity of measurement vectors needs to analyze much information before fusing. In traditional multi-focus image 
fusion, pixel clarities are calculated with neighboring pixels or regions. However, the traditional clarities calcu- 
lations cannot be directly used for the compressive measurements since the random projections contain no geo- 
metry structure of source images. In order to solve this problem, a novel multi-focus image fusion method in CS 
domain is presented in this paper. In the new fusion scheme, the clarity measures bases are trained from natural 
multi-focus samples. Then, the clarity measures of the raw compressive measurements are not obtained from the 
random sampling data itself but from the coefficients of Hadamard clarity measure bases trained which can also 
be obtained from compressive imaging system efficiently. The clarity measures calculated from measurement 
values are used to guide the fusion rule to get fused image measurements. Finally, the full resolution fused image 
is constructed from the fused CS sampling measurements. In experimental simulations, the proposed method can 
get an attractive performance that usually exceeds the quality of other current methods.  

The rest of this paper is organized as follows: the background of CS and CI are described in Section 2. In Sec- 
tion 3, the proposed method is introduced explicitly. The experiments and analysis are demonstrated in Section 
4 .The paper is concluded in Section 5. 

2. Compressive Sensing and Compressive Imaging 
The theory of compressive sensing becomes very popular due to its wide areas of applications. As states in CS 
theory, the signals can be well recovered from the few measurements by nonlinear optimization if the signal is 
sparse or compressible. When a n-pixels image is arrangement as a compressible vector nx R∈ , it can be repre- 
sented as 

x θ= Ψ ,                                      (1) 

where Ψ indicates a certain basis and θ is a sparse vector containing only k nonzero coefficients. A random ma- 
trix k nR ×Φ∈  projects the images from high-dimensional space nx R∈  to a lower-dimensional space ky R∈
as 

y x= Φ ,                                      (2) 

where k n . As proved in [18], the random matrix k nR ×Φ∈  provides a stable embedding that preserves the 
distance between all pairs of original signals with high probability. According to CS theory, the recovery of sig- 
nal x from measurement vector y is possible. 

Imaging techniques have a strong affinity with compressive sensing. Based on CS theory, various hardware 
implementations of compressive imaging system have been proposed. Single-pixel camera directly acquires 
random projections of a scene without initial collecting the pixels. The camera architecture employs a digital 
micro mirror array to optically calculate linear projections of the scene onto pseudorandom binary patterns. CI 
measurements are the projections of a continuous scene onto a discrete space instead of collecting the lighting 
intensity at distinct locations [19]. Each measurement is a linear combination of several pixels. Comparing with 
conventional imaging system, compressive imaging system requires less computation and storage because of 
compressing during sensing. Due to above some advantages of CI, the compressive imaging system is very fit 
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for applications in visual sensor network. 

3. The Proposed Method 
Figure 1 presents the fusion strategy for compressive imaging in visual sensor network. A common scene is ob- 
served by two node cameras with different optic setting. Compressive sensing encoding schemes within each 
sensor directly and independently sample the scene into a small number of randomized measurements denoted 
by 1y  and 2y . Then the measurements 1y  and 2y  are fused according to certain fusion rule. Finally, the re- 
sultant fused image is reconstructed from the combined compressive measurements Fy . The key point of this 
fusion scheme is the focus-level evaluating for random measurements according to which 1y  or 2y  is focused. 
Clearly, the focus-level cannot be directly calculated by random sampling coefficients since the random projec- 
tions don’t contain geometry structure of the source scene. In this work, the innovative point is to design or train 
image clarity measures bases to evaluate focus-level for compressive imaging system. Firstly, the absolute or 
norm-1 of the projection measurements with image clarity measures bases can be used as focus-level evaluating. 
Secondly, the projection measurements can be obtained directly from the compressive imaging system. Thirdly, 
there is no complex calculation for node cameras. So these characteristics are very suitable for visual sensor 
network application. 

3.1. Clarity Measures Bases 
Recently, to more effectively fuse the focused regions from multi-focus images, various fusion methods are 
proposed based on the clarity measures. This paper puts forward a novel image fusion scheme on clarity meas- 
ures. In this work, we choose 14 pairs of multi-focus images. A fraction collection of the 14 pairs of multi-focus 
images are presented in Figure 2(a) where the up row gives the clear images and the bottom row gives the 
blurred images. The two training data sets are randomly taken from a database of 14 natural pairs of multi-focus 
images. Each set consists of 3584 16 × 16 patches and the Hadamard coefficients of those patches are repre- 
sented as A and B, respectively. So each column of A and B denotes the Hadamard coefficient of each patch, 
respectively. Then the coefficient j

ia , the value of the ith row and jth column of A, corresponds to a Hadamard 
base which is meaningful to detect and emphasize image salient features. In this work, the aim is to find clarity 
measures bases from Hadamard matrix and use them to evaluate image focus-level. we suppose each row of 
coefficient matrix A and B as vector M and vector N, respectively and the length of vector M is same as vector 
N’s. So xi is the expression value of the sample i in the M and yi is the value of the sample j in the N. s represents 
the clarity measures. We employ feature selection using Wilcoxon rank sum test [20] that is following 
 

 
Figure 1. The fusion strategy for compressive imaging. 
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(a)
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Figure 2. The training data and the selected bases. (a) 
Fourteen pairs of multi-focus images; (b) Fifteen se- 
lected Hadamard bases. 

 

( )( )0i j
i j

S P x y
∈Μ ∈Ν

= − ≤∑∑ ,                                (3) 

where P is the logic judge function, if the logic expression in the bracket is true, the value of P is 1,or else it is 0. 
When s is closer to zero or closer to the value of m × n ( m M= , n N= ), the corresponding row of coefficient 
matrix is more important to the feature classification. The importance degree of each row of coefficient matrix 
be calculated. 

( )( )max ,w s mn s= − .                                  (4) 

According to w of each row of coefficient matrix, the row of coefficient matrix can be ranked. The bigger the 
value of w is, the more Hadamard basis contributes. So the Hadamard bases are selected from Hadamard matrix 
responding to the top k rows of coefficient matrix. Figure 2(b) presents fifteen Hadamard bases derived from 
above method.  

3.2. Fusion Scheme 

Given two multi-focus images kI , { },k A B=  with size of m × n, they are transformed into vectors { } { },

mn
i N
k k A B

X
=

  

using CI hardware. The pixel values in the source blocks can present clear structural information of source im- 
age. However, by applying a randomize measurement matrix, the obtained measurements do not preserve the 
structural information of source blocks any more. In compressive imaging fusion, the focus-level evaluating 
cannot be obtained by calculating randomized sampling coefficients. Furthermore, it is a key for multi-focus 
images to evaluate focus-level. In the above section, clarity measures bases are obtained by proposed method, 
which are integrated a clarity measures matrix P NR ×′Φ ∈  (P the number of Hadamard bases) for compressive 
imaging system. Then, measurement vectors 1 2, , , i

A A AH H H  and 1 2, , , i
B B BH H H  can be produced by i i

k kH x′=Φ , 
{ },k A B= . In addition, Hi can preserve the structural information of source images and have correlation be- 

tween each image block comparing with randomize measurements. It is observed that the measurements vectors 
Hi are greatly sensitive to sampling rate and block size varies. So the focus-level evaluating exist some differ- 
ence under various conditions. The coefficients ci are absolute value sum of measurements Hi respectively, 
which characterize evaluating focus-level. In theory, compared with signal-by-signal recovery, joint recovery 
should provide reliable reconstruction quality from a given collect of measurement vectors, which is equivalent 
to reduce the measurement burden needed to get better reconstructed quality. The sampling coefficients Ay  and

By  obtained by CS are fused using the maximum rule. 
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where i
Ac  and i

Bc  are the ith coefficients of corresponding i
AX  and i

BX , respectively. The Fy , the average 
of measurement vector 1y  and 2y , also includes enough information to reconstruct resultant fused image FI . 
Furthermore, it is very important to use the median filter in fusion scheme, which can make fused images 
smooth and reduce blocking artifacts. Combined with all the vectors, the fused image FI  is reconstructed via a 
single stage of SPL iterations. In [21], SPL used hard threshold with wiener filter. Using directional transforms 
can preserve interesting features of traditional transforms in [18]. 

3.3. Experimental Results and Analysis 
In order to evaluate performance of the proposed fusion scheme, two sets of multi-focus source images which 
contain two natural multi-focus image pairs and ten artificial multi-focus image pairs are used to perform the 
experiments. The natural multi-focus image pairs contain the common used Clock and Lab images with size of 
256 × 256 and 256 × 384, respectively. In addition ten standard images are used as ground truth. For each image, 
two blurred artificial images are created by Gaussian blurring at the left part and right part respectively. Then, 
the blurred images with different focus points are taken as the source images.  

In this work, we select two objective evaluation metrics /AB FQ  [22] and WQ  [23] which have been proved 
to be validated in large degree to perform the quantitative performance evaluation. To reflect a better fusion re- 
sult, the values of metrics should be as close to 1 as possible. 

To demonstrate the performance of the proposed method, some well-known multi-resolution based methods 
including the discrete wavelet (DWT) and gradient pyramid as well as Luo’s method are used to compare with 
the proposed method. For DWT method, at first, the source images are reconstructed by using sensing coeffi- 
cients. Then the reconstructed images are fused using based on wavelet method and a final image is gotten. In 
the gradient pyramid method, first of all, source multi-focus images are reconstructed via using sensing coeffi- 
cients. Then under these conditions including decomposition levels 2, highpass component adopted absolute 
maximum and approximate images taken averaging method, the final fused images is obtained by applying an 
inverse transformation. In method of Luo et al., block Walsh-Hadamard transform matrix is chosen as mea- 
surement matrix. Here, the dual-tree discrete wavelet transform (DDWT) [24] is selected as reconstructed me- 
thod. Contrasting to traditional DWT and discrete cosine transform (DCT), the DDWT has a better preference 
with shift invariance and significant directional selectivity. 

Without loss of universality, we provide results at three sampling rates 0.3, 0.5, and 0.7, respectively. Corres- 
ponding to each sampling rates, three kinds of block sizes 8, 16, and 32 are individually elected. Then, for all the 
tested sampling rates and block sizes, the measurements of Clock and Lab would be changed, which is resulted 
form the increased details of images. The objective evaluation results of two experiments are shown in Table 1, 
Table 2, respectively. The results in Table 1 and Table 2 indicate that the proposed method achieves superior 
fusion results comparing with other methods. Though the measurements with absolute maximum cannot di- 
rectly present salient features of images, it can preserve the contrast information of the source images. Figure 3 
presents fusion examples about Clock source images with different focuses.  

The fused images Figure 3(a), Figure 3(b) and Figure 3(e) have different subjective visual qualities. When 
sampling rate is set to 0.3 or 0.5, some blocking artifacts are observed on both large and small clock, but the re- 
sultant images display better visual effect with sampling rate 0.7. Supposing that sampling rate 0.7 is constant, 
the quality of fused images are changed along with block-size varies. The analysis from fused results indicates 
that Figure 3(c) and Figure 3(d) both emerge several significant breakages, while the resultant images display 
better performance with block-size 16 than other results.  

In Clock experiment, the maximum values of /AB FQ  and WQ  are corresponding to block-size16, but cor- 
responding to block-size 8 in Lab experiment. However, combining with subjective visual sense, the resultant 
fused images display better performance at block-size16, because fused images become clearer and the values of 

/AB FQ  and WQ  also become larger at the same time along with increasing sampling rates. Even though the 
fused images of the proposed method become smoother, it also improves the quality of the fused images. The 
fused results of the DWT are obtained using the same reconstructed algorithm, which introduced some artifacts 
from edges. Figure 4 shows the fused images of Lab which are fused by the proposed method, gradient pyramid, 
DWT and method of Luo et al. with sampling rate 0.7 and block-size 16, respectively. When two multi-focus 
images are individually reconstructed via method of CS, two preferable images are obtained. Then a resultant 
image is fused using above two images by the different methods, such as gradient pyramid or DWT. Each original  
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Table 1. Quantitative assessments of various fusion methods for clock images. 

Four methods: ours, gradient pyramid, DWT and Luo’s [17] 

r S WQ  /AB FQ  

0.3 

8 0.818 0.791 0.569 0.357 0.709 0.697 0.575 0.289 

16 0.824 0.773 0.535 0.377 0.705 0.687 0.557 0.301 

32 0.812 0.774 0.546 0.404 0.690 0.683 0.553 0.319 

0.5 

8 0.820 0.773 0.539 0.476 0.713 0.698 0.552 0.391 

16 0.832 0.766 0.531 0.511 0.715 0.693 0.553 0.425 

32 0.815 0.769 0.533 0.546 0.700 0.689 0.547 0.450 

0.7 

8 0.825 0.769 0.529 0.555 0.723 0.703 0.549 0.477 

16 0.8350.768 0.523 0.585 0.722 0.698 0.542 0.515 

32 0.816 0.769 0.525 0.620 0.709 0.695 0.539 0.536 

average 0.822 0.772 0.537 0.492 0.709 0.693 0.549 0.411 

 
Table 2. Quantitative assessments of various fusion methods for lab images. 

Four methods: ours, gradient pyramid, DWT and Luo’s [17] 

r S WQ  /AB FQ  

0.3 

8 0.889 0.847 0.597 0.470 0.688 0.661 0.504 0.241 

16 0.885 0.844 0.569 0.504 0.674 0.654 0.492 0.266 

32 0.862 0.834 0.575 0.526 0.661 0.649 0.486 0.291 

0.5 

8 0.891 0.835 0.570 0.588 0.688 0.658 0.483 0.347 

16 0.888 0.831 0.557 0.616 0.682 0.655 0.483 0.383 

32 0.867 0.829 0.551 0.642 0.671 0.651 0.477 0.411 

0.7 

8 0.893 0.830 0.545 0.652 0.695 0.661 0.475 0.435 

16 0.889 0.828 0.544 0.685 0.694 0.657 0.476 0.477 

32 0.870 0.827 0.538 0.695 0.680 0.656 0.475 0.490 

average 0.882 0.834 0.560 0.598 0.681 0.656 0.483 0.371 

 

 
(a)            (b)             (c)            (d) 

 
(e)            (f)             (g)            (h) 

Figure 3. Fusion result of Clock: (a) and (b) Sampling rate 0.3, 
0.5 with block-size 16; (c) (d) Block-size 8, 32 with sampling 
rate 0.7; (e)-(h) Four methods with sampling rate 0.7 and block- 
size 16. 
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image is reconstructed by using sensing coefficients, which maybe change its feature, but sometimes also pro- 
duce explicit results. For the same sampling rate and block-size, the quality of fused images via gradient pyra- 
mid-based after reconstructed is superior to those of DWT. Comparing to the other methods, the values of two 
metrics of the proposed method is larger than that. We can see that the fused image obtained by other methods 
cannot get more salient feature from two source images. It is observed that the resulting fused images of DWT 
contain some artifacts form blocking and loss more complementary information. Besides, the proposed scheme 
achieves better performance and has superiority to the method of Luo et al. to some extent. Furthermore, it takes 
us short time to fuse source images by compressive sensing. So it can greatly improve efficiency in program run. 

In addition to classical multi-focus images, some natural images blurred by Gaussian filter are formatted ar- 
tificial multi-focus images. The proposed method is applied to these images with sampling rate 0.7 as well as 
block-size 16. Figure 5 shows ten standard images with same size of 256 × 256. Table 3 lists the quantitative 
results by using two quality measures, which demonstrate that the proposed approach is superior to other me- 
thods and confirm successfully that the proposed approach has lots of advantages in fusing the artificial multi- 
focus images. 

4. Conclusion 
In this work, we present a novel image fusion scheme about efficient compressive multi-focus image fusion. The 
fusion rule is guided by clarity measures and fused image is reconstructed based on blocked CS. The experi- 
ments demonstrate that the proposed method provides superior fused images in terms of subjective visual sense 
as well as objective estimated index. Not only can this method present very clear fused result, but also accelerate 
the time of multi-focus image fusion. Because of compressing during sensing, fusing less data and reconstruct- 
ing only one image, we usually spent about 30 seconds in fusing a pair of multi-focus source images on PC. So 
it greatly improves the efficiency of processing for multi-focus images fusion. 
 

  
(a)                    (b) 

  
(c)                    (d) 

Figure 4. Fusion result of Lab: (a) The proposed 
method; (b) Gradient pyramid; (c) DWT; (d) Me- 
thod of Luo et al. 

 

 
Figure 5. Ten standard images. 
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Table 3. Quantitative assessments of various fusion methods for artificial 
multi-focus images. 

Four methods: ours, gradient pyramid, DWT and Luo’s [17] 

Images WQ  /AB FQ  

1 0.873 0.840 0.624 0.737 0.889 0.724 0.708 0.583 

2 0.905 0.870 0.696 0.754 0.912 0.712 0.696 0.551 

3 0.897 0.870 0.658 0.736 0.913 0.711 0.700 0.513 

4 0.899 0.866 0.677 0.777 0.908 0.721 0.710 0.570 

5 0.872 0.845 0.489 0.645 0.897 0.688 0.689 0.458 

6 0.888 0.864 0.495 0.625 0.906 0.677 0.674 0.416 

7 0.875 0.831 0.551 0.723 0.889 0.699 0.690 0.520 

8 0.886 0.870 0.534 0.659 0.911 0.673 0.675 0.421 

9 0.910 0.878 0.722 0.782 0.913 0.761 0.749 0.663 

10 0.9075 0.878 0.631 0.748 0.918 0.676 0.664 0.440 

average 0.891 0.861 0.608 0.719 0.906 0.704 0.695 0.513 
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