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Abstract 
Multi-Valued Neuron (MVN) was proposed for pattern classification. It operates with complex-va- 
lued inputs, outputs, and weights, and its learning algorithm is based on error-correcting rule. The 
activation function of MVN is not differentiable. Therefore, we can not apply backpropagation 
when constructing multilayer structures. In this paper, we propose a new neuron model, MVN-sig, 
to simulate the mechanism of MVN with differentiable activation function. We expect MVN-sig to 
achieve higher performance than MVN. We run several classification benchmark datasets to com- 
pare the performance of MVN-sig with that of MVN. The experimental results show a good poten- 
tial to develop a multilayer networks based on MVN-sig. 
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1. Introduction 
The discrete multi-valued neuron (MVN) was proposed by N. Aizenberg and I. Aizenberg in [1] for pattern 
classification. The neuron operates with complex-valued inputs, outputs, and weights. Its inputs and outputs are 
mapped onto the complex plane. They are located on the unit circle, and are exactly the thk  roots of unity. The 
activation function of MVN k -valued logic maps a set of the thk  roots of unity on itself. Two discrete-valued 
MVN learning algorithms are presented in [2]. They are based on error-correcting learning rule and are deriva- 
tive-free. This makes MVN have higher functionality than sigmoidal or radial basis function neurons. 

The multilayer feedforward neural network based on MVN (MLMVN) was introduced in [3,4]. This model 
can achieve good performance using simpler structures. MLMVN learning rule is heuristic error backpropa- 
gation due to the fact that the activation function of MVN is not differentiable. The error with certain neuron is 
retrieved from next layer and evenly shared among the neurons connected from the former layer and itself. We 
can not apply function optimization methods to this model because of the activation function. This property led 
us to develop a multi-valued neuron with a differentiable activation function. 

http://www.scirp.org/journal/jcc
http://dx.doi.org/10.4236/jcc.2014.24023
http://dx.doi.org/10.4236/jcc.2014.24023
http://www.scirp.org
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In this paper, we propose a new neuron model, MVN-sig, to simulate the mechanism of MVN with dif- 
ferentiable activation function. We consider the activation function of MVN as a function of the argument of a 
weighted sum. We stack multiple sigmoid functions to approximate this multiple step function. Hence, we can 
obtain a differentiable input/output mapping and we apply a naive gradient descent method as its learning rule. 
We expect MVN-sig to achieve better performance than MVN. 

The rest of the paper is organized as follows. Section 2 briefly describes MVN and its activation function. 
Section 3 presents MVN-sig and the sigmoid activation function. The learning algorithm of MVN-sig is des- 
cribed in detail. Section 4 presents the results of three experiments. Finally, conclusions and discussions are 
given in Section 5. 

2. Multi-Valued Neuron 
2.1. Discrete MVN 
A discrete-valued MVN is a function mapping from a n -feature input onto a single output. This mapping is 
described by a multiple-valued ( k -valued) function of n -feature instances, ),,( 1 nxxf  , which uses 1+n  
complex-valued weights: 

)(=),,( 1101 nnn xxPxxf ωωω +++                              (1) 

where 1x , nx  are the features of an instance, on which the performed function depends, and 0ω , 1ω , nω  
are the weights. The values of the function and of the features are complex. They are the thk  roots of unity: 

)/2(= kjiexpj πε , 1,0,1, −∈ kj  , and i  is an imaginary unity. P  is the activation function of the neuron: 

k
jzarg

k
jif

k
jizP 1)(2<)(2),2(exp=)( +

≤
πππ

                      (2) 

where 1,0,1,= −kj   are values of the k -valued logic, nn xxz ωωω +++ 110=  is the weighted sum, and 
)(zarg  is the argument of the complex number z . Equation (2) is illustrated in Figure 1. 

Equation (2) divides the complex plane into k  equal sectors and maps the whole complex plane onto a 
subset of points belonging to the unit circle. This subset corresponds exactly to a set of the thk  roots of unity. 

The MVN learning is reduced to the movement along the unit circle and is derivative-free. The movement is 
determined by the error which is the difference between the desired and actual output. The error-correcting 
learning rule and the corresponding learning algorithm for the discrete-valued MVN were described in [5] and 
modified by I. Aizenberg and C. Moraga [3]: 

,)(
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for ni ,0,1,=  , where ix  is the input of thi  feature with the components complex-conjugated, n  is the 
number of the input features, qε  is the desired output of the neuron, )(= zPsε  is the actual output of the 
 

 
Figure 1. Geometrical interpretation 
of the discrete-valued MVN activation 
function. 
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neuron (see Figure 2), r  is the number of the learning epoch, r
iω  is the current weighting of the thi  feature, 

1+r
iω  is the following weighting of the thi  feature after correction, rC  is the constant part of the learning rate 

(it may always equal to 1), and || rz  is the absolute value of the weighted sum obtained on the thr  epoch. The  

factor 
||

1

rz
 is useful when learning non-linear functions with a number of high irregular jumps. Equation (3)  

ensures that the corrected weighted sum moves from sector s  to sector q  (see Figure 2(a)). The direction of 
this movement is determined by the error sq εεδ −= . The convergence of the learning algorithm was proven 
in [6]. 

2.2. Continuous MVN 
The activation function Equation (2) is piece-wise discontinuous. This function can be modified and generalized 
for the continuous case in the following way. When ∞→k  in Equation (2), the angle value of the sector (see 
in Figure 1) will approach to zero. The activation function is transformed as follows: 

||
=))((exp=)(

z
zziargzP                                    (4) 

where z  is the weighted sum, )(zarg  is the argument of complex number z , and || z  is the modulus of 
the complex number z . The activation function Equation (4) maps the weighted sum into the whole unit circle 
(see Figure 2(b)). Equation (2) maps only to the discrete subsets of the points belonging to the unit circle. 
Equation (2) and Equation (4) are both not differentiable, but their differentiability is not required for MVN 
learning. The Learning rule of the continuous-valued MVN is shown as follows: 
 

1 = ( ) = ( ) ,
( 1) | | ( 1) | | | |

r r q s r qr r
i i i i i

r r

C C zx x
n z n z z

ω ω ε ε ω ε+ + − + −
+ +

             (5) 

for ni ,0,1,=  . 

3. MVN with Sigmoid Activation Function 
The learning algorithm of MVN is reduced to the movement along the unit circle on the complex plane. They 
are based on error-correcting learning rule and are derivative-free. Therefore, we can not use chain rule for error 
backpropagation to construct multilayer networks using MVN. In [3], I. Aizenberg and C. Moraga introduced a 
heuristic approach to construct the multilayer feedforward neural networks based on MVN. This inspired us to 
develop a differentiable activation function to which we can apply backpropagation learning rule. We expect the 
new learning rule to have more execution time but it can achieve better performance than MVN on a single 
neuron. 
 

       
(a)                                     (b) 

Figure 2. Geometrical interpretation of the MVN learning rule: (a) Discrete- 
valued MVN; and (b) Continuous-valued MVN. 
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3.1. Multi-Valued Sigmoid Activation Function 
The basic idea of the multi-valued sigmoid activation function is to approximate the functionality of MVN using 
multiple sigmoid functions. In [7], E. Wilson presented a similar model for robot thruster control and farther 
applications. The original activation function of MVN is written in Equation (2). This activation function 
operates with the argument of weighted sum. Therefore, we can transfer this activation function into a function 
of argument which is illustrated in Figure 3. The corresponding MVN presentation is in Figure 4. This form of 
original activation function of MVN is a combination of multiple step functions, which can be approximated by 
stacking multiple sigmoid functions: 

1 ( )1

1 1

1 1 ( )1=1 =1

2 /( ) =
1 exp

2 /( ) = ( ) =
1 exp

i c i

k k

i c ii i

kf

kF f

θ τ

θ τ

πθ

πθ θ

− −

− −

− −

+

+
∑ ∑

                              (6) 

where )( 1θF  is the multi-valued sigmoid activation function, 1θ  is the argument of weighted sum, iτ  is the 
argument of thi  root of unity and )( 1θif  is the sigmoid function setting on iτ . The activation function 

211 :)( θθθ →F  in Equation (6) is a mapping from the argument of weighted sum onto the argument of certain 
root of unity. Hence, we use Euler’s formula in Equation (7) to transfer the outcome to a complex value. 

)()(= 22
2 θθθ isincosei +                                        (7) 

where 2θ  is the outcome of activation function )( 1θF . We can approach the functionality of MVN activation 
function in Equation (2) by using Equations (6) and (7). Therefore, we can build a new model architecture which  
 

 
Figure 3. MVN activation function 1 1{0, , , }kτ τ −  represents 
the set of roots of unity by their arguments. 

 

 
Figure 4. Geometrical interpretation 
of MVN activation function by iτ . 
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can not only solve multi-valued logic problems but also be differentiable. We call this model “MVN-sig” and its 
model architecture is illustrated in Figure 5. 

Since the activation function is no longer discrete-valued, we need to determine how to obtain the cor- 
responding label for classification problems. The most intuitive method is to equally divide the mapped range of 
the activation function. This label judgement method is illustrated in Figure 6. 

3.2. Learning Single Neuron Using Gradient Descent Method 
Because the MVN-sig a complex-valued neuron, the output of MVN-sig can be derived from input: 

, , , ,= , =j j re j im j j re j imx x x w w w+ +                                          (8) 

where rejx ,  and imjx ,  indicate the real and imaginary parts of thj  input variable, respectively. Likewise, 
rejw ,  and imjw ,  indicate the real and imaginary parts of thj  weight. Thus, the weighted sum of a given 

n-variable instance can be written as: 

, , , , , , , ,
=0 =0 =0

= = ( ) ( )
n n n

j j j re j re j im j im j im j re j re j im
j j j

z w x w x w x i w x w x− + +∑ ∑ ∑                    (9) 

Let the output of MVN-sig be 2
22 =)()(==ˆ θθθ i

ttt eisincosibay ++ . For an instance t , ta  and tb  are 
the real and imaginary parts of MVN-sig output, respectively. 

2 2 1 1ˆ = = ( ) ( ) = ( ( )) ( ( ))
= ( ( ( ))) ( ( ( )))

t t ty a ib cos isin cos F isin F
cos F arg z isin F arg z

θ θ θ θ+ + +

+
                       (10) 

 

 
Figure 5. MVN-sig model architecture. 

 

 
Figure 6. Label judgement. 
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The error function for an instance t  is defined as: 

1 ˆ= , =
2t t t t t tE y yδ δ δ −                                         (11) 

where ty  is the desired output and tŷ  is the actual output of MVN-sig neuron. tδ  is the error between the 
desired value and the output. tδ  signifies the complex conjugate of tδ . Let the desired output be ttt iy βα += . 

)()(=ˆ= ttttttt biayy −+−− βαδ . Hence, the error function tE  is a real scalar function: 

})(){(
2
1=

2
1= 22

ttttttt baE −+− βαδδ                            (12) 

In order to use the chain rule to find the gradient of error function tE , we have to calculate both real and 
imaginary parts independently. In Equation (12), we observe that tE  is a function of both )( tt a−α  and 

)( tt b−β , and ta  and tb  are both functions of rejw ,  and imjw , . We defined the gradient of the error func- 
tion tE  with respect to the complex-valued weight jw  as follows: 

, ,

= ( ) = ( )
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t t t
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j j re j im
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w w w
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∆ − − +
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                            (13) 

The gradient of the error function with respect to the real and imaginary parts of jw  can be written as: 
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We can combine Equation (14) and Equation (15) into Equation (13): 
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= { }
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Firstly, we derive each term within the first braces in Equation (16) from Equation (12) and Equation (10): 
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where )( tRe δ  and )( tIm δ  represent the real and imaginary parts of tδ . Secondly, the second braces in 
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Equation (16) contains the derivative of the multi-valued sigmoid activation function. We can derive this acti- 
vation function in Equation (6): 

( ( ) )1 1

( ( ) ) ( ( ) )
=1 =1

( ( )) 2 / 2 exp= =
( ) ( ) 1 1exp exp

c arg zk k i

c arg z c arg zi ii i

F arg z k c
arg z arg z k

τ

τ τ
π π − −− −

− − − −

∂ ∂
∂ ∂ + +

∑ ∑                (21) 

Finally, the third braces in Equation (16) contains the derivatives of the argument of weighted sum z . The 
derivation is shown as follows: 

1
2 2

( ) ( ) ( ) ( ) ( ) ( )= ( ) =
( ) ( ) ( )j j

arg z Im z Re z Im z Re z Im ztan
w w Re z Re z Im z

− ′ ′∂ ∂ −
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                    (22) 

where )(zRe  and )(zIm  represent the real and imaginary parts of weighted sum z  and )(zeR ′  and )(zmI ′  
represent their derivatives, respectively. From Equation (9), we can simplify this equation: 
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where )( jxRe  and )( jxIm  represent the real and imaginary parts of thj  input variable x . Thus, the 
derivatives of the argument of weighted sum with respect to the real ( rejw , ) and imaginary imjw ,  parts is 
shown as follows: 
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where jx  represents the complex conjugate of thj  input variable x . From Equations (17)-(21) and (27), we 
can generate the learning rule of thj  input weighting jw∆ : 

( )1 1

2 2 ( ) 21=1
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∑          (28) 

where 1θ  is the argument of the weighted sum and 2θ  is the output of multi-valued sigmoid activation func- 
tion ( )( 1θF ). 

3.3. Stopping Criteria 
We combine two stopping criteria to make sure the learning process stops when the output is accurate and stable. 
Firstly, we continue to iterate until the difference between the network response and the target function reaches 
some acceptable level. In Equation (29), we keep tracking the mean squared error until it reaches a given value 
λ . Secondly, we check the relative change in the training error is small using Equation (30). 
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where N  is the total number of learning instances, tδ  is the error between desired value and estimation, and 
)( twE  and )( 1−twE  represent the mean squared errors at tht  and tht 1)( −  learning epochs. 

Figure 7 shows two examples of error convergence. Vertical and horizontal axis represent mean squared error 
and time epoch, respectively. In Figure 7(a), if we only use Equation (30) as the stopping criterion, the learning 
process will stop early and has worse training and testing accuracy. On the other hand, if we do not use Equation 
(30), it will take too much time to converge. In Figure 7(b), we can see the learning process is relatively stable 
after 300 epochs. We monitored the testing accuracy at 300 epoch and at the end of learning process. They did 
not change much during this interval and that is why we use Equation (29) and Equation (30) as our stopping 
criteria. 

3.4. MVN-Sig Learning Algorithm 
We develop the learning algorithm based on the multi-valued sigmoid function and the gradient descent method. 
The convergence of the learning algorithm can be proven based on the convergence of the gradient descent 
method in [8]. The implementation of the proposed learning algorithm in one iteration consists of the following 
steps: 

procedure MVN-sig  
This is one learning epoch with N learning instances  
Let 1=i  represents the thi  instance  
Let z be the current value of weighted sum.  

szP ε=)( /   Equation (10)  / 
sq εεδ −←   

while Ni ≤  do 
Check equation with activation function. 
for j = 0 to n do /   n -variable instance  / 

j
r
j

r
j www ∆+←+1 /   Equation (28)  / 

end for 
n

r
n

rr xwxwwz 1
1

1
1

1
0=~ +++ +++   

)~(zPq −← εδ  
1= +ii  

end while 
Iterates until the outcome meets stopping criteria. /   Equation (29) and Equation (30)  / 

end procedure 

4. Simulation Results 
The proposed strategies and learning algorithms are implemented and checked over a given three benchmark 
 

     
(a)                                                                    (b) 

Figure 7. MSE-epoch plots. 
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datasets [9]. The software simulator is written in Matlab R2011b (64-bit) running on a computer with AMD 
Phenom II X4 965 3.4 GHz CPU and 8 GB RAM. 

4.1. Wine Dataset 
This dataset is downloaded from the website of UC Irvine Machine Learning Repository [9]. It contains 178 
instances and, for each instance, there are 13 real-valued input variables. The instances belongs to any of the 3 
classes that indicates 3 different types of wines. 

To solve this classification problem, we use 5-fold cross-validation. The first fold has 136 instances in the 
training set and 42 instances in the testing set. The other 4 folds have 144 instances in the training set and 34 
instances in the testing set, respectively. For MVN, we used the testing set to compute their average classi- 
fication performance after learning with the training set completely with no training error, i.e., training accuracy 
being 100%. For MVN-sig, we computed their average classification performance after learning process met the 
stopping criteria. The testing accuracy obtained by MVN and MVN-sig, respectively, for this dataset, is shown 
in Table 1. From this table, we can see that MVN-sig achieves a better testing accuracy than MVN. 

4.2. Iris Dataset 
This well known dataset is also downloaded from the website of UC Irvine Machine Learning Repository [9]. It 
contains 150 instances and, for each instance, there are 4 real-valued input variables. The instances are belong- 
ing to any of the 3 classes (Setosa: 0, Versicolour: 1 and Virginica: 2). 

To solve this classification problem, we use 5-fold cross-validation. The dataset is randomly divided into 120 
instances of training set and 30 instances of testing set. For MVN, the learning process will not stop after 10,000 
iterations if we want to learn whole instances with no error, i.e., training accuracy being 100%. The training 
accuracy of our MVN-sig algorithm is from 96% to 99%, and we choose 96% to be the stopping criterion for 
MVN learning. For MVN-sig,we computed their average classification performance after learning process met 
the stopping criteria. The testing accuracy obtained by MVN and MVN-sig, respectively, for this dataset, is 
shown in Table 1. From this table, we can see that MVN-sig achieves a better testing accuracy than MVN. 

4.3. Breast Cancer Wisconsin (Diagnostic) Dataset 
This is also downloaded from the website of UC Irvine Machine Learning Repository [9]. It contains 569 
instances and, for each instance, there are 32 real-valued input variables. The instances are belonging to 2 
classes (malignant: 0 and benign: 1). 

To solve this classification problem, we use 5-fold cross-validation. The first fold has 452 instances in the 
training set and 117 instances in the testing set. The other 4 folds have 456 instances in the training set and 113 
instances in the testing set, respectively. For MVN, we used continuous learning rule in Equation (5) since the 
discrete one is not suitable for binary classification. We used the testing set to compute their average classification 
performance after learning with the training set completely with no training error, i.e., training accuracy being 
100%,. For MVN-sig,we computed their average classification performance after learning process met the stop- 
ping criteria. The testing accuracy obtained by MVN and MVN-sig, respectively, for this dataset, is shown in 
Table 1. From this table, we can see that MVN-sig achieves a better testing accuracy than MVN. 

5. Conclusions and Discussions 
The parameter c  in Equation (6) affects the converging time and performance. We can develop a parameterfree 
model since the activation function of MVN-sig is differentiable. But if we make this model parameter-free, the 
 

Table 1. Accuracy comparison of MVN and MVN-sig. 

 MVN MVN-sig 

Wine 94.404 94.980 

Iris 93.200 95.870 

Diagnostic 86.936 87.480 
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execution time is increased tremendously. In this paper, we select suitable parameters for each experiment. 
The simulation results obtained with benchmark datasets show MVN-sig meets our expectation of original 

thoughts. From the result of Iris dataset, we can see if we loosen the MVN stopping criterion, MVN-sig can still 
achieve better testing accuracy. But the critical downside is the much higher time complexity. In this paper, we 
just apply a simple gradient descent method to the neuron. More complicated techniques for reducing back- 
propagation time can be applied. 

There are three main concerns about the future work of the MVN-sig neuron. Firstly, we have to develop a 
multilayer neural network using MVN-sig and investigate its performance. Secondly, to reduce its execution 
time we need to do more research on the learning algorithm. Finally, we have to find its pros and cons in the 
real-world applications. 
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