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ABSTRACT 

Phosphorylation of protein is an important post-translational modification that enables ac-
tivation of various enzymes and receptors included in signaling pathways. To reduce the 
cost of identifying phosphorylation site by laborious experiments, computational prediction 
of it has been actively studied. In this study, by adopting a new set of features and applying 
feature selection by Random Forest with grid search before training by Support Vector 
Machine, our method achieved better or comparable performance of phosphorylation site 
prediction for two different data sets.  

 

1. INTRODUCTION 
Phosphorylation is one of the most important post-translational modifications (PTMs) in euka-

ryotes. This occurs when a phosphate group is added to a protein by a kinase. The addition of phosphate 
group usually happens to Serine (S), Threonine, and Tyrosine (Y) [1]. It is also the common PTM, which 
occur in eukaryotic cell [2]. Between 30% and 50% proteins of eukaryotic cell undergo phosphorylation 
[3]. 

In the past, experimental approach such as mass spectrometry (MS/MS) [4] has been commonly used 
to identify phosphorylation sites. However, implementing this approach has several disadvantages. Con-
ducting experiment to predict phosphorylation sites is considered expensive and requires intensive labor. 
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In addition, it also requires adequate technique, skill, and specific equipment.  
Instead, computational approach (in silico) is becoming more common because of new computer 

technology development. These days, computers can process large number of data in a short time. This 
makes prediction of phosphorylation sites using computational approach becoming more popular. Trost 
and Kusalik provided summarization of various technique approach, data, and tools that can be applied to 
predict phosphorylation site using computational approach [5]. 

In general, phosphorylation site prediction can be classified into two approaches: kinase-specific 
phosphorylation site prediction and non-kinase-specific (general) phosphorylation site prediction. Ki-
nase-specific prediction approach requires both protein sequence and the type of kinase for phosphoryla-
tion to conduct prediction. The other approach is non-kinase-specific, which only requires protein se-
quence. Xue and Trost provided comparisons of these two approaches [5, 6]. The main disadvantage of 
kinase-specific approach is that the publicly available information about the type of kinase is limited, espe-
cially for human kinase [7]. Therefore, non-kinase-specific approach is more popular to predict phospho-
rylation site [8].  

There are various methods proposed for the prediction. For example, Blom used neural network 
(NN) approach to predict eukaryotic protein phosphorylation site based on sequence and structure of 
proteins [9]. Kim proposed a prediction method using support vector machine (SVM) [10]. 

In this paper, we propose a new prediction method for non-kinase-specific phosphorylation site. By 
adopting a new combination of a classifier, features, and feature selection algorithm, we improved the 
performance of prediction. We measured the result of feature selection and classification and compared it 
with existing methods. We also tested our method with an independent data set and analysis of the classi-
fication result. 

2. MATERIALS AND METHODS 
2.1. Data Sets 

In this work, we followed the preparation step done by Ismail [11]. The dataset we use were down-
loaded from the Phospho SVM website [12]. The phosphorylation site data set is P.ELM version 9 [13]. 
The data set contains phosphorylated sequences at the position of Serine (S), Threonine (T), and Tyrosine 
(Y). These sequences were also checked for redundancy and sequences that had similarity more than 30% 
were removed. Table 1 shows the number of sequences and number of sites for Serine, Threonine, and 
Tyrosine, respectively.  

We generated fixed-length protein sequences using window size 9, which have phospholyratable re-
sidues (Serine, Threonine, or Tyrosine) at the center of them. If the center residue of the sequence is 
known as phosphorylated, the sequence is “positive”, otherwise “negative”. For positive and negative se-
quences, redundant ones were removed using skipredundant [14]. The parameters for redundancy remov-
al are as follows: acceptable threshold percentage of similarity was set to 0% - 20%, value for gap opening 
penalty to 10, and gap extension penalty to 0.5. Table 2 shows the number of positive and negative se-
quences before and after removing redundant sequences for each residue. 

The number of negative sequences after redundancy removal for Serine, Threonine, and Tyrosine re-
sidues are: 4771, 3343, and 898, respectively. We then randomly selected negative sequences for each resi-
due with the same number of negative sequences in the work of Ismail. 

Using the same window size and method, we also generated sequences from PPA data set down-
loaded from the Phospho SVM website for conducting performance evaluation by independent data set. 
PPA is a database for providing information of phosphorylation sites in Arabidopsis and a predictor for 
plant-specific phosphorylation site [15]. After removal of redundant sequences, we randomly selected pos-
itive and negative sequences based on the work of Ismail. Table 3 shows number of positive and negative 
phosphorylation sites for each amino acid. In order to make the data set well-balanced, the numbers of 
positive and negative sequences were set to equal.  
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Table 1. P.ELM data set of phosphorylation site from PhosphoSVM website. 

Residue Number of Sequence Number of Sites 
Serine 6635 20,964 

Threonine 3227 5685 

Tyrosine 1392 2163 

 
Table 2. Number of sequences before and after removing redundant sequence for window size = 9. 

Residue 
Positive 

Negative 
Before After 

Serine 20,557 1554 1543 

Threonine 5596 707 453 
Tyrosine 1392 267 226 

 
Table 3. PPA data set as the independent data set. 

Residue 
Number of positive/negative  

sequences after redundancy removal 
Number of positive/negative  

sequences after selection 
Serine 484/1830 307/307 

Threonine 132/1227 68/68 

Tyrosine 187/640 51/51 

2.2. Methods 

2.2.1. Feature Extraction 
Using the fixed-length sequences, we conducted feature extraction to represent them as vectors of 

numerical values. We used three different programs to extract features: PROFEAT (2016), PSI-BLAST, 
and protr. 

PROFEAT (2016) is a web server for extracting features from protein sequences [16]. We used it to 
generate the following feaures: Amino Acid Composition, Dipeptide Composition, Normalized Mo-
reau-Broto Autocorrelation Descriptor, Moran Autocorrelation Descriptor, Moran Autocorrelation De-
scriptor, Geary Autocorrelation Descriptor, Composition, Transition, Distribution Descriptor, Amphi-
philic Pseudo-Amino Acid Composition, and Total Amino Acid Properties. For Position Specific Scoring 
Matrix (PSSM) features, we used PSI-BLAST [17]. In addition, an R package called protrwas used to pro-
duce the following features: BLOSUM and PAM Matrices for the 20 Amino Acid, Amino Acid Properties 
Based Scales Descriptor (Protein Fingerprint), Scales-based Descriptor derived by Principal Components 
Analysis, Scales-based Descriptor derived by Multidimensional Scaling, Conjoint Triad Descriptors, and 
Sequence-Order-Coupling Number [18]. Details of these features are described below. Except three fea-
tures (CTD, SOCN, QSO), most of the features are not used in Ismail’s work. 

 Amino Acid Composition (AAC) 
Amino Acid Composition is defined as the fraction of each amino acid in a protein sequence [19]. For 

all 20 amino acids, the fraction is calculated using this equation. 
total of number of amino acid type fraction of

total number of amino acid in protein sequencei
iaa =              (1) 
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where i is a spesific type of amino acid 
 Dipeptide Composition (DPC) 
Dipeptide Composition generates 400 fixed-length numeric information based on the input protein 

sequences. It encapsulates information about the fraction of amino acid as well as their local order. It is 
calculated using Equation (2): 

( ) ( )total of number of 
fraction of 

total number of all posible dipeptide
dep i

dep i =                 (2) 

where dep(i) is one dipeptide i of 400 dipeptides. 
 Normalized Moreau-Broto Autocorrelation Descriptors (NMB) 
Before we calculate Normalized Moreau-Broto Autocorrelation, we must define Moreau-Broto Au-

tocorrelation. It can be define using Equation (3): 

( ) 1
N d

i i diAC d PP−
+== ∑                                 (3) 

where Pi and Pi+d are the amino acid property at position i and i + d, respectively. Normalized Mo-
reau-Broto Autocorrelation is defined using Equation (4) [20]: 

( ) ( )AC d
ATS d

N d
=

−
                                 (4) 

where d = 1, 2, 3, ∙∙∙, 30.  
When we usePROFEAT, the value of nlag should be lower than the size of the sequence. Since the 

window size is 9, we setnlag = 8. 
 Moran Autocorrelation Descriptors (MORAN) 
Moran Autocorrelation can be calculated using Equation (5): 
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where P  is the avarege of Pi. In the use of PROFEAT, we setnlag = 8. 
 Geary Autocorrelation Descriptors (GEARY) 
Geary Autocorrelation can be defined using Equation (6): 

( ) ( ) ( )
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In the use of PROFEAT, we setnlag = 8. 
 Composition, Transition, Distribution (CTD) 
Composition, Transition, Distribution represent the amino acid distribution patterns of a certain 

structural or physicochemical property from a protein sequences. These features are calculated as follows: 
the protein sequence is transformed into a sequence of a specific physicochemical or structural properties 
of residue. Twenty amino acids are divided into three groups [20, 21]. 

Composition (C), Transition (T), and Distribution (D) are then calculated for a given attribute to de-
scribe the global percent composition if the three groups of amino acids in a protein, the percent frequen-
cies with which the attribute changes its index along the entire length of the protein, and the distribution 
pattern of attribute along the sequence, respectively. 

 Sequence-Order-Coupling Number (SOCN) 
Sequence-Order-Coupling Number can be used to represent amino acid distribution pattern of a spe-

cific physicochemical property along a protein sequence. The dth rank of sequence-order-coupling num-
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ber can be calculated using Equation (7): 

( ),1

2
1,2,, 3, ,30N d

i i dd i ddτ −
+== =∑ �                          (7) 

where di,i+d is the distance between two amino acid at position i and i + d. In the use of protr, we also set-
nlag = 8. 

 Quasi-Sequence-Order Descriptors (QSO) 
Quasi-Sequence-Order Descriptors can be calculated using Sequence-Order-Coupling Number. For 

each amino acid type, the type-1 Quasi-Sequence-Order Descriptors is calculated using Equation (8): 

20 30
1 1

, 1,2,3, ,20r
r

r dr d

fX r
f w τ= =

= =
+∑ ∑

�                       (8) 

where fr is the normalized occurrence of amino acid type i and w is the weighting factor, w = 0.1. The 
type-2 Quasi-Sequence-Order Descriptors is calculated using Equation (9): 

20
20 30

1 1

, 21,22,23, ,50d
d

r dr d

wX r
f w
τ

τ
−

= =

= =
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�                     (9) 

In the use of PROFEAT, we setnlag = 8. 
 Amphiphilic Pseudo-Amino Acid Composition(APAAC) 
Before we calculate Amphiphilic Pseudo-Amino Acid Composition, we must define Pseudo-Amino 

Acid Composition (PAAC) [22]. First, three variables are generated from the original hydrophobicity val-
ues ( )0

1H i , hydrophilicity values ( )0
2H i , and side chain masses ( )0M i  of 20 amino acids (i = 1, 2, 3, ∙∙∙, 

20). 
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Then, a correlation function can generated as: 

( ) ( ) ( ) ( ) ( ){
( ) ( ) }

2 2

1 1 2 2

2

1,
3i j i j i j

i j

R R H R H R H R H R
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                (13) 
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From which, sequence order-correlated factors are defined as: 

( ) ( )1 ,1 ,i ii
N N

N
R Rλ

λ λ λθ
λ

θ +
−
== <

− ∑                          (14) 

where λ is parameter. Let fi be the normalized frequency of 20 amino acids in the protein sequence, a set of 
20 + λ descriptors called the PAAC can be defined using Equation (15): 
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where w = 0.05. From Equation (10) and Equation (11), the hydrophobicity and hydrophilicity correlation 
can be define as: 

( ) ( ) ( ) ( )1 2
, 1 1 , 2 2, ; ,i j i jH H i H j H H i H j= =                         (16) 

Then, sequence order factor can be define using Equation (17): 

2 1 21
1 2
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Finally, APAAC can be calculated using Equation (18): 
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In the use of PROFEAT, we set weight factor = 0.05 and lamda = 8.  
 Total Amino Acid Properties (AAP) 
Total Amino Acid Properties for a specific physicochemical property i is defined using Equation (19): 

( ) 1
1

i
jno

N
tot i j rm

p
N

P== ∑                                 (19) 

where i
jnorm

P  represents the property i of amino acid Rj that is normalized between 0 and 1.N is the length 
of the protein sequence. i

jnorm
P  is calculated using Equation (20): 

min

max min
i
j

i i
j

i inorm

p p
P

p p
−

=
−

                                (20) 

where i
jp  is the original amino acid property i for residue j. max

ip  and min
ip  are the minimum and the 

maximum values of the original amino acid property i, respectively.  
 Position Specific Scoring Matrix (PSSM) 
PSSM features were generated using PSI-BLAST against a local database generated from the phos-

phorylation data set.  
 BLOSUM and PAM Matrices for the 20 Amino Acid (BLOSUM) 
In the use of protr, we setk = 5, lag = 3, and Matrix type = AABLOSUM45.  
 Amino Acid Properties Based Scales Descriptor (Protein Fingerprint) (ProtFP) 
In the use of protr, we set pc = 5, lag = 5, index vector for Amino Acid Index = (160:165, 258:296). 
 Scales-based Descriptor derived by Principal Components Analysis (SCALES) 
In the use of protr, we set pc = 7, lag = 5, properties matrix = AA index (7:26). 
 Scales-based Descriptor derived by Multidimensional Scaling (MDDSCALES) 
In the use of protr, we set lag = 8. 

https://doi.org/10.4236/jbise.2018.116013


 

 

https://doi.org/10.4236/jbise.2018.116013 150 J. Biomedical Science and Engineering 
 

 Conjoint Triad Descriptors (CTriad) [22] 

2.2.2. Feature Selection 
Random Forest was introduced by Breiman [23]. Random Forest method works as a collection of 

large number of decision trees randomly generated and not correlated to each other. This method is wide-
lyapplied to classification problems.  

In Random Forest, Gini impurity index (GII) is used to measure feature importance. GII represents 
how often randomly chosen element from the data set would be classified incorrectly if it was randomly 
classified based on the distribution of classes in the subset. We use Gini Index to rank important features 
that can be used for the classification algorithm. 

In [11], Ismail also attempted the same feature selection and top 100 features were selected. In con-
trast, we conducted grid search to find the best set of selected features.  

2.2.3. Classification 
Vapnik [24] proposed support vector machine (SVM) as a classification method. It is a popular clas-

sifier widely applied to various problems including phosphorylation site prediction. SVM produces an op-
timal hyperplane separation between the classes. Here, optimal means finding the maximum margin 
around the separating hyperplane. In this work, we adopted Gaussian (also known as radial basis function) 
kernel for SVM. 

2.2.4. Evaluation 
10-fold cross-validation was repeated 10 times to measure the average performance of the P.ELM da-

ta. To measure the performance for the PPA data set, which is used for the independent data set, 
leave-one-out cross-validation (LOOCV) was conducted. 

The metricsused to measure the classification performance are: Accuracy, Sensitivity, Specificity, F1 
score, and Matthew’s Correlation Coefficient (MCC). These metrics are defined in the following equations: 

TP TNAccuracy
TP TN FP FN

+
=

+ + +
                         (21) 

TPSensitiviy
TP FN

=
+

                             (22) 

TNSpecificity
TN FP

=
+

                            (23) 

TPF1 score 2
TP FP FN

= ×
+ +

                          (24) 

( ) ( )
( ) ( ) ( ) ( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

× − ×
=

+ × + × + × +
             (25) 

where TP, TN, FP, and FN are the abbreviation for true positive, true negative, false positive, and false 
negative. In this work, Area under the ROC curve (AUC) is also measured.  

3. RESULT AND DISCUSSION 
3.1. P.ELM Data Set 

3.1.1. Feature Selection 
Gini impurity index (GII) in Random Forest was used to measure the importance of the features. For 

P.ELM data set, we conducted 10-fold cross validation repeated 10 times. For each fold in each iteration, 
we generate a list of important features based on the training data. Then we average the value GII of each 
features from the 100 list features we generated before. To give insight of which features that effects the 
classification, we listed the top twenty features for each residue in Figure 1. Composition, Transition, and  
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Figure 1. Top twenty importanct features for Serine (top), Threonine (middle), Tyrosine (bottom). 
The akronims of the group features are: Amino Acid Composition (AAC);Dipeptide Composition 
(DPC); Normalized Moreau-Broto Descriptors (NMB); Moran Autocorrelation Descriptors 
(MORAN); Geary Autocorrelation Descriptors (GEARY); Composition, Transition, Distribution 
(CTD); Quasi-Sequence-Order Descriptors (QSO); Amphiphilic Pseudo-Amino Acid Composition 
(APAAC); Total Amino Acid Properties (AAP); Position Specific Scoring Matrix (PSSM); 
BLOSUM and PAM Matrices the 20 Amino Acid (BLOSUM); Amino Acid Properties Based Scales 
Descriptors (ProtFP); Scale-based Descriptor derived by Principal Components Analysis (SCALES); 
Scale-based Descriptor derived by Multidimensional Scaling (MDSSCALES); Conjoint Triad 
Descriptor (Ctriad); 16: Sequence-Order-Coupling Number (SOCN). The number prefixed to a 
group name is just an identifier to descriminate different features in the same group. 
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Distribution (CTD) dominates the features for Serine (60% of all 20 features), and followed by Posi-
tion Specific Scoring Matrix (PSSM) and Quasi-Sequence-Order (QSO), 15% and 10%, respectively. Al-
though not as large as Serine, CTD still dominates the features for Threonine residue (35% of all 20 fea-
tures). Furthermore, as the same as Serine, PSSM is the second dominate feature by 20%. In addition, the 
third dominant features is QSO by 10%. In contrast, for Tyrosine, MDSSCALES dominates the list by 30% 
from all 20 features, followed by CTD and QSO. 

From Figure 1, we can assume that CTD group features plays an important role, to predict phospho-
rylation site for Serine and Threonine. However, for Tyrosine it is not a top important feature. It suggests 
the specialty of Tyrosine in protein phosphorylation in comparison with Serine and Threonine. 

3.1.2. Classification Result 
The performance of our proposed method is shown in Table 4. In general, we can see that there is an 

improvement if we implement feature selection before conducting class prediction. Without feature selec-
tion (i.e. using all the 2292 features), the prediction performances were quite low in all six metrics.  

By implementing feature selection with grid search for finding the best set of features, performances 
were improved greatly. For instance, using only averagely top 271 important features, Serine increased its 
accuracy and having the highest accuracy 96.46%, followed by Threonine 92.22% by using averagely top 
224 important features. For Tyrosine, by using averagely top 1635important features, achieved its best 
performance, which is 80.19%. Based on the comparison before using and after using feature selection, 
Threonine has the largest percentage of increase accuracy, which is 40.43%, followed by Serine 34.46%, 
and Tyrosine 24.65%. 

Since feature selection decreased the performance in Ismail’s work, it is an important finding that 
under an appropriate combination of classifier and features, feature selection could improve the perfor-
mance of protein phosphorylation site prediction. 

In this work, we also compared the result of our method with existing methods for predicting phos-
phorylation site. The compared methods are as follows: Netphos [9], Netphos K [25], GPS 2.1 [26], Swa-
minathan, NetPhos [9], PPRED [8], Musite [27], Phospho SVM [12], and RF-Phos [11]. Table 5 shows the 
performance comparison between our method with other methods. For Serine and Threonine, our me-
thod achieved highest AUC, sensitivity, and MCC. However, specificity using Threonine data set is lower 
than the result of RF-Phos. On the other hand, our method using Tyrosine data set achieved a lower AUC, 
specificity, and MCC, in comparison with the result of RF-Phos. In addition, only sensitivity achieved the 
highest score. 
 
Table 4. Performance of Classification using all of the features (2292 features) and best result of 
features selection. 

Metrics 

Residue 

Serine Threonine Tyrosine 

All features 271 features All features 244 features All features 1635 features 

Accuracy 0.7174 0.9646 0.6567 0.9222 0.6433 0.8019 

AUC 0.7171 0.9646 0.6567 0.9222 0.6387 0.7984 

Sensitivity 0.7946 0.9715 0.8581 0.9264 0.6968 0.8381 

Specificity 0.6396 0.9577 0.3425 0.9157 0.5805 0.7588 

F1-score 0.7382 0.9650 0.7526 0.9354 0.6783 0.8205 

MCC 0.4404 0.9298 0.2381 0.8387 0.2814 0.6043 
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Table 5. Comparsion of performance several methods to predict phosphorylation site for residue: 
Serine, Threonine, and Tyrosine. 

Methods 
Serine Threonine Tyrosine 

AUC Sen Spec MCC AUC Sen Spec MCC AUC Sen Spec MCC 

NetPhosK 0.63 0.509 0.678 0.08 0.60 0.620 0.568 0.07 0.60 0.395 0.742 0.08 

GPS 2.1 0.73 0.331 0.933 0.20 0.70 0.381 0.923 0.20 0.61 0.345 0.789 0.08 

Swaminathan 0.70 0.313 0.887 0.13 0.72 0.280 0.925 0.14 0.62 0.605 0.570 0.09 

NetPhos 0.70 0.341 0.867 0.12 0.66 0.343 0.837 0.09 0.65 0.347 0.845 0.13 

PPRED 0.75 0.323 0.916 0.17 0.73 0.303 0.910 0.13 0.70 0.430 0.827 0.17 

Musite 0.81 0.414 0.937 0.25 0.78 0.338 0.948 0.22 0.72 0.384 0.867 0.18 

PhosphoSVM 0.84 0.444 0.940 0.30 0.82 0.378 0.950 0.25 0.74 0.419 0.873 0.21 

RF-Phos 0.88 0.840 0.850 0.65 0.90 0.830 0.940 0.70 0.91 0.830 0.880 0.70 

Our Method 0.96 0.972 0.956 0.93 0.92 0.926 0.916 0.84 0.80 0.838 0.759 0.60 

3.2. PPA Data Set 

Using the PPA data set as an independent data set, we also conducted feature selection by Random 
Forest and classification by SVM. 

3.2.1. Feature Selection 
We used the same features importance value as the P.ELM data set, that is Gini impurity index from 

Random Forest. Using PPA data set, we conducted leave-one-out cross validation. For each fold, we gen-
erate a list for important featured based on the training data. The number of feature list for each residue 
equals the number of samples in the data set. We measure the average GII value for each features from all 
list feature. The top twenty important features are shown in Figure 2. CTD dominates the top twenty fea-
tures for Serine by 75% of all top twenty features, then followed by QSO only 10%. For Threonine, 
MDSSCALES dominates the top twenty features by 30%, second place CDT and QSO appear 20%. For 
Tyrosine, SCALES features dominates by 50%, followed by MDSSCALES by 20% of the top twenty fea-
tures. 

3.2.2. Classification Result 
In general, as it is shown in Table 6, we can see that without feature selection, for all three data set, 

the accuracy is lower than 60%. However, there is an improvement if we implement feature selection be-
fore conducting class prediction. Threonine has the highest accuracy 91.18% using 772 features, then fol-
lowed by Serine, using 1316 feature achieving 87.66% accuracy. Tyrosine, using 160 features, has the low-
est accuracy in comparison with the other two data sets, achieving 57.84%. 

If we compare the increase of performance between not using feature selection and feature selection, 
Threonine achieved63.18% increase of accuracy, followed by Serine 49.92% increase. Serine has the lowest 
increase of accuracy which is 59.65%. 

We also compared our classification result with the ones in other researches. The method we compa-
redare: Netphos K, GPS 2.1, NetPhos, PHOSPHER, Musite, Phospho SVM, and RF-Phos. In Table 7, we 
can see that our method has a higher performance in sensitivity, specificity, and MCC for Serine and 
Threonine residue. For Tyrosine, our method could not outperform other results from previous work. 
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Figure 2. Top twenty importanct features for Serine (top), Threonine (middle), 
Tyrosine (bottom) using the independet data set. 
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Table 6. Performance of Classification using all of the features (2292 features) and best result of 
features selection using the independent data set. 

Metrics 

Residue 

Serine Threonine Tyrosine 

All features 1316 features All features 772 features All feature 160 features 

Accuracy 0.5847 0.8766 0.5588 0.9118 0.4902 0.5784 

AUC 0.5846 0.8766 0.5588 0.9118 0.4902 0.5784 

Sensitivity 0.7522 0.8920 0.4265 0.8823 0.4510 0.5294 

Specificity 0.4170 0.8611 0.6912 0.9412 0.5294 0.6274 

F1-score 0.6436 0.8786 0.4915 0.9091 0.4694 0.5567 

MCC 0.1922 0.7562 0.1220 0.8250 -0.0197 0.1576 

 
Table 7. Comparsion of performance several methods to predict phosphorylation site using the 
independent data set for residue: Serine, Threonine, and Tyrosine. 

Methods 
Serine Threonine Tyrosine 

Sen Spec MCC Sen Spec MCC Sen Spec MCC 

NetPhosK 0.8013 0.3879 0.10 0.6912 0.5082 0.06 0.2549 0.8323 0.04 

GPS 2.1 0.9479 0.2862 0.14 0.9559 0.2084 0.07 0.9804 0.2142 0.09 

NetPhos 0.7655 0.5420 0.16 0.5441 0.7743 0.12 0.6471 0.6750 0.13 

PHOSFER 0.7459 0.6551 0.22 0.7794 0.6477 0.14 0.6275 0.5929 0.08 

Musite 0.5570 0.8739 0.31 0.4853 0.9355 0.26 0.4706 0.8877 0.20 

PhosphoSVM 0.6384 0.8176 0.29 0.7059 0.8176 0.19 0.8235 0.6418 0.18 

RF-Phos 0.7200 0.7000 0.41 0.7900 0.7000 0.50 0.6100 0.6200 0.29 

Our Method 0.8920 0.8611 0.76 0.8823 0.9412 0.82 0.5294 0.6274 0.16 

4. CONCLUSIONS 
We proposed a non-kinase-specific method to predict phosphorylation site by applying feature selec-

tion and support vector machine. The features were generated from 16 groups of amino acid feature ex-
traction methods. As it is shown from the top twenty important features for P.ELM and PPA data sets, the 
most important feature group was Composition, Transition, and Distribution (CTD) for Serine and 
Threonine residues. Using the P.ELM data set, our method achieved accuracy of 0.9646, 0.9222, and 
0.8019 for Serine, Threonine, and Tyrosine, respectively. We also conducted classification for the PPA data 
set as an independent data set. Our method achieved 0.8766, 0.9118, and 0.5784 accuracy for Serine, 
Threonine, and Tyrosine residue, respectively. 

In this study, we did not use most of features adopted in [11] except CTD, SOCN, and QSO. By in-
corporating such features to our method, we can expect further improvement of performance of predict-
ing protein phosphorylation site from sequence.  
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