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Abstract 
The authors have applied a systems analysis approach to describe the muscu-
loskeletal system as consisting of a stack of superimposed kinematic hierar-
chical segments in which each lower segment tends to transfer its motion to 
the other superimposed segments. This segmental chain enables the deriva-
tion of both conscious perception and sensory control of action in space. This 
applied systems analysis approach involves the measurements of the complex 
motor behavior in order to elucidate the fusion of multiple sensor data for the 
reliable and efficient acquisition of the kinetic, kinematics and electromyog-
raphic data of the human spatial behavior. The acquired kinematic and related 
kinetic signals represent attributive features of the internal reconstruction of 
the physical links between the superimposed body segments. Indeed, this re-
construction of the physical links was established as a result of the fusion of 
the multiple sensor data. Furthermore, this acquired kinematics, kinetics and 
electromyographic data provided detailed means to record, annotate, process, 
transmit, and display pertinent information derived from the musculoskeletal 
system to quantify and differentiate between subjects with mobility-related 
disabilities and able-bodied subjects, and enabled an inference into the active 
neural processes underlying balance reactions. To gain insight into the basis 
for this long-term dependence, the authors have applied the fusion of multiple 
sensor data to investigate the effects of Cerebral Palsy, Multiple Sclerosis and 
Diabetic Neuropathy conditions, on biomechanical/neurophysiological changes 
that may alter the ability of the human locomotor system to generate ambula-
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tion, balance and posture. 
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1. Introduction 

Human dynamic behavior in space is very complex because it involves many 
physical, perceptual and motor aspects [1]. The active maintenance of the hu-
man body configuration and orientation in space is dependent on visual and 
proprioceptive cues. This is a vital motor function since the maintenance of 
posture is a non-volitional activity based on pre-determined inborn neural 
mechanisms. Therefore, the efficient control of the basic posture is equally im-
portant for standing, walking and for providing support during voluntary 
movements of the limbs, trunk, and head [1] [2] [3]. The role of vestibular input 
and its interaction with visual and somatosensory cues for human postural con-
trol is still not well understood [2] [3] [4]. But we know that other systems in-
tervene to compensate for sensory loss of another system. An example of this 
case is a diabetic patient with a peripheral neuropathy and diminished sensory 
proprioceptive feedback; this patient relies more on the visual clues to help with 
gait and balance. Learning the interplay between these cues may provide the key 
to understanding the complex function. 

There have been many attempts to elucidate the mechanisms underlying the 
intelligent adaptive behavior in the complex human locomotor system. These 
attempts have involved the direct capture of the activities of the neuronal system 
in human locomotion [5] [6] [7]. They do not, however, clarify how the nervous 
system adaptively functions as a dynamic system and how it effectively coordi-
nates adaptive interactions with the musculo-skeletal system during locomotion 
[6] [7]. Other studies have tried to artificially emulate locomotion by using ma-
thematical models and robots based on control theory. Here again, the successful 
locomotor control of a simulation model or robot does not lead to an under-
standing of biological locomotor mechanisms, as the control laws are artificially 
constructed solely based on an engineering perspective independent of actual bi-
ological mechanisms [6] [7] [8] [9]. Innovations in the quantitative analysis of 
gait, physiology and biomechanics are essential to truly understand the prin-
ciples of adaptive behavior in human locomotion and locomotion rehabilitation. 
Quantitative gait analysis has been used to elucidate characteristic features of 
neurological gait disturbances. Although a number of studies compared single 
patient groups with controls, there are only a few studies comparing gait para-
meters between patients with different neurological disorders affecting gait [9] 
[10] [11] [12] [13]. 

Human motor control fundamentally involves a series of transformations of 
information among different levels and components of the neuromuscular and 
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skeletal systems [14]. The proprioceptive and exteroceptive sensory information 
data are transduced by sensory structures that in turn transfer a subset of their 
information to the central nervous system which, following yet another trans-
formation, issues a set of motor commands [4] [6] [8]. The mechanical coupling 
between musculoskeletal elements and the muscles controlling them is yet another 
transformation of information in the system [14] [15] [16] [17]. The control prob-
lem revolves around the specific transfer functions that describe each transforma-
tion [6] [14] [15]. The transfer functions depend on the rules of organization and 
operation that determine the dynamic behavior of each subsystem.  

The ability to control balance is dependent on sensory inputs from somato-
sensory, visual and vestibular systems [2] [3]. Information concerning the posi-
tion and movement of body segments with reference to each other and the sup-
port surface and the distension of the respective muscles is provided through the 
somatosensory system, the proprioceptors and the mechanical sensitivity of cu-
taneous and subcutaneous tissue [1] [2] [3] [4].  

To gain insight into the basis for this long-term dependence, the authors have 
applied the fusion of multiple sensor data to investigate the effects of Cerebral 
Palsy, Multiple Sclerosis and Diabetic Neuropathy conditions, on biomechani-
cal/neurophysiological changes that may alter the ability of the human locomo-
tor system to generate ambulation, balance and posture.  

The acquired kinematic and related kinetic signals represent attributive fea-
tures of the internal reconstruction of the physical links between the superim-
posed body segments. The signals also depict the global variables necessary for 
sensorimotor adaptation.  

This study does demonstrate that the application of multiple sensor data fu-
sion for the analysis of human dynamic behaviour in space exhibits efficiency, 
validity, reliability, responsiveness and practicability in the assessment and 
evaluation of mobility-related functional impairment. It will enable physicians 
and therapists to gain adequate knowledge of the patient and disease characteris-
tics that determine functional outcome. 

2. Method 
A Systems Analysis Approach Was Applied to Enable the  
Understanding of Human Dynamic Behavior in Space 

I. Theoretical Systems Analysis Approach:  
The active control of posture and balance is crucial for tasks of daily living. 

The neural control of postural orientation and equilibrium involves virtually all 
body segments and several sensory systems [1] [2]. Postural equilibrium refers to 
balance, that is, resisting external forces acting on the body to maintain a desired 
body position. On earth, gravity is the dominant external force affecting equili-
brium. Postural orientation refers to body geometry, or the position of the body 
segments with respect to each other and with respect to various reference frames 
in the environment. Balance is achieved during stance when the downward pro-
jection of the center of mass remains within the base of support. The base of 
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support is defined by parts of the body in contact with the environment. Upright 
stance requires at least two functions, antigravity support, or maintaining the 
center of mass at the required height, and balance, or controlling the horizontal 
plane trajectory of the center of mass. Other functions may also be required. 

In order to study the postural control system, this experimental neuroscience 
approach has applied psychophysics to quantitatively investigate the relation-
ships between physical stimuli (subject’s subjective selection of treadmill speed 
as input) and the sensations and perceptions they affect (balance, posture) and 
measured the human dynamic behavior in terms of the ground reaction forces 
under the feet, the positions of the body segments, and electromyographic 
(EMG) activity. The combination of all three measurements allows us to infer 
the active neural processes underlying balance reactions. 

In this study, the dynamic behavior in space is concerted in one unifying ref-
erence system that covers perception as well as sensory control of posture and 
action.The system is hierarchically structured, consisting of linked references 
which are anchored in the gravitoinertial space, the ultimate outer shell, as de-
picted in Figure 1. The system is based on an internal reconstruction of the ex-
ternal physical links between external references. Therefore, the inner shells 
represent our immediate visual and haptic surroundings. These inner shells are 
usually anchored either directly or indirectly on the earth’s surface by the gravi-
tational ground reaction forces. Gravity anchors the body in these inner shells in 
which the feet and legs represent the platform for the trunk, and then for the  

 

 

Figure 1. Illustration of the human body as a stack of hierarchically structured and su-
perimposed segments. 
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head, etc., during standing. The internal notion of space is required for both 
perception and postural control, and this especially in situations where we have 
no haptic or visual information of space. The same applies to our feet or trunks, 
when they are stationary.  

Figure 1 illustrates the internal kinematic reference system that depicts a re-
construction of physics, with a gravitational anchoring of head on trunk on legs 
on feet on foot support in space. The perceptual notion of space is derived 
mainly through vestibular sensors. The continuous internal reconstruction of 
the system is shaped by the available sensors, their transfer characteristics, their 
locations within the body, etc. 

Main objective of this study is to perform an experimental systems analysis to 
acquire and process the biomechanical and physiological attributive features of 
human subjects to enable the evaluation and assessment of human dynamic be-
haviour in space. 

Clinical relevance: It is possible that in disease states as a sensory system de-
grades, another system compensates for the deficiencies. If however, the com-
pensatory capacity is limited, functional limitations will manifest themselves. 

II. Applied Systems Analysis Approach 
In this experimental neuroscience study, the human body was considered as a 

stack of superimposed segments with a kinematic hierarchy in which each lower 
segment tends to transfer its motion to all superimposed ones. The data acquisi-
tion for both the perceptual and the motor control aspects of the spatial beha-
viorwas performed in one common kinematic reference system, Figure 1. This 
reference system represents a rather faithful internal reconstruction of the 
physiology/biomechanics of the human. The system is hierarchically structured, 
consisting of linked references which are anchored in gravito-inertial space. The 
perceptual notion of space is derived mainly through the vestibular sensors, the 
gyroscopes and accelerometers. 

Figure 2 depicts the practical acquisition of the information granules relating 
to the kinematics, kinetics and the elctromyographic data of the human dynamic  

 

 
Figure 2. Experimental design for the data acquisition. 
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Figure 3. Block diagram of the experimental data acquisition of physiologic/ biomechan-
ics data (according to Figure 2). 

 
behavior. 

In Figure 2, a cluster of human movement data is acquired through the ap-
plication of three main hardware devices, the instrumented treadmill (depicted 
in Figure 2 as Force Plates) for the Ground Reaction Forces (GRFs), the surface 
electromyography (sEMG) device for measurement of the electrical activities of 
the muscles, and wearable inertial sensors (goniometers, gyroscopes, accelero-
meters) for the kinematics.  

Figure 3 illustrates a block diagram representation of the experimental pro-
cedure introduced in Figure 2. 

3. Data Acquisition 

The Institutional Review Board (IRB) of the University of Texas at El Paso 
(UTEP) approved this study, and all subjects signed an informed consent form 
prior to participation.Subjects were identified primarily from the affiliated insti-
tutions of the Texas Tech Medical Center at El Paso. Flyers announcing the op-
portunity to participate in this research was posted at these sites and circulated 
among receptive community physicians and therapists identified as likely to be 
familiar with potential subjects. Once identified, the potential subjects were as-
sessed and screened for eligibility by Dr. Miguel Pirela-Cruz, Director of the 
Orthopedic and Rehabilitation Surgery of the Paul L. Foster School of Medicine, 
Texas Tech University Medical Center. Potential subjects were encouraged to 
view the experimental set-up prior to signing the consent. All subjects were able 
to read and understand the Informed Consent. For patients, a family member 
was encouraged to participate in hearing the explanation of the study and to 
help the potential subject evaluate participation in the study. After reading the 
consent, subjects were asked to restate their understanding of their commit-
ments over the time line of the study and to restate their understanding that they 
could stop their participation at any time without concern about their present or 
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future care. 
Each subject walked bare-footed on the dual-belt instrumented treadmill at a 

self-selected natural speed continuously for three minutes. The instrumented 
treadmill measures the ground reaction forces (GRF) in three planes (Fx—ante- 
rior posterior; Fy—medial lateral; Fz—vertical) during the walking tasks.  

The Delsys Trigno wireless EMG system measures the dynamic activities of 
the muscles on both sides of the lower extremity. It consists of 16 wireless EMG 
sensors, and raw data were acquired at a sampling frequency of 1000 samples/s, 
and also tri-axial accelerometers. Eight muscles for each side were selected as il-
lustrated in Figure 2; soleus (Sol), tibialis anterior (TA), gastrocnemius lateralis 
(LG), vastus lateralis (VL), rectus femoris (RF), biceps femoris (BF), gluteus me-
dius (Gmed), and erector spinae (ES). The placement of the electrodes on the 
subjects was performed based on [18] and the signals were tested before the data 
acquisition. The wearable inertial sensor array consists of accelerometers, gyro-
scopes and goniometers that measure the dynamic motion in three dimensional 
space, as well as analog to digital (A/D) converter.  

4. Data Analysis and Processing 

The data processing and filtering methods were performed based on the type of 
data acquired. Three types of raw data cluster were recorded for each subject; the 
GRFs, EMG, and kinematics data, respectively. 

The GRFs data were acquired at a frequency of 100 Hz and filtered using 20 
Hz low pass filter. The GRFs amplitudes were normalized based on body mass 
[19] [20] [21] [22]. The gait cycle/stride time and phases are determined based 
on the vertical component of GRFs [23]. Time-normalization of strides is ac-
complished by re-sampling and expressing each stride in percentage rather than 
time [24]. In addition, the amplitudes of the GRFs were normalized based on the 
subject’s body weight. 

Figure 4 illustrates the processing steps of the EMG data. Due to the concen-
tration of the EMG data within the band between 20 Hz and 200 Hz [24], a band 
pass filter (20 Hz - 200 Hz) was applied to the raw EMG data to reduce the noise 
effects such as the motion artefact noise. The filtered data were then full-wave 
rectified to generate the absolute value of the EMG. Linear envelope is a com-
mon way to manipulate EMG signal [25]. It can be called also as moving aver-
age. The linear envelope is produced by applying a second order Butterworth 
low pass filter with a cut-off frequency of 7 Hz to the full-wave rectified EMG 
signal. EMG Amplitude normalization is performed due to the variability be-
tween individuals such as the inherent physiological variability and the variabil-
ity associated with electrode placement [26]. The normalization is carried out for 
each subject based on the peak or the mean of the EMG signal [27]. Time-nor- 
malization is also performed for the strides time similar to the GRFs. The output 
of inertial sensors was acquired at 100 Hz sampling rate. A low pass filter with 
cut-off frequency of 6 Hz is typically applied to lower the noise and improve the 
resolution of the accelerometers [24]. Time-normalization is applied for the  
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Figure 4. EMG data processing. (a) Row EMG data, (b) Band pass filtered EMG Data, (c) Full-wave rectified EMG data, and (d) 
Linear envelope of EMG data, X-axis is the time in seconds and Y-axis is amplitude in volts. 
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strides time as well. 
The authors have taken advantage of the performance of the data acquisition 

scheme for the human dynamic behavior described and applied in [28] [29] [30]. 
From the experimental process as depicted in Figure 2 and Figure 3, a cluster 

of data relating to the kinematics, kinetic and muscle activities were acquired 
using an array of inertial sensors, instrumented treadmill and electromyography 
devices during normal walking tasks. This measured data cluster was partitioned 
into so-called homogenous clusters to indicate that all points in the same group 
are close to each other and not close to points in other groups. This clustering 
process was then used to build pattern classes or to reduce the size of the set of 
data while retaining relevant information. 

The data were treated as aggregate information granules that enabled the effi-
cient partition of input space and more rapid analysis. This means that we deal 
with the relationships of the kinematic, kinetic and muscle activity functions 
within the gait cycle. The relationships depict the attributive features of the hu-
man movement and are expressed in an implication table giving rise to a fuzzy 
relational matrix, established between the dynamic activities during the walking 
tasks [31] [32] [33] [34]. In [28] [29] [35], a fuzzy-based semi-heuristic method 
for gait assessment using fuzzy relational matrices, rule-base, and fuzzy similar-
ity algorithm was proposed.  

The described relational matrix depicts a rule-based system representing the 
strength of association or interaction amongst the elements of Fuzzy sets. 

Fuzzy relational matrix (rule-base) can be used to represent the strength of 
association or interaction amongst the elements of gait functions (data cluster), 
and it depicts a rule-base that can be used to provide a model of feature matrix. 
A fuzzy relational matrix of size n × m may be developed as an equation of the 
form in: 

( )
( ) ( )

( ) ( )

1 1 1

1

, ,
,

, ,

R R m

R n R n m

x y x y
R x y

x y x y

µ µ

µ µ

 …
 =  
 … 

  
              (1) 

The separation of clusters is a fuzzy notion, and the representation of clusters 
by fuzzy sets may seem more appropriate insituations involving human spatial 
dynamic behavior. The captured data exhibits some imprecision owing to sub-
jective and systematic occurrences during the acquisition process. 

When determining the presence or absence of association, interaction or in-
terconnection between the elements of the kinetic, kinematic and electromyo-
graphic data within the gait phases, the mapping is usually nonfuzzy. The map-
ping also depicts transfer functions involving the joint angles, velocities, accel-
erations and muscle activities within the gait cycle whereby the input to the sys-
tem is the evoked potential (stimuli) given by the speed of the treadmill.  

However, when the severity level of an element of the gait function must be 
determined, then fuzzy sets are often involved in the mapping. The application 
of cluster analysis is entered on the formulation of relationships for the variables 
under consideration. Fuzzy clustering provides a richer description of the geo-
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metric structure of the data set in many cases, and has a lesser tendency to get 
stuck in local minima. Memberships can be interpreted as degrees of typicality of 
degrees of sharing. 

This experimental procedure defined information granules in a finite universe 
of discourse for the representation of the multidimensional experimental data 
sets: 
1) The establishment of the mapping R(x, y) describes the relationship between 
• The 3-dimensional ground reaction forces (GRF) : x X∈  whose attributes 

include: 

{ }x y zX GRF GRF GRF= ; and 
• The functional phases in a gait cycle: y Y∈  whose attributes include: 

{ }1 2 3 4 5 6 7Y phase phase phase phase phase phase phase= . 

This relation may be viewed as a transfer function (a rule or rule-base) that 
may be used to provide a model. This relationship, R(x, y), depicts a feature 
space that describes the association, interaction or interconnection between the 
elements of the ground reaction forces data within the gait phases. This table is 
then expressed in a relational form R(x, y) as: 

( ) [ ], 1, , 7xR x y GRF phase phase=                  (2) 

2) The establishment of the mapping S(y, z) describes the relationship between  
• The muscle activity, proprioception, to provide information about muscle 

length and tension in the limbs, z Z∈  whose attributes include: 
{ }Z Sol TA LG VL RF BF Gmed ES= ; and 

• The functional phases in a gait cycle: y Y∈  whose attributes include: 

{ }1 2 3 4 5 6 7Y phase phase phase phase phase phase phase= . 

This relationship may be viewed as transfer function (a rule or rule-base) that 
may provide a model. This relationship, S(y, z), depicts a feature space that de-
scribes the association, interaction or interconnection between the elements of 
the muscle activity and the gait phases. The table is then expressed in a relational 
form S(y, z) as: 

( ) [ ], 1, , 7S y z Sol phase phase=                   (3) 

3) We establish the mapping Q(w, y) as the relationship between 
• The joint angles, and the segmental accelerations for proprioception and 

kinesthesia sensation: w W∈  whose attributes include:  

{ }, , ,foot shank thigh hipW Acc Acc Acc Acc=  and 
• The functional phases in a gait cycle: y Y∈  whose attributes include: 

{ }1 2 3 4 5 6 7Y phase phase phase phase phase phase phase=  

as this matrix that depicts a transfer function (a feature space or rule base)that 
describes the association, interaction or interconnection between the elements of 
the segmental accelerations and the gait phases. The table is then expressed in a 
relational form Q(w, y) as: 

( ) [ ], 1, , 7 .xQ w y ACC Phase phase=                 (4) 
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The measured feature pattern (input pattern represents the impaired subject) 
is compared with the reference feature pattern (healthy subject) within the fuzzy 
rule-base. This procedure offers an aggregation between the input and reference 
feature patterns, and it is expressed as the fuzzy similarity algorithm. This algo-
rithm provides an evaluation methodology for determining the behavior of three 
main gait features, individual muscles, accelerations and forces within various 
gait phases. The application of the fuzzy similarity measure, therefore, enables 
the comparison between the reference pattern features and the measured im-
paired subject feature patterns. Equation (5) illustrates the example of the fuzzy 
similarity measure between the healthy subject, refµ , and the impaired subject, 

testµ , 

( ) ( ){ }
( ) ( ){ }

min , , ,
*

max , , ,
ref testref test

ref test
ref test ref test

x y x y

x y x y

µ µµ µ
µ µ

µ µ µ µ

∧
= =

∨
         (5) 

where refµ  depicts the attributive features of the healthy subject (reference 
subject) and testµ  are the attributive feature of the impaired subject. 

Data Processing 

The application of gait phases for the analysis of human walking pattern offers 
the attributive features that are significant towards the synergistic motion be-
tween the stack of the superimposed segments and joints. This paper takes ad-
vantage of the definition of the gait cycle into seven phases [29] [30] [36] in 
which each gait phase has a functional objective to accomplish its required dy-
namic behavior. The sequence of the gait phase combinations enables the limb 
to perform the three significant tasks, weight acceptance, single-limb support, 
and limb advancement. Therefore, the rules of the organization and operation 
that determine the dynamic behavior of each segment (foot, shank, thigh, and 
hip) are expressed through transfer functions. Motor control involves a series of 
transformations of information and revolves around the specific transfer func-
tions that describe each transformation. 

The experimentally established mappings that are expressed as relational ma-
trices are stored in a Knowledge Base system as in Figure 5. It may be borne in 
mind that the stored transfer functions of Able-bodied subjects are entered in 
the knowledge base system as the reference features (Reference Feature Matrix). 
Acquired feature matrices of test subjects (impaired subjects) serve as input into  

 

 

Figure 5. Principle of the data processing. 
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the data processing system depicted in Figure 5. A fuzzy similarity analysis, Eq-
uation (5) is performed in order to determine the level and/or severity of an im-
pairment [28] [29] [30] [35] [36] [37] [38].  

5. Results and Analysis 

Fluctuations in the duration of the gait cycle appear to be intrinsic to the healthy 
locomotor system. The stride interval depicts fractal dynamics and long-range 
correlations in healthy human subject. Hence, the correlations associated with 
the stride-interval may be altered by changes in mobility-related functional im-
pairments associated with certain skeletal and/or neuromuscular disorders 
and/or injuries.  

The mechanisms responsible for these stride-interval correlations are largely 
unknown [39]. They may be a consequence of peripheral input or lower motor-
neuron control, or they may be related to higher nervous system centers that 
control walking rhythm. Although the breakdown of long range correlations 
during metronomic walking suggests that supraspinal influences (e.g., a metro-
nome) can override the normally present long-range correlations, their origin 
and function remain to be determined [39].  

Current application of single sensors in the analysis of the complex human 
locomotor system may often offer only marginal results [40]-[45]. These sin-
gle-sensor single-algorithm systems work well in situations where the environ-
ment is structured and the objects are well known, but are severely limited in 
their ability to resolve ambiguities in complex systems like the human locomotor 
system involving multi-body dynamics, biomechanics, physiology and other 
factors that obscure the interactions amongst the vestibular, somatosensory and 
visual inputs for postural control [6] [9] [46] [47]. To gain insight into the basis 
for this long-term dependence, the authors have applied the fusion of multiple 
sensor data to investigate the effects of Cerebral Palsy, Multiple Sclerosis and 
Diabetic Neuropathy conditions, onbiomechanical/neurophysiological changes 
that may alter the ability of the human locomotor system to generate ambula-
tion, balance and posture. 

Sensor data fusion involves the process of combining observations from a 
number of different sensors to provide a robust and complete description of an 
environment or process of interest. 

In Figure 3, the authors introduce a sensor data fusion scheme to map the 
acquired kinematic, kinetics and electromyogyaphic data acquired from subjects 
within the seven gait phases. This mapping (crisp relationships) depict a feature 
space that describes the association, interaction or interconnection between the 
elements of the kinematics, kinetics and electromyographic data within the gait 
phases. The combination of different information from multiple sensors and 
sensor types may enhance the efficiency and reliability; reduce uncertainty and 
ambiguity inherent in making decisions based on a single information source, 
thus, increasing accuracy and resolving ambiguities in the knowledge about the 
complexity of gait dynamics. The application of the fuzzy relational matrix de-
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picts the concept of the fusion of multiple sensor data. 
The authors have applied psychophysics and measured the complex human 

motor behavior in order to elucidate the fusion of multiple sensor data for the 
reliable and efficient acquisition of the kinetic, kinematics and electromyog-
raphic data of the human spatial behavior. These acquired kinematic and related 
kinetic signals may represent attributive features of the internal reconstruction 
of the physical links between the superimposed body segments. The internal re-
construction of the physical links between the references is established by fusing 
the information data of the multiple sensors. These signals also depict the global 
variables necessary for sensorimotor adaptation.  

Therapists and clinicians would require these global variables as objective 
measures of the variances from normal patterns that are necessary to be fed as 
compensatory strategies into the local proprioceptive feedback loops of joints 
together with voluntary commands. Neurophysiological studies on spinocere-
bellar neurons suggest that sensory feedback signals from proprioceptors in 
muscles and joints are integrated in the spinal circuitry to encode global para-
meters of the limb movement, i.e., the orientation and length of the axis con-
necting most proximal joint and distal position of a limb (limb axis) [48] [49] 
[50]. This finding implies that the global parameters describing limb kinematics, 
along with individual local proprioceptive inputs, are actually utilized as impor-
tant sensory inputs for locomotion. In addition, muscle activation pattern is also 
suggested to be generated primarily based on global kinematic parameters. 
Grasso et al. showed that kinematic pattern of human forward and backward 
locomotion was basically the same while muscle activation is quite different [51]. 

5.1. Analysis of Biomechanical/Physiological Parameters for Gait  
Pattern 

Able-bodied Subjects 
During the initial contact and in the loading response phases, the tibialis ante-

rior, the pretibial muscles and the biceps femoris contract concentrically, whilst 
the vastus lateralis exhibits eccentrical contraction. 

During the midstance phase, the soleus and the calf muscles generally are 
eccentrically contracting and concentrically contracting in terminal stance and 
preswing. This process is responsible for the control of the ankle plantarflexion. 
The activity of the lateral head of the gastrocnemius muscle is similar to the so-
leus but with more of an eversion moment and some action at the knee as well as 
the ankle as it crosses two joints. It controls plantar flexion and to a lesser extent 
knee flexion. 

During the preswing and initial swing phases, the biceps femoris exhibit ec-
centric contraction. This also controls knee flexion and to a small extent hip ex-
tension and stabilization. 

During the initial, mid and terminal swing phases, the vastus lateralis exhibit 
eccentric contraction. This behavior also controls knee extension. The tibialis 
anterior and the pretibial muscles are concentrically contracted in initial swing, 
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mid swing and terminal swing. The tibialis anterior controls dorsiflexion. The 
soleus exhibits concentrically contraction at the terminal stance and preswing 
phase. The rectus femoris exhibits similar behaviour like the vastus lateralis but 
without the valgus force at the knee. It controls knee extension. 

Throughout the 60% stance phase of the gait cycle, the gluteus medius is 
eccentrically contracted. It prevents too much pelvic tilt or what is called a 
Trendelenberg gait. It controls hip abduction but is used in an open chain fash-
ion in the stance phase of gait. Both the gluteus medius and erector Spinae mus-
cle groups are involved in stabilizing gait and minimizing excursions of the cen-
ter of gravity. 

5.2. Comparative Analysis of the Acquired Neuromorphic Data  
from Patients 

5.2.1. Case Study: The Patient with Cerebral Palsy 
Figure 6 illustrates the measurement and analysis of the 3D ground reaction 
forces normalized by the bodyweight, muscle activities, and 3D acceleration of 
the lower limbs for the quantified evaluation of a subject/patient with cerebral 
palsy (CP). The graphical representation of the able-bodied subjects depict a 
clear vertical force curve with the two-peak “M” shape that illustrates weight 
transfer from the heel to the mid-foot and the mid-foot to the ball of the foot for 
push-off. Usually, subjects/patients with cerebral palsy often experience signifi-
cant problems in supporting their bodyweight (BW) and decelerating the 
downward velocity in late stance [52]. This is evidenced through a decreased 
second peak in the vertical ground reaction force (GRFz) in this subject/patient.  

 

 
Figure 6. Multiple Sensory Data Fusion for Diagnosis of a Patient with Diplegia Cerebral Palsy (3D accelerations in foot, shank 
and thigh color indications: blue = saggital; green = frontal; red = transverse). 



T. Sarkodie-Gyan et al. 
 

196 

The reduced second peak of GRFz may be a compensatory mechanism for pre-
venting the collapse of the affected limb. In addition, the CP patient showed a 
smaller slope at the end of the stance phase and pre-swing phase which does not 
indicate a clear toe-off (foot clearance problem). This CP patient also showed 
much lower anterior-posterior ground reaction force (GRFy) negative peak. 
There was no significant variation of the mediolateral ground reaction force 
(GRFx) compared with the healthy group.  

Approximately 80 per cent of patients with cerebral palsy have varying de-
grees of spasticity (increased muscle tone or tension), which can lead to an 
equinus gait pattern. This CP patient’s soleus and gastrocnemius showed spas-
ticity with two peaks in the stance phase. The tibialis anterior was not activated 
in the initial contact and loading responses, but was hyperactive during the rest 
of the stance phase. This may be as a result of compensation mechanisms and 
exhibition of spasticity in the two calf muscles during the stance phase. The pa-
tient also showed an increased activation in the stance phase and inactivation in 
the swing phase on the Biceps Femoris. This data also emphasizes the lack of 
coordination between the gravity and antigravity systems in cerebral palsy. The 
degree of spasticity that is also out of sync during the appropriate phase of gait is 
also highlighted. 

The profiles of the acceleration of the CP patient’s differ from those of the 
able-bodied ones, i) there is longer or delayed stance phase for the CP patient. 
This is because the patient walks very slowly in order to prepare for the next step 
during the stance phase; ii) CP patient showed delayed and lower foot accelera-
tion in the anterior-posterior plane during the initial contact phase, which de-
picts an abnormality in the heel strike; iii) There is increased anterior-posterior 
acceleration, lower and delayed mediolateral acceleration prior to the initial 
swing phase on the CP patient’s shank; iv) There was the occurrence of unstable 
curves in the thigh-acceleration of the CP patient. 

5.2.2. Case Study: The Patient with Multiple Sclerosis 
Figure 7 shows the output signals from the array of the multiple wearable sensor 
system for the quantitative evaluation of a patient suffering from Multiple Scle-
rosis (MS). The curve corresponding to the vertical ground reaction forces, the 
GRFz, indicates that the MS patient exhibits a flat foot contact as compared to 
that of the healthy subjects that illustrates clear first and second peaks that form 
the biomechanical/physiological M-shaped force pattern in the vertical direc-
tion. The vertical ground reaction force also demonstrated longer ground con-
tact duration in this MS patient. 

The MS patient exhibits early activation of the soleus and gastrocnemius mus-
cles in the stance phase. The tibialis anterior and vastus laterlias muscles exhib-
ited delayed and increased activations during the initial contact period of the 
stance phase. The increased EMG activity that was apparent in the ankle and 
knee flexor muscles in the MS patient is thought to be a mechanism to counter-
act balance deficits and may have implications of both fatigue and spasticity 
[53]. The EMG curves of quadriceps and harmstring group muscles (Rectus  
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Figure 7. Multiple Sensory Data Fusion for Diagnosis of a Patient with Multiple Sclerosis (3D accelerations in foot, shank and 
thigh color indications: blue = saggital; green = frontal; red = transverse). 
 

Femoris and Biceps Femoris respectively) showed some levels of weakness dur-
ing the swing phase. The EMG activity of the Erector Spinae (ES) was found to 
be sustained and greater in the MS patient, which is likely to be a factor in the 
instability during single support, as well as serving to reduce the risk of falling. 

There is a sharp rise in acceleration in the initial contact and sharp decelera-
tion in terminal swing phase in this MS patient’s foot, which could be the result 
of foot-drop and a mechanism to counteract balance deficits. Inconsistent accel-
eration pattern occurs in the lower extremity (in particular the thigh in both an-
terior-posterior and mediolateral directions) indicates some levels of tremor in 
this subjects.  

5.2.3. Case Study: The Patient with Diabetic Neuropathy (Diabetic Foot) 
Figure 8 illustrates the acquired multiple sensor data including the 3D ground 
reaction forces that are normalized by the bodyweight, the 3D joint angles of the 
hip, the knee, and the ankle, and the muscle activities, respectively, for the quan-
titative analysis of a patient with Diabetic Neuropathy. This patient showed flat 
foot contact without two peaks in the vertical GRF, even higher force during the 
mid-stance phase. In the anterior-posterior plane, there were much lower mag-
nitudes of GRF compared with the able-bodied subjects. 

The results demonstrated that the subject with diabetic neuropathy had less 
ankle mobility, i.e. lower peak ankle dorsiflexion and ankle plantar flexion. The 
patient also showed much less flexion and extension of the knee and the hip 
compared with able-bodied subjects. There was a greater rotation of all three an- 
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Figure 8. Multiple Sensory Data Fusion for Diagnosis of a Patient with Diabetic Neuropathy. (3D joint angles in foot, shank and 
thigh color indications: blue = frontal; green = saggital; red = transverse). 
 

gles which may indicate some levels of instability of the gait. 
The patient showed a specific pattern of muscle spasticity, notably 1) the ini-

tial contact with respect to the heel strike for the Soleus and the Bicep Femoris 
(hamstring muscle group) expressed themselves significantly earlier and pro-
longed during the gait cycle in subjects with diabetes than in the control sub-
jects. The cessation times of the Soleus, the Vastus Laterlias, the Bicep Femoris, 
and the gluteus medius muscles were significantly prolonged in this patient. 
There was a delayed muscle activity in the Vastus Laterlias muscles. 

In all the case studies, the combination of all three attributive measurements 
(kinetics, kinematic and electromyographic data) may infer into the active neur-
al processes underlying balance reactions. 

6. Conclusions 

The main objective of therapeutic intervention and (neurological-) rehabilitation 
is to enable individual patients to achieve their full potential and to maximize 
the benefits from training, in order to attain the highest possible degrees of phy- 
sical and psychological performance. Therefore, clinicians charged with facili-
tating optimal therapeutic intervention/rehabilitation and appropriate discharge 
planning and implementation are challenged to reliably measure, evaluate and 
assess the effectiveness of the treatments and therapeutic procedures. Still, a gap 
remains between prognostic research and rehabilitation practice. Therapists and 
physicians need to formulate their functional goals as precisely as possible and 
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this process requires adequate knowledge of the patient and disease characteris-
tics that determine functional outcome [54] [55]. 

The main objective of this study was to apply neuroscience tools and tech-
niques to measure and evaluate the functional status of the musculoskeletal/neu- 
romuscular system as it reacts to treadmill-speeds as base-of-support. In such 
challenged state, the kinematic and related kinetic signals that represent the glo- 
bal variables necessary for sensorimotor adaptation were efficiently measured 
using a combination of unobtrusive wireless-based multiple wearable sensor 
system. The fusion of the multiple sensor data enables improved accuracies and 
more specific inferences than that could be achieved by the use of a single sensor 
alone [28] [29] [35] [56] [57]. 

In this study, the human dynamic behavior in space was concerted in one un-
ifying reference system that was hierarchically structured and consisted of linked 
references which were anchored in the gravito-inertial space. The system is based 
on an internal reconstruction of the external physical links between external ref-
erences. The acquired experimental data (Figures 6-8) suggest that the internal 
reconstruction of the physical links between the references is established by fusing 
the acquired information data from the multiple sensor system. The application of 
multiple sensor data fusion for the analysis of human dynamic behaviour in space 
in this paper, has exhibited validity, reliability, responsiveness and practicability in 
the assessment and evaluation of mobility-related functional impairments. 
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