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Abstract 

Acute Respiratory Distress Syndrome (ARDS) is a major cause of morbidity and has 
a high rate of mortality. ARDS patients in the intensive care unit (ICU) require me-
chanical ventilation (MV) for breathing support, but inappropriate settings of MV 
can lead to ventilator induced lung injury (VILI). Those complications may be 
avoided by carefully optimizing ventilation parameters through model-based ap-
proaches. In this study we introduced a new model of lung mechanics (mNARX) 
which is a variation of the NARX model by Langdon et al. A multivariate process was 
undertaken to determine the optimal parameters of the mNARX model and hence, 
the final structure of the model fit 25 patient data sets and successfully described all 
parts of the breathing cycle. The model was highly successful in predicting missing 
data and showed minimal error. Thus, this model can be used by the clinicians to 
find the optimal patient specific ventilator settings. 
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1. Introduction 

Acute Respiratory Distress syndrome (ARDS) is a major cause of morbidity and has a 
high mortality (between 20% and 50%) [1]. ARDS can be triggered by various condi-
tions such as trauma, pneumonia or sepsis. Mechanical ventilation (MV) is a life saving 
treatment for many patients in the intensive care unit (ICU) [2]-[4]. Especially, patients 
with acute lung injury (ARDS and others), suffering from lung failure, need to be me-
chanically ventilated for breathing support. But there is no golden rule or protocol for 
mechanical ventilation in the treatment of ARDS patients. Especially these patients ex-
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hibit diverse conditions and a heterogeneous distributions of healthy and diseased al-
veoli in their lungs, thus a patient-specific protocol is necessary to choose optimal set-
tings of MV [5] [6] (in particular positive end expiratory pressure (PEEP) levels). 
However, inappropriate settings of MV can lead to ventilator induced lung injury 
(VILI) [7] [8]. An optimal solution would choose the best initial parameters and adjust 
them continuously during the treatment to optimize the therapy for each patient [9]. 
This goal can be achieved with a model-based approach that can assimilate the various 
MV standards. This approach allows patient-specific parameter identification and thus 
the reduction of the risk of lung injury during MV. However, for a lung model to be 
successful it should not require additional measurement equipment in ICU. While 
there are many models developed for this purpose [10]-[16], not many of them are able 
to fit all ventilation modes. This study introduces a new lung model which is based on 
the non-linear autoregressive (NARX) model previously presented by Langon et al. [17]. 
This new modified NARX model (mNARX model) consists of a pressure dependent 
elastance term and a pressure dependent resistance term and both terms were modeled 
via basis functions. 

2. Material and Methods 
2.1. Patient Data 

The data were measured between 2000 and 2002 in the intensive care units of eight 
German hospitals [18] and a total of 28 patient’s measurements were taken. These pa-
tients suffered from acute lung injury or ARDS and the protocol was approved by local 
ethics committee of each participating institution. All patients were mechanically ven-
tilated for more or equal to 24 hours before the study entry. Airway pressure was 
measured by a piezo resistive pressure transducer; flow was measured using a pneumo- 
tachograph connected to a differential pressure transducer. Volume-controlled ventila-
tion was used with a constant inspiratory flow rate, the tidal volume of 8 ± 2/kg and the 
PaCO2 < 55 mmHg were maintained before the measurements. The patients were ven-
tilated with zero end expiratory pressure (ZEEP) for 5 minutes, having an end-inspira- 
tory pause of ≥0.2 seconds and afterwards the PEEP level was increased in steps of 2 cm 
H2O—each PEEP level was kept constant for 10 breathing cycles. The volume was cal-
culated through continuous integration of the flow with adjustment for volume creep. 
The data sampling rate was 62.5 Hz. Full details of the original study can be found in 
Stahl et al. (2006) [18]. In our study the NARX model and mNARX model were applied 
to 25 of these patient data sets, according to Langdon et al. [19] the other 3 datasets 
have been excluded from this analysis, because they showed highly nonlinear beha-
vior. 

2.2. Lung Mechanics Models 
2.2.1. First Order Model 
The simplest pulmonary model to describe the human lungs is a first order model 
(FOM). The FOM simplifies the lung as being one compartment with a constant airway 
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resistance and constant lung compliance. The behavior of the FOM can be expressed by 
Equation (1). 

0awP EV RV P= + +                            (1) 

where Paw is airway pressure, V  is airway flow rate, E is pulmonary elastance, V is the 
inspired volume and P0 is the offset pressure. 

2.2.2. Non-Linear Autoregressive Model (NARX) 
Langdon et al. (2015) proposed a non-linear autoregressive model (NARX) of the pul-
monary mechanics, based on an FOM. This NARX model determines the input-output 
relationship of the system and thus can predict the pressure volume relationship, based 
on previous inputs. It consists of a pressure dependent elastance term and a mul-
ti-valued resistance term that captures changes in pressure. 
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where ai, bj and c are parameters to be identified, M the number of basis-functions Φi,d 
(Paw(t)) of degree d, V(t) is the inspired volume, L is the length of the resistance vector, j 
is the index of the resistance vector and V  is airway flow rate. 

Zeroth and higher order basis functions are defined as: 

( ) 1
,0

1
0

i i
i

if P P P
P

otherwise
+≤ <

∅ = 


                                (3) 

( ) ( ) ( )1
, , 1 1, 1

1 1

   i i d
i d i d i d

i d i i d i

P P P PP P P
P P P P

+ +
− + −

+ + + +

− −
∅ = ∅ + ∅

− −
             (4) 

2.2.3. Modified Non-Linear Autoregressive Model 
The modified NARX (mNARX) model was built on the basis of the NARX model by 
replacing the multi-valued resistance term by a pressure dependent resistance via the 
use of basis functions. The modified NARX model was defined as: 
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where ai are the coefficients for the basis functions that represents the elastance terms, 
M the number of elastance basis functions Φi,d(Paw(t)) of degree d, bj are the resistance 
coefficients that represent the resistance terms, L the number of the pressure dependent 
resistance basis functions ∏j,d(Paw(t)) of degree d. 

Zeroth and higher order basis functions are defined as: 
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2.3. Model Class Selection 

Though the final goal was to identify the parameters ai (elastance coefficients), bj (resis-
tance coefficients) and c (offset or initial pressure), first the optimum number (M) of 
basis functions for the elastance term, the number (L) of basis functions for the resis-
tance term and their order (d) had to be determined. Therefore the mNARX model was 
applied to 25 data sets and by varying the values of M, L and d, this parameters were 
determined via analyzing the fit of the model. First, the optimal value of L was selected, 
followed by d and finally M. To get the optimal value for L, it was varied until conver-
gence of the root mean squared (RMS) residuals was achieved. In the case of d, cumula-
tive distribution function (CDF) plots were determine to find significant differences 
between the residuals. Finally, the optimal value of M was determined as a tradeoff be-
tween improving residuals and avoidance of over fitting. 

3. Results 

The value of L was varied from 1 (in steps of 10) until a convergence was achieved, with 
constant values for M = 5 and d = 1. Convergence was assumed when the root mean 
squared residual stopped improving by more than 0.5% of the previous value. Figure 
1(a) and Figure 1(b) shows the RMS pressure residual for patient 2, NARX with L = 1, 
100 and 342 (converged values) and mNARX with L = 2, 5 and 20. Figure 1(c) and Fig-
ure 1(d) illustrates the significant decrease of the RMS pressure residual with increase 
in L values for both the models. The peaks in Figure 1(d) indicate the poor performance 
of the model for low values of L. The order of basis functions d was varied (d = 0, 1 and 
2), with L (the gained converged value) and M = 5 the RMS residuals were calculated. 

Figure 2(a) and Figure 2(b) shows the empirical CDF’s for the residuals of patient 
10. The number of the basis functions was varied (M = 2, 5, 10 and 15) using constant 
values for d = 1 and L (respective converged value). In the NARX model an average 
decrement of 5.4% in residuals between M = 2 and M = 5, 3% between M = 5 and M = 
10 and finally 1.5% between M = 10 and M = 15 could be observed. Similarly, in the 
mNARX model: 3.9% between M = 2 and M = 5, 1.2% between M = 5 and M = 10, and 
0.6% decrement between M = 10 and M = 15. The RMS residual changes were minim-
al—hence, the elastance coefficients were also taken into consideration. Figure 2(c) 
and Figure 2(d) show the plot of ai coefficients for patient 1, the elastance coefficients 
in ARDS patients are expected to be smooth and curve due to lung characteristics (such 
as recruitment phases and overdistention during different PEEP levels). Figure 2(c) 
and Figure 2(d) show that the elastance coefficients become more unstable for M > 5, 
hence the numbers of basis functions for both the models were promising for M = 5. 
The final structure for NARX and mNARX was formulated with the parameters which 
showed the best results. Table 1 shows the optimal parameter values for the final selec-
tion and formulation of the models. 
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Figure 1. RMS pressure residual (in mbar) for patient 2. (a) The NARX model; (b) The mNARX 
model. Mean Pressure residual (mbar) averaged over all breaths for patient 6. (c) NARX; (d) 
mNARX. 
 

  
 

  
Figure 2. The empirical CDF’s for the residuals of patient 10. (a) NARX; (b) mNARX. Elastance 
coefficients ai for patient 1. (c) NARX; (d) mNARX. 
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Pressure Identification in Case of Missing Data 

The parameters of the NARX and the mNARX model were identified by using the first 
4 and the last 4 different PEEP levels—the remaining data (approx. 5 different PEEP 
levels) was used to evaluate the model performance assuming missing data. Figure 3(b) 
shows the RMS residual for NARX, mNARX and FOM calculated from evaluated data. 

4. Discussion 

The NARX model and mNARX model fit all the 25 patients successfully and both the 
models were able to describe all the parts of the breathing cycle. The outcomes of the 
NARX and mNARX models were compared with the outcome of the FOM. The model 
fit during the inspiratory pause and expiratory relation were promising in NARX and 
mNARX, while the FOM failed to describe all parts of the breathing cycle in higher 
PEEP-levels. Figure 1 showed that there was a significant decrease of the RMS residuals 
with increase in L and poor modeling with low values of L. In the NARX model, L was 
used as the length of the resistance vector (L = 350)—whereas, in the mNARX model L 
represented the number of pressure dependent basis functions. Using L = 20 (mNARX) 
allowed to fit all 25 data sets with minimal RMS residuals. Regarding d, first order basis 
functions were used for both models, due to the improved results of 8.84% (NARX 
model) and 3.8% (mNARX model) between zeroth and first order basis functions. Fig-
ure 2(a) and Figure 2(b) show this significant difference in the NARX model between 
zeroth and first order basis functions and negligible changes between first and second 
order basis functions. Furthermore, in Figure 1 it can be seen, that zeroth order basis 
functions are not sufficient to capture the complex behavior of ARDS patients. RMS  

 
Table 1. Final structure of NARX and mNARX model. 

Model L d M 

NARX 350 (length of the resistance vector) 1 5 

mNARX 20 (number of basis functions) 1 5 

 

   
Figure 3. Parameter identification data (blue) and evaluation data (red) (left). RMS residuals for 
NARX, mNARX and FOM calculated via evaluated data (right). 
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residuals showed improved results between zeroth and first order basis functions, while 
the usage of second order basis functions didn’t show worthwhile improvements. 
Hence, first order basis functions were sufficient for both models. The elastance coeffi-
cients in ARDS patients are expected to be smooth and curve due to the lung characte-
ristics of ARDS patients such as recruitment phases and overdistention during different 
PEEP levels. Figure 2(c) and Figure 2(d) show the elastance coefficients for M = 2 - it 
is just a straight line and limits the basis functions to describe the recruitment phases 
between different PEEP levels. Similarly, for M > 5 the ai coefficients becomes unstable 
and doesn’t allow predicting the future and past PEEP levels. Hence, the number of ba-
sis function for both the models was set to M = 5. Figure 3(b) shows the predictive be-
havior of NARX and mNARX models when some parts of the clinical data are missing. 

A limitation for the prediction behavior of NARX and mNARX is that the range of 
identification pressure should cover the entire range of interpolation. A multiple and 
broad range of steps were undertaken to evaluate both models to find the optimal val-
ues of their final structure. A broad range of clinical conditions and ventilation modes 
were applied to both models to capture the different behavior and the obtained results 
enabled us to interpret and compare the models. Figure 4 showed that the NARX 
model can be more complex, a higher dimension of the resistance vector could possibly 
lead to overfitting compared to the mNARX model. Overall both the models were able 
to model all the parts of the breathing cycle successfully, however considering noise the 
mNARX model performed better than the NARX. 

5. Conclusion 

In this study a new lung mechanics model was introduced. The multivariate process 
was undertaken to determine the optimal parameters for the final structure of the 
mNARX model. The model was able to fit all 25 patient data sets and successfully de-
scribe all the parts of the breathing cycle. The model was highly successful in predicting 
missing data with minimal error compared to the FOM. Hence, this model could be 
 

  
Figure 4. Example of overfitting of noise (left) NARX and (right) mNARX. 
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used by the clinicians to optimize patient specific ventilator settings. Further improve-
ments of the model could be done by investigating the order of the basis functions of 
the resistance term which was not evaluated in this study. 
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