
J. Biomedical Science and Engineering, 2015, 8, 458-470 
Published Online July 2015 in SciRes. http://www.scirp.org/journal/jbise 
http://dx.doi.org/10.4236/jbise.2015.87043  

How to cite this paper: Tov, O.B.S., Schaffer, J.D. and McLeod, K.J. (2015) Developing an Evolutionary Algorithm to Search 
for an Optimal Multi-Mother Wavelet Packets Combination. J. Biomedical Science and Engineering, 8, 458-470.  
http://dx.doi.org/10.4236/jbise.2015.87043  

 
 

Developing an Evolutionary  
Algorithm to Search for an Optimal  
Multi-Mother Wavelet Packets  
Combination 
Ohad Bar Siman Tov1, J. David Schaffer2, Kenneth J. McLeod1,2 
1Department of Electrical and Computer Engineering, State University of New York at Binghamton,  
Binghamton, NY, USA   
2Department of Bioengineering, State University of New York at Binghamton,  
Binghamton, NY, USA  
Email: Ohad@binghamton.edu  
 
Received 29 August 2013; accepted 24 July 2015; published 28 July 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 

The wavelet transform is a popular analysis tool for non-stationary data, but in many cases, the 
choice of the mother wavelet and basis set remains uncertain, particularly when dealing with phy-
siological data. Furthermore, the possibility exists for combining information from numerous 
mother wavelets so as to exploit different features from the data. However, the combinatorics be-
come daunting given the large number of basis sets that can be utilized. Recent work in evolutio-
nary computation has produced a subset selection genetic algorithm specifically aimed at the dis-
covery of small, high-performance, subsets from among a large pool of candidates. Our aim was to 
apply this algorithm to the task of locating subsets of packets from multiple mother wavelet de-
compositions to estimate cardiac output from chest wall motions while avoiding the computation-
al cost of full signal reconstruction. We present experiments which show how a continuous as-
sessment metric can be extracted from the wavelets coefficients, but the dual-objective nature of 
the algorithm (high accuracy with small feature sets) imposes a need to restrict the sensitivity of 
the continuous accuracy metric in order to achieve the small subset size desired. A possibly subtle 
tradeoff seems to be needed to meet the dual objectives. 
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1. Introduction 
Wavelet analysis has become one of the most commonly used digital signal processing tools, with applications in 
data compression, image processing, time series data filtering, material detection and de-noising [1] [2]. Wavelets 
are particularly well suited for non-stationary time series data analysis wherein the time localization of the fre-
quency components is important. Over the past decade, the use of wavelet analysis has increased rapidly in the 
biomedical field with analysis being applied to remove base line variation and high frequency components from the 
electrocardiogram (ECG) and to distinguish specific features within the ECG waveform [3] [4]. Wavelets have also 
been used in electromyography (EMG) [5] [6], mechanomyography (MMG) [7], electroencephalography (EEG) [8] 
[9], seismocardiography [10], and other medical applications. Wavelet analysis is widely used to de-noise data and 
to separate observed components where decomposition, thresh-holding, and reconstruction are computed. Of 
course, physiological recordings are not messages per se. In communication systems, the original transmitted mes-
sage is known and can be compared to the received signal; physiologic recordings can only be interpreted based on 
a set of assumptions regarding the performance of the physiologic system, rather than comparing to a known signal. 
Accordingly, the appropriate processing algorithm must be identified by correlating the output produced by various 
analyses to some system characteristic of interest. In our application, we are interested in discovering if a subcom-
ponent of chest wall motion (seismocardiograph recording) can be used to estimate a specific activity of the cardiac 
muscle, for example, stroke volume. We wish to avoid the time consuming operation of waveform reconstruction, 
since the application calls for rapid response from a resource limited device. 

Wavelet analysis can be viewed as a transformation into the time-frequency domain, and involves a series of 
convolution operations on the dataset against a particular filter set, called the Mother Wavelet, at various posi-
tions and time/magnitude scales. The process separates high frequency components from low frequency com-
ponents and allows inspection of the data through a small window, in order to detect small features over the full 
analyzed spectrum [1] [11] [12]. The Mother Wavelet function is often selected based on the shape and characte-
ristic of the feature one is trying to extract. Some functions are better at capturing amplitude and phase changes; 
others are better at synthesizing data and quantitative information. Dominges et al. [13] and Chourasia et al. [14] 
show examples where selection of a particular mother wavelet provides better feature extraction than others. 
Rather than accepting such a trade-off by selecting a single basis set, it should be possible to combine informa-
tion from multiple mother wavelets. If one has inadequate a-priori understanding of the characteristics which 
need to be extracted for a particular application there may be advantages in performing multiple full tree de-
compositions using multiple mother wavelets, and then recombining specific packets to create a hybrid. While 
encouraging in principle, this approach soon faces the curse of dimensionality; the number of combinations in-
creases factorially. Genetic Algorithms (GAs) have some ability to deal with combinational exploration, so we 
set out to explore this approach. 

Genetic Algorithms (GAs) and Wavelets have been combined recently in image processing for fault detection 
[15] [16], voice recognition [17], and other applications [18] [19], but these investigations used a binary encod-
ing for packet selection. Our previous investigations [20] have convinced us that a better approach is to incor-
porate an index representation (genes are the indexes of the features to select from a possibly large pool of fea-
tures), with a special subset selection crossover operator. This approach has been used in medical imaging, and 
also genomic and proteomic data mining [21]-[23], but as far as we know has not been applied in time series 
data processing. In this case we used multiple filter banks from multiple mother wavelets. Each mother wavelet 
was used to decompose data to provide a set of filter banks, also known as packets and then a GA was used to 
evaluate a subset of the filters specified in each chromosome (Figure 1). 

An example of where this approach could be utilized is Cardiac Output (CO) monitoring. While various inva-
sive methods have been developed to measure CO directly, all present significant complications, such as blood 
stream infection, need for medications, decreased hemodynamics, and high cost [24] [25]. CO is defined as the 
product of Stroke Volume (SV) and Heart Rate (HR), and while HR is a relatively straightforward parameter to 
asses, SV is much more difficult to accurately assess, and so we have focused on obtaining an accurate 
non-invasive estimate of SV. We want SV to be measurable continuously for long duration and for the technology 
to be portable, so that it can be used while exercising, sleeping, or engaging in various activities of daily living. 

We seek to estimate SV from a seismocardiogram recording, which is obtained by recording chest wall acce-
leration at the xiphoid process [26] [27]. Our approach involves performing multi-wavelet decompositions on 
the acceleration data to generate a large pool of features from which the GA is used to select the best packet 
combination for predicting SV. The “ground truth” SV is obtained using an electrical impedance based Cardiac  
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Figure 1. The general approach of using multiple filter banks eva-
luated by a GA. The input signal is decomposed by multiple mother 
wavelets producing multiple filter banks, showing in different colors. 
A chromosome’s genes specify a subset from those filter banks. Each 
subset is combined to give SV estimation and compared against a 
“gold standard”.                                              

 
Output Monitoring device (NICOM, Cheetah Medical Inc). The NICOM has achieved some acceptance 
[28]- [30] in the health care world. 

2. Methods 
Eshelman’s CHC GA [31] search engine combined with the MMX crossover operator [32] identifies the best 
subset genes (i.e. packets) from a multiple filter bank. Since the goal was to minimize the number of genes to 
avoid over fitting and to reduce the computational costs of SV estimation, a Sub-Set-Size (SSS) variable was 
defined [20] and added to the chromosome. Figure 2 shows the general CHC pseudo code. The initial popu- 
lation consists of random chromosomes, with each chromosome consisting of a variable number of genes, which 
are evaluated using a fitness function. CHC’s selection process, called cross-generational rank selection, differs 
from many conventional GAs. Each parent chromosome has exactly one mating opportunity each generation, 
and the resulting offspring replace inferior parents. Mates are randomly selected, but limited due to an incest 
prevention operator applied before the offspring reproduction crossover operator. There is no mutation per- 
formed in the “inner loop.” 

When it becomes clear that further crossovers are unlikely to advance the search, a soft restart is performed, 
using mutation to introduce substantial new diversity, but also retaining the best individual chromosome in the 
population. 

2.1. Initial Population and Chromosome Representation 
The initial GA population is generated randomly using a uniform distribution. In CHC two initial populations 
are produced and the chromosomes are evaluated and the more fit chromosomes from both populations are se-
lected to become the next population. For all subsequent generations, the pairs of parents (randomly mated) 
produce two offspring and the selection operator produces the next parent generation by taking the best from the 
combined parents and offspring using simple deterministic ranking.  

Understanding the chromosome structure provides an understanding of the connection between the feature- 
genes and the Sub-Set-Size (SSS) gene. A chromosome is defined as set of genes, and in our approach, the first 
gene represents the SSS, that is, the number of genes that are expressed when a chromosome is evaluated 
(Figure 3). The SSS gene takes on values between one and the maximum number of genes we allow; it tells the 
evaluation routine how many of the subsequent genes are to be used in computing the fitness. The remaining 
genes represent inheritance from a previous generation and may be passed on to future generations, but they do 
not contribute to the fitness of the chromosome. It is possible that the offspring will express some of the parental 
“unexpressed” genes because their locations and the SSS will change. This chromosome format was designed by 
Schaffer et al. [20] and is used by the MMX_SSS crossover operator. 

The expressed genes in a chromosome represent the magnitudes of a subset of wavelet packets. The mathe-
matics of the wavelet transform may be found elsewhere [1] [11] [12]; here we use discreet wavelet transforms. 
In wavelet transform analysis, the focus is often the low frequency components. The time sequence is separated 
into two components: low frequency components, called approximations, and high frequency components,  
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Figure 2. A general CHC flow chart, where survival of the fittest across genera-
tions is implemented.                                                   

 

 
Figure 3. Chromosome structure used by MMX_SSS, where the SSS gene dedi-
cates the number of expressed genes within the chromosome and N is one plus 
the maximum SSS allowed in a gene.                                       

 
called details. Subsequent levels of decomposition are performed on the approximation coefficients; again sepa-
rating the low frequency components into approximations and details. This process is repeated with entropy, 
energy, and/or a cost function being computed after each level of decomposition as a means of optimizing the 
decomposition process. In our application, the acceleration data may include numerous high and low frequencies 
not associated with cardiac activity. High energy at the low frequency is likely to be associated with breathing 
and whole body motion, while high frequency components may be associated with vocalization. Since our goal 
was to identify those components providing the best correlation with SV, the full signal frequency spectrum was 
investigated regardless of its computation cost, energy, or entropy.  

We performed full tree decompositions, that is, was performed on the details and approximation coefficients 
of each branch using one Mother wavelet (Figure 4). This process was repeated for each of the mother wavelets 
utilized in the analysis. The first decomposition level was performed on the time sequence producing the ap-
proximation coefficients and details coefficients. The second decomposition level was performed on the ap-
proximation coefficients and the details coefficients, and represented the first Approximation Approximation 
(AA), the first Approximation Details (AD), the first Details Approximation (DA), and the first Details Details 
(DD). Another decomposition level can be performed on the AA, AD, DA, and DD, and so on. The last decom-
position level consists of set of filters which we call packets and serves as a filter bank. Full tree decomposition 
is applied with multiple mother wavelets creating multiple filter banks that expand the number of features al-
lowing us to choose combinations of features that correlate best with SV. It may be possible to achieve better 
correlation with SV by combining packets from different mother wavelets. An ECG signal was used to capture 
the ventricular contraction time (QRS complex), which serve to identify the time point to evaluate in the de-
composed acceleration signal. We performed four decomposition levels with six different mother wavelets pro-
viding ninety six different features associated with ventricular contraction acceleration energy. 
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Figure 4. Example of a two level wavelet tree decomposition, where 
the second decomposition level consists of four packets, creating a 
filter bank of four different filters, used as CHC genes.               

2.2. Chromosome Evaluation Function 
The goal of utilizing the subset selection GA was to identify the minimal subset of features capable of accurately 
estimating the NICOM reported SVs. The NICOM provides thirty-second averages of SV and so we performed 
wavelet decomposition on each thirty seconds of recoded acceleration data. Eighty-five thirty-second averaged 
measurements were taken sequentially using the NICOM, the ECG, and chest accelerations, from a single sub-
ject during both resting and exercising. There were five exercise periods for one hundred and fifty seconds at the 
same intensity and five resting periods of two hundred and seventy seconds. We started to collect data while the 
subject was at rest, in an upright position for four hundred and fifty seconds. Multivariate regression was used to 
correlate the expressed chromosome genes ‘packets energy’ to the averaged NICOM SV measurements. The R2 
value of the regression line was used as the chromosome fitness value. The higher the R2 value, the better the 
gene set predicts the NICOM SV. 

2.3. Hierarchical Selection Process 
In the CHC GA, the more fit chromosomes remain in the population until they are replaced by even more fit 
offspring. The fitness function returns a two-vector, where one is the R2 value, and the other is the SSS. The 
vector selection process works by comparing two chromosomes, a parent, A and an offspring B, if R2(A) > 
R2(B), than A is more fit (and vice versa). However, if R2(A) = R2(B), then the chromosome with the smaller 
SSS is more fit. If the SSS’s are also equal, the parent is not replaced. 

2.4. Crossover 
The crossover operator is responsible for offspring reproduction. It consists of three operators: Incest Prevention 
which decides if the two parents can mate; Index Gene Crossover which is responsible for inheritance of both 
parents’ genes to the offspring; SSS Recombination crossover which is responsible for setting the SSS gene of 
the offspring based on both parents’ SSS genes. 

2.4.1. Incest Prevention 
The crossover operator is applied to each random pair of parents. The first step is to check the pair for incest 
prevention. Parents who are too closely related are prevented from mating. The distance between two chromo-
somes is simply the number of unique genes in the leading portion of the chromosomes out to the furthest genes 
an offspring might inherit (the larger value of SSS genes from the two chromosomes).The initial value for the 
incest threshold is half of the maximum SSS, but it is decremented whenever a generation occurs in which no 
offspring survive. When the incest threshold drops to zero, any chromosome may mate with any other, including 
a clone of itself. The incest threshold dropping to zero is one of the criteria used by CHC for halt and restart de-
cisions. This incest prevention algorithm has been shown to effectively defeat genetic drift [33]. It does this by 
promoting exploration, allowing only mating among the more divergent chromosomes; as long as this process is 
successful (offspring survive). Being self-adjusting, it tunes itself to problems of differing difficulties; when 
more fit offspring are being produced, the threshold remains fixed, it drops only when progress is not occurring. 

2.4.2. Index Gene Crossover 
GA research has shown that “respect” is an important property for a crossover operator [34] [35]. That is, if the 
parents share common genes, it is important that the offspring should inherit them. The MMX_SSS operator 
achieves this by first copying the common genes from the parents to the offspring. However, given that there is se-
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lection pressure for smaller SSS gene values, this copy operation moves each gene one position forward, to the left, 
in the offspring (Figure 5). Thus, if a gene consistently contributes to fitness, it will slowly migrate towards the 
front of the chromosome, from grandparent, to parent, to child. If a common gene is in the first position adjacent to 
the SSS gene, it stays in the first position unless there is a common gene immediately following, in which case they 
switch places. The unique genes from the two parents are randomly inserted into unused chromosome slots in the 
offspring. These operations allow genes unexpressed in the parents to become expressed in the offspring. 

2.4.3. SSS Recombination 
The last step in crossover is to set the values for the SSS genes in the offspring. In our representation, the SSS 
gene is the left-most gene in the chromosome. This operation uses the “blend crossover” or BLX [20] [36]. The 
SSS gene for each offspring is drawn uniformly randomly from an interval defined by the SSS genes in the par-
ents and their fitness (Figure 6). 

The interval is first set to that bounded by the parental values, and then extended by fifty percent in the direc-
tion of the more fit parent. In the example illustrated in Figure 6, the parent with the smaller SSS gene value, 
being the more fit, biases evolution towards smaller SSSs. The opposite circumstance may also occur. In fact, 
this condition (the more fit parent being the one with the larger SSS), is what determines the limit for the com-
putation of unique genes for incest prevention. 

3. Experiments and Results 
To evaluate this approach, we performed a series of experiments to test each aspect of the algorithm; these expe-
riments are described in sequential order. All experiments used seismocardiogram data from a single subject ob-
tained at rest and while undergoing mild exercise (light bike pedaling in an upright position with back support).  

 

 
Figure 5. MMX_SSS crossover operator. The common genes from the two parents 
are copied one space to the left in the offspring and the other genes are randomly in-
serted into the offspring. In this example, the first parent common gene 51 switches 
places first with gene 12 and then gene 87 in the next generation, (offspring one) be-
cause all three are common in both parents. Gene 69 from the second parent stays in 
the first place since gene 41 is not common (offspring two). The rest of the genes, the 
“unique” genes, are copied to a grab bag, the table on the right in Figure 5. The two 
offspring randomly pick the genes from this grab bag to fill up the places that are not 
filled. In this case, the first offspring selects genes 41, 50, 60, and 23, which have a 
gray background in the table and are underlined within the first chromosome. The 
second off spring picks the genes with the white background, which are underlined in 
the second chromosome. Blend crossover sets the SSS gene.                                        

 

 
Figure 6. Offspring SSS interval, where parent C1 is more fit than parent C2. N-1 is 
the maximum allowed subset size.                                             
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Four levels of wavelet decomposition were performed on successive thirty-second time intervals. Six mother 
wavelets were utilized: Daubechies, Symlets, discrete Meyer, Coiflet, Biorthogonal, and reverse Biorthogonal. 
A “ground truth” SV value was obtained for each thirty-second interval from the NICOM. This produced a data 
set with 96 features (6 × 16), and a “true” SV for each of the 85 intervals that were measured. We chose to set 
the maximum value of SSS to 32 assuming the GA could obtain results with a subset much smaller than this. 
Thus, the chromosome contained 33 genes, one for SSS and 32 packet indexes. For fitness to maximize, we used 
the R2 from a linear regression of the packets energy to SV. The population size was one hundred, the number of 
soft restarts was set to ten, with maximum zero accepts (restart condition) set to three. 

3.1. Experiment One—Simple Search for Maximum R2 
The first experiment was directed toward achieving a maximum R2 value, but showed little evidence of conver-
gence. Figure 7 presents several plots that characterize an experiment. All features appear to have been sampled 
throughout the run, but evolution was unable to eliminate many features so that a great many features remain in 
the population throughout the run (upper panel). In the middle panel, we see that within a few generations the 
population SSS gene has converged to 32 (SSS max) indicating that no smaller value was competitive. In the 
lower panel, we also see the population rapidly converging on an R2 value at or near 0.988. Thus, the GA was 
unable to distinguish any features as any better than any others, and so used the maximum number of features it 
was permitted (32). The GA discovered many combinations of features that were able to predict SV nearly per-
fectly. In the example experiment shown Figure 7 the soft restarts are clearly seen as the introduction of genetic 
diversity (upper two panels) and a drop in average and worst population fitness (lower panel). There were 10 
soft restarts, as per the control parameter chosen. 

3.2. Experiment Two—Finding a “Seeded” Solution 
Failure of convergence in experiment one caused us to verify the algorithm. We elected to embed a perfect solu-
tion in the data, just to test the algorithm’s ability to discover it. We selected a set of five features and “doc- 

 

 
Figure 7. Characterization of experiment one. The X axis represents evolution time, either in-
dividual chromosome evaluation (upper panel) or generation (middle and lower panels). In the 
upper panel, the Y axis is the individual features and there is a point for each index that was 
present in the population. The middle panel shows the SSS gene of all chromosomes within the 
population of each generation. The bottom plot shows evaluation of the best, worst, and aver-
age chromosomes within the population of each generation.                              
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tored” their values so that together they have perfect SV correlation. These features we gave indexes of 4, 31, 67, 
80, and 92. (i.e. widely distributed among the pool of features). The “doctored” features emerged as the only 
genes left in the population after about one hundred generations (Figure 8). The SSS value (middle panel) first 
rises towards SSS-max as the combinations are sorted out, and then falls to the value of five as selection pressure 
eliminates chromosomes with more features than the five needed to achieve perfect performance. Figure 9 
shows the number of times each feature was sampled over the entire run. The five doctored features were clearly  

 

 
Figure 8. Results from the second experiment, where the perfect (seeded) solution was found. 
The GA successfully detects the five features. The upper panel shows that as the number of gen-
eration increases the seeded features emerge from the pack. As the number of generation in-
creases the chromosome with the same fitness value but smaller SSS gene survives, as the middle 
panel shows. A good solution is found at the initialization stage as the lower panel shows.            

 

 
Figure 9. The “seeded” features are sampled many more times than other features. Vertical 
lines separate the different mother wavelets.                                           
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preferred by evolution, but even the non-doctored features were each sampled several hundred times while the 
GA sorted through the combinations to locate the good one. Thus, we observed that the algorithm can work as 
expected when there is one perfect solution among a sea of poor ones. 

3.3. Experiment Three—Seeded Solution, All Data Badly Noise Perturbed 
We then challenged the algorithm by perturbing the data with Gaussian noise, where each feature is the original 
value plus twenty percent Gaussian noise. Again we saw the characteristic pattern of convergence failure 
(Figure 10). Without an easy-to-find superior set of features, the algorithm could only promote the largest poss-
ible subset (SSS max) of just about any of the noisy features. Each feature adding a tiny increment to improve 
the R2 value. We hypothesized that the problem might be the sensitivity of the original algorithm’s hierarchical 
selection scheme on any difference in the first dimension of fitness (R2), no matter how small. Selection for 
small subset size was never triggered because ties on R2 virtually never occurred. This feature of our problem 
makes it different from previous applications of this algorithm that were on classification tasks, where the fitness 
was usually to reduce classification errors or some similar metric. These errors, being modest discrete integers, 
often resulted in ties. 

3.4. Experiment Four—Seeded Solution, All Data Perturbed with Noise,  
Reduced R2 Sensitivity 

To test the influence of R2 on convergence, we reduced the number of significant digits in the value of R2 re-
ported by the regression to the GA. By setting this to two significant figures, we essentially declared that chro-
mosomes that differ in R2 by less than 0.01 should be considered equivalent, thereby allowing for ties and 
enabling the second level of the hierarchical fitness selection to kick in. One may also think of this as an admis-
sion that an R2 estimated from a sample of cases must of necessity contain a certain amount of noise (sampling 
noise rather than measurement noise); allowing the GA to over-exploit noise provides no benefit. This strategy 
resulted in a return of effective performance even though the problem is now more difficult because of the noise 
perturbation (Figure 11). Correspondingly, it now takes longer to locate the good feature set (Figure 12). Per-
turbed features 67 and 80 correlate better with SV and so are located earlier in the course of evolution. The fea- 
tures with weaker connections, 4, 31, and 92, were not included in the final result by the GA. Feature 31 has 
been sampled more times since it still has good connection to the residual of SV once features 67, and 80 are 

 

 
Figure 10. A seeded solution is embedded in the dataset, and all data are perturbed with 
Gaussian noise. Similar to experiment one, the GA fails to converge.                       
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Figure 11. Reducing the precision of R2 results in successful convergence. Smaller SSS is 
achieved since weak features are eliminated.                                           

 

 
Figure 12. The “seeded” features which are strongly connected are again preferred, but (com-
pare to Figure 9) weak connections are eliminated and new connections are observed.           

 
included in the regression. However, other features 21 and 26 (plus their noise) provided better results and were 
chosen by the GA. The end result provided four genes 21, 26, 67, and 80 with final R2 of about 0.98. 

3.5. Experiment Five—Original Data, with Reduced Precision on R2 
Having an indication that over-precision was precluding convergence in the presence of noise, we reran the 
original dataset with R2 reduced to two significant digits. We observed the patterns that indicate successful 
learning, and this time without the presence of doctored data. Now SSS evolves, first to 22 packets (in the first 
convergence, and the next eight soft restarts) and finally to 21 and 22 in the last two soft restarts (Figure 13 
middle panel). The R2 reached about 0.97 (Figure 13 lower panel), and the best packets can be seen emerging 
from the chaos (Figure 13 upper panel). 
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Figure 13. Convergence of original dataset with reduced precision on R2. The SSS converted 
to twenty one (middle panel) and the best chromosome maintained good correlation (bottom 
panel).                                                                        

4. Discussion and Conclusions 
The CHC genetic algorithm with the MMX_SSS crossover operator has previously been applied to take out fea-
ture selection in bioinformatics classification tasks. We provide evidence that this algorithm may also be appli-
cable to feature subset selection tasks in time series data processing, but the use of a high-precision first fitness 
metric such as regression R2, seems to require a judicious reduction in significant digits provided to the GA in 
order to induce ties so that the second metric (SSS) may become active. In classification tasks, ties are common 
since counts of classification errors have a limited dynamic range. This work seems to show that a tradeoff may 
be needed between sensitivity to small improvements in accuracy and the desire for small subsets. 

We are optimistic that this algorithm can be applied to selecting high-performance, small sets of signal fea-
tures that can be combined to yield accurate metrics of some signal content, proving the data processing com-
munity with a powerful new tool. Finding specific mother wavelet packets that can be combined at the energy 
level without full waveform reconstruction can enable computationally inexpensive ways to extract information 
from time series data. 
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