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Abstract 
β-turn is one of the most important reverse turns because of its role in protein folding. Many com- 
putational methods have been studied for predicting β-turns and β-turn types. However, due to 
the imbalanced dataset, the performance is still inadequate. In this study, we proposed a novel 
over-sampling technique FOST to deal with the class-imbalance problem. Experimental results on 
three standard benchmark datasets showed that our method is comparable with state-of-the-art 
methods. In addition, we applied our algorithm to five benchmark datasets from UCI Machine 
Learning Repository and achieved significant improvement in G-mean and Sensitivity. It means 
that our method is also effective for various imbalanced data other than β-turns and β-turn types. 
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1. Introduction 
Secondary structure that includes regular and irregular patterns is important in protein folding study because it 
can be a building block of three-dimensional structures. The regular structures, which are sequences of residues 
with repeating φ and ψ values, are classified in α-helix and β-strand. While this group is well defined, the irre-
gular structures that cover 50% of remaining protein residues are classified as coils. In fact, coils can be tight 
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turns, bulges, or random coils. Among them, tight turn is the most important one from the viewpoint of protein 
structure as well as function [1]. Tight turns are categorized as δ-, γ-, β-, α-, and π-turns according to the number 
of consecutive residues in the turn.  
β-turn is one of the most common tight turns. It is composed of four consecutive residues that are not in an 

α-helix and the distance between the first and the fourth C_α is less than 7 Å [1]. β-turns play an important role 
in the conformation as well as the function of protein, and make up around 25% of the protein residues. β-turns 
are the essential part of β-hairpins, provide the directional change of the polypeptide [2], and take part in the 
molecular recognition processes [3]. In addition, the formation of β-turn is a vital step in protein folding [4]. 
Therefore, the knowledge of β-turn is necessary in the three-dimensional structure prediction of a given primary 
protein sequence. 

In addition, β-turns are further classified into some types according to the difference in three-dimensional 
structures. Based on the dihedral angles of the second and third residues in a β-turn, Hutchinson and Thornton 
proposed nine types of β-turn: I, I’, II, II’, IV, VIa1, VIa2, VIb, and VIII [5]. Because the types VIa1, VIa2, and 
VIb are rare, they are often combined into one type and named VI [1]. 

Prediction of β-turn by machine learning techniques have been studied actively, for instance, by Artificial 
Neural Network (ANN) [6]-[8], Support Vector Machines (SVMs) [3] [9]-[14], logistic regression [14] [15], and 
so on. In the realm of β-turn types prediction, most methods are based on ANN [6] [16], probabilities with mul-
tiple sequence alignments as COUDES [17], or SVMs [9] [18] [19]. However, the quality of β-turns and β-turn 
types prediction is still inadequate. One of the reasons is the small proportion of β-turn-residues in protein se-
quence. This is so-called the class-imbalance problem and often appears in Bioinformatics. The class-imbalance 
problem, in the serious case, causes the undesirable result that only majority class is correctly predicted.  

Among many methods to handle the class-imbalance problem, resampling-based techniques including under- 
sampling and over-sampling methods are said to improve the classification performance significantly [20]. In 
this study, we propose a novel over-sampling method to deal with the class-imbalance problem in predicting 
β-turns and their types. Our algorithm generates the synthetic samples flexibly, for samples with minority sam-
ples as nearest neighbors as well as samples surrounded by majority samples. In addition, the new samples are 
informative and synthesized in a safe area. We present the experimental results on three standard benchmark da-
tasets compared with state-of-the-art β-turns and β-turn types prediction methods. We also evaluate the perfor-
mance of the novel over-sampling algorithm on the five other datasets from UCI Machine Learning Repository. 

2. Materials and Methods 
2.1. Datasets 
We chose a benchmark dataset BT426 for the performance evaluation of our β-turn prediction method. It has 
been used in many researches [3] [6]-[10] [12] [13] [15] as the standard dataset for the comparison. In addition, 
two more other datasets, BT547and BT823, that were constructed for training and testing COUDES [17], were 
also used in our study. These datasets contain 426,547 and 823 protein sequences, respectively. All these protein 
chains have at least one β-turn and the similarity of each pair of chains is less than 25%. The observed turns and 
turn types in protein sequences were assigned by PROMOTIF program [21]. Table 1 presents the ratio of resi-
dues belonging to β-turn or β-turn type i to the non-β-turn or non-β-turn type i (i = I, I’, II, II’, IV, VI, VIII) in 
these datasets. 

2.2. Features 
In this work, PSSMs (Position Specific Scoring Matrices), predicted shape strings, and predicted protein blocks  
 
Table 1. The ratio of β-turn/β-turn type i (i = I, I’, II, II’, IV, VI, VIII) residues to the rest of protein residues in three 
standard benchmark datasets.                                                                                       

Dataset Turn/non-turn Type I Type I’ Type II Type II’ Type IV Type VI Type VIII 

BT426 1:3.11 1:9.46 1:76.16 1:25.97 1:142.61 1:9.54 1:183.90 1:35.38 

BT547 1:2.92 1:9.06 1:68.75 1:23.65 1:131.60 1:9.15 1:160.00 1:32.83 

BT823 1:3.00 1:9.12 1:67.08 1:24.23 1:128.21 1:9.25 1:153.20 1:35.92 
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were used as the input features to predict β-turns and their types. 

2.2.1. PSSMs 
PSSMs were generated by using PSI-BLAST [22] against National Center for Biotechnology Information 
(NCBI) non-redundant sequence database with default parameters. PSSM is a matrix of N rows corresponding 
to the length of the protein sequence and 20 columns corresponding to 20 kinds of standard amino acids. 

2.2.2. Predicted Shape Strings 
Each residue in a protein sequence can be categorized into one of eight groups that are symbolized by eight 
symbols (S, R, U, V, K, A, T, and G) according to the phi-psi torsion angles. A sequence of these symbols makes 
up a shape string of a corresponding protein. The authors in [14] [23] used predicted shape strings to enhance the 
beta-turn prediction result. 

In this work, DSP program [24] was used to predict the shape strings. Besides the eight states above, N is 
used to represent the residue with undefined phi-psi angles. Each state was encoded as a vector of nine features 
(1,0,0,0,0,0,0,0,0) for S, (0,1,0,0,0,0,0,0,0) for R, and so on. 

2.2.3. Predicted Protein Blocks 
Though predicted secondary structures of protein were effective in predicting β-turns and their types [7] [9] [12] 
[14] [23], the way of classifying a secondary structure of protein into three states of backbone conformation as 
α-helix, β-sheet, and coil leads to the circumstance that 50% total number residues are assigned as coils while 
they are believed to belong to a large set of distinct local structures [25] [26]. Therefore, the structural alphabets 
(SAs), that are sets of specific prototypes approximating the local protein structure, were developed to overcome 
this drawback [25]. 

Protein blocks, that allow a good approximation of local protein 3D structures [27] [28], have been utilized in 
many applications [26] [29]. SAs for protein blocks are sixteen pentapeptide motifs with labels A, B, C, D, E, F, 
G, H, I, J, K, L, M, N, O, and P. Each of these prototypes represents a vector of eight average phi-psi angles.  

In this research, predicted protein blocks were obtained from the website of PB-kPRED  
(http://www.bo-protscience.fr/pentapept/?page_id=9). Sixteen characters from A to P symbolize sixteen corres-
ponding blocks and X for the other state. For each residue i in a protein chain, the corresponding predicted pro-
tein block was represented by a vector of seventeen features ( )1 2 17, ,i i ix x x

, where j
ix  was the probability of 

residue i as state j. 
The feature vector of each query residue was generated by using a sliding window of size nine amino acids. 

Thus, one input vector contained 414 attributes, where each PSSM value x was scaled to the range [ ]0,1  by the 
logistic function: 

( ) 1
1 xf x

e−=
+

                                     (1) 

and the other values were normalized.  

2.3. Methods 
2.3.1. Resampling Techniques 
Resampling techniques are said to effectively improve classification accuracy of the imbalanced datasets. While 
under-sampling methods decrease the number of majority samples, over-sampling methods enlarge the number 
of minority samples to rebalance the imbalanced dataset. However, the removal of samples may cause the sig-
nificant information loss for the majority class. This is the main drawback of under-sampling methods. In con-
trast, over-sampling methods synthesize new minority samples in various ways. The most naïve method is ran-
dom over-sampling that randomly chooses and replicates some minority samples. This method is simple, but of-
ten results in over-fitting. Another well-known over-sampling method is SMOTE [30], which generates the new 
samples by using the information of each minority sample and its randomly chosen minority nearest neighbor. 
The synthetic minority samples are located between these two minority samples considered. Therefore, SMOTE 
can improve the quality of synthetic samples; however, it may lead to the overlapping in classes. This problem 
becomes more serious when the original imbalanced dataset contains many isolated minority samples, which are 
the samples surrounded by the majority samples. To alleviate both problems of over lapping and over-fitting, we 

http://www.bo-protscience.fr/pentapept/?page_id=9
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propose a novel over-sampling method named Flexible Over-Sampling Technique (FOST). 

2.3.2. Flexible Over-Sampling Technique 
The main idea of FOST is to improve the density of each minority sample flexibly depending on the number of 
its nearest neighbors which belong to minority class. First of all, as shown in the pseudo-code below, FOST 
finds k nearest neighbors for each minority sample x (line 3). Note that the k nearest neighbors here can be mi-
nority samples, majority samples, or synthetic samples generated by the function Self_sample_generation (line 
6) or Sample_generation (line 12). FOST synthesizes the new samples for x as follows: 
• If x′  is the nearest neighbor of x and x′  and belongs to the majority class (line 5), FOST generates d syn-

thetic samples opposite to x′  so that the distances from these samples to x are less than the distance be-
tween x and x′  (lines 16 - 22). 

• If there are m (m < k) minority nearest neighbors of x and the distances from these samples to x are less than 
the distance from x′  to x (line 8), FOST synthesizes d new samples as follows: 1) computes the sample y 
that is the centroid of m minority nearest neighbors and x (line 9); 2) generates a sample between y and one 
randomly chosen sample among its (m + 1) nearest neighbors (lines 23 - 27).  

• If all k nearest neighbors of x belong to the minority class, FOST does not generate any synthetic sample. 
The pseudo-code for FOST algorithm is as follows: 

2.3.3. FOST Algorithm 
Input: Minority dataset M; Majority dataset N; ratio of generation d; threshold k; 
Output: set of synthetic samples S;  
Begin  
1) S φ= ; 
2) For each x M∈ ; 
3) Find k nearest neighbors of x in M N S∪ ∪ ; 
4) If exists a majority nearest neighbor x′  among these k nearest neighbors of x; 
5) If x′  is the most nearest neighbor of x; 
6) Self_samples_generation ( ), ,x x d′ ; 
7) else; 
8) { }1 1, , mPN t t t= 

: m minority samples whose distances to x are smaller than the distance between x and 
x′ , m < k; 

9) ( )1 1, , ny y y y=  : the new minority sample where 1 , 1
1

j
i i i

j
y t x j m

m
 

= + = 
+  

∑  ; 

10) For l = 1:d; 
11) jt : is randomly chosen from { }PN x∪ ; 
12) Samples_generation ( ), jy t ; 
13) end_for; 
14) Update S; 
15) End_for; 
End  
Function Self_samples_generation ( ), ,x x d′ ; 
Input: samples ( )1 2, , ,n CLx x x x x=  ; ( )1 2, , ,n CLx x x x x′ ′ ′ ′ ′=  ; number of new samples d;  
Output: set of synthetic samples new_spls_arr of x;  
Begin  
16) For i = 1:d; 
17) new_sampleCL = xCL;  
18) For j = 1:n; 
19) new_samplej = ( ) ( ), 0,1 ;j j jx x xε ε′− × − ∈  
20) end_for; 
21) push (new_spls_arr, new_sample);  
22) end_for; 
End 
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Function Samples_generation ( ),x x′ ; 
Input: samples ( )1 2, , ,n CLx x x x x=  ; ( )1 2, , ,n CLx x x x x′ ′ ′ ′ ′=  ; 
Output: set of synthetic samples new_spls_arr of x;  
Begin  
23) new_sampleCL=xCL;  
24) for j = 1:n; 
25) new_samplej = ( ) ( ), 0,1 ;j j jx x xε ε′+ × − ∈   
26) end_for; 
27) push (new_spls_arr, new_sample);  
End 

2.3.4. Performance Evaluation of the Method 
Since the ratio of β-turn to non-β-turn samples is around 1:3, the datasets are imbalanced. Support Vector Ma-
chine (SVM) was used as the basis classifier in this study since it is said to be better than other standard classifi-
ers in dealing with imbalanced dataset. Specifically, ksvm function in kernlab package for R software [31] with 
Gaussian RBF kernel was employed. 

We conducted seven-fold cross validation to evaluate the performance of our method. Each dataset was di-
vided into seven parts that contained the same number of positive samples. Then, the feature selection based on 
information gain ratio [32] was applied to reduce the redundant features and achieve the highest MCC. After that, 
FOST was used to relax the imbalance ratio of the datasets. We set the threshold k = 10 for every case. The ratio 
of over-sampling d was chosen via grid search in each case.  

To predict β-turn types, we created the same architecture as the prediction of β-turns, except the goal of the 
prediction was the β-turn type i (i = I, I’, II, II’, IV). It means that the non-β-turn residues and the residues be-
longing to β-turn type j, j i≠ , were the negative samples. In the cases of type VI and VIII, due to the high im-
balance ratio, we random-under-sampled to relax the imbalance ratio before applying feature selection and 
FOST. 

Since a β-turn contains at least four consecutive residues, the output needed to be filtered by applying the fol-
lowing rules in order [6]: 

1) Change isolated predicted non-turn to turn: tnt → ttt. 
2) Change isolated predicted turn to non-turn: ntn → nnn. 
3) Change the two non-turn neighbors of two successive turns to turns: nttn → tttt. 
4) Change the two non-turn neighbors of three successive turns to turns: ntttn → ttttt. 
These rules ensure that the length of every final predicted turn is at least four residues.  
Figure 1 demonstrates the overall architecture of our prediction method. 

2.3.5. Performance Metrics 
As MCC, Qtotal, Qobserved, Qpredicted are often used to measure the quality of β-turn prediction methods [17], they 
are used to evaluate the performance of our method and are defined as below: 

( )
( ) ( ) ( ) ( )

Matthews correlation coefficient MCC TP TN FP FN  
TP FN TP FP TN FP TN FN

× − ×
=

+ × + × + × +
        (2) 

( ) ( )total AccuracyQ = TP TN TP FN TN FP= + + + +                       (3) 

( )observed Sensitivity TP TP FNQ = = +                             (4) 

( )predicted TP TP FPQ = +                                   (5) 

where TP, TN, FP, FN are the number of true positive, true negative, false positive and false negative samples, 
respectively. 

MCC, which lies in [ ]1,1−  is used to evaluate the correlation of the predicted and the observed class labels. 
Three values of −1, 0, 1 correspond to the worst, the random and the best predictor, respectively. It is the most 
robust measure for β-turn prediction [9].  

In addition, the threshold-independent measures ROC (Receiver Operating Characteristics) and AUC (Area 
Under the Curve), which are often used in bioinformatics [33], are adopted. 
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Figure 1. Scheme of our β-turns and β-turn types prediction method.                          

3. Results and Discussions 
3.1. Prediction of Turn/Non-Turn 
The proper choice of sliding window size for extracting the feature vectors affects the performance of prediction. 
Shepherd [6] showed that window of seven or nine residues was optimal for β-turn prediction. In the experi-
ments, we tested various sliding window sizes and selected the size of nine residues since it returns not only the 
highest MCC but also the highest Qtotal, Qobserved, and Qpredicted. 

We also performed experiments to evaluate the impact of evolutionary information PSSMs, predicted protein 
blocks, and predicted shape string combinations. Table 2 presents the effect of these feature groups on the 
BT426 dataset in predicting β-turn. The results show that using all three groups of features achieved the highest 
MCC, Qtotal, Qobserved, Qpredicted, and AUC in comparison to using two of three of them. The highest performance 
results of the existing method that used PSSMs and predicted secondary structure as input features are 82.87%, 
70.66%, 64.83%, 0.56, and 0.886 on Qtotal, Qobserved, Qpredicted, MCC, and AUC, respectively [14]. In the case of 
using PSSMs and predicted protein blocks as input features, we achieved higher Qtotal, Qpredicted, MCC, and AUC 
(1.85%, 5.01%, 0.03, and 0.007, respectively). It shows that predicted protein blocks are useful in identifying 
β-turns.  

Figure 2 presents the ROC curves for predicting β-turn using the different combinations of feature groups on 
the BT426 dataset. 

Our method outperformed the other competing methods with MCC of 0.66 except Tang et al. and H-SVM-LR. 
In comparison to Tang et al., though MCC of the both methods was 0.66, we attained higher Qtotal (87.48% vs. 
87.2%) and Qpredicted (75.26% vs. 73.8%). H-SVM-LR achieved higher MCC than us (0.01), but lower Qtotal and 
Qpredicted (87.37% vs. 87.48% and 74.99% vs. 75.26%, respectively). Note that while we applied the filtering to 
make the predicted beta-turn more realistic, H-SVM-LR did not. Table 3 shows the results of all methods in de-
tail. 

Table 2 and Table 3 show that the use of feature selection for eliminating redundant features and FOST to re-
lax the class-imbalance, not only increase Qtotal (0.9%), Qpredicted (3.81%) but also MCC (0.02).  
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Table 2. The comparative results of different feature groups using ksvm on the BT426 dataset.                           

Feature group Qtotal (%) Qobserved (%) Qpredicted (%) MCC AUC 

PSSMs + Predicted protein blocks 84.72 68.12 69.84 0.59 0.893 

PSSMs + Predicted shape strings 85.74 71.20 70.44 0.61 0.900 

PSSMs + Predicted protein blocks + Predicted shape strings 86.58 74.55 71.45 0.64 0.915 

 
Table 3. Comparison of competing methods on the BT426 dataset.                      

Method Qtotal (%) Qobserved (%) Qpredicted (%) MCC 

Our method 87.48 72.24 75.26 0.66 

H-SVM-LR [14] 87.37 75.20 74.99 0.67 

Tang et al. [23] 87.2 75.9 73.8 0.66 

KLR [15] 80.4 65.25 58.98 0.50 

NetTurnP [8] 78.2 75.6 54.4 0.50 

DEBT [9] 79.2 70.1 54.8 0.48 

BTNpred [13] 80.9 55.6 62.7 0.47 

SVM [12] 79.8 68.9 55.6 0.47 

BTSVM [10] 78.7 62.0 56.0 0.45 

BetaTPred [7] 75.5 72.3 49.8 0.43 

BTPRED [6] 74.9 48.0 55.3 0.35 

 

 
Figure 2. ROC curves for different feature groups on the BT426 dataset.                

 
Figure 3 displays the ROC curve of our method, with the AUC was 0.921. 
Besides the BT426 dataset, we performed the experiments on two more additional datasets, BT547 and 

BT823. Table 4 presents the results of our method on the datasets BT547 and BT823 with MCCs of 0.66 and 
0.67, respectively. The ROC curves of these two datasets are shown in Figure 4. 

3.2. Prediction of β-Turn Types 
The performance of our method in predicting β-turn types on the three datasets BT426, BT547, and BT823 is 
shown in Table 5. All the AUC values are higher than 0.7, and most of them are higher than 0.85. It proves our 
method is acceptable in predicting β-turn types [15].  
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Table 4. Turn/non-turn prediction results of our method on the BT547 and BT823 
datasets.                                                                 

Dataset Qtotal (%) Qobserved (%) Qpredicted (%) MCC AUC 

BT547 87.18 74.38 75.12 0.66 0.921 

BT823 87.76 74.14 76.22 0.67 0.925 

 

 
Figure 3. ROC curve of our method on the BT426 dataset.     

 

    
(a)                                            (b) 

Figure 4. ROC curves of our method on the BT547 (a) and BT823 (b) datasets.                      
 

Table 6 presents the MCCs of the competing methods. Only our method could predict type VI. While DEBT 
could not predict types I’ and II’, our method achieved the highest MCC in comparison with other methods on 
all three datasets (0.75 and 0.64 on BT426; 0.78 and 0.66 on BT547; 0.80 and 0.66 on BT823 for type I’ and II’, 
respectively). Our method also achieved the highest MCC in predicting type II and VIII (0.75 and 0.30 on 
BT426; 0.77 and 0.35 on BT547; 0.77 and 0.33 on BT823). For type I, our method resulted in lower MCC in 
comparison to Shi et al. on BT426 (0.61 vs. 0.71), and equally on BT823 (0.64), but higher on BT547 (0.63 vs. 
0.53). In the case of type IV, Shi et al. was the winner on BT426 (0.46), but our method achieved the best MCCs 
on BT547 (0.40) and BT823 (0.40). ROC curves of our β-turn types prediction are shown in Figure 5.  

3.3. Datasets from UCI Machine Learning Repository 
In addition to three standard benchmark datasets above, we evaluated the performance of our novel over-sam- 
pling algorithm FOST on the five datasets which were obtained from UCI Machine Learning Repository [34]: 
Haberman’s Survival, Pima Indian Diabetes, Glass Identification, Landsat Satellite, and Yeast. The details of 
these datasets are described in Table 7.  

The experiments were implemented to compare our method with the control method (i.e. no over-sampling) 
and SMOTE, using ksvm as the classifier with Gaussian RBF kernel and default parameters. We conducted the 
10 independent times of 10-fold cross-validation on every dataset and averaged to get the performance of the 
methods. The optimal number of synthetic samples of each dataset for FOST algorithm was decided by grid  
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Table 5. Beta-turn types prediction results of our method on the BT426, BT547, and 
BT823 datasets.                                                             

Dataset β-turn Type  Qtotal (%) Qobserved (%) Qpredicted (%) AUC 

BT426 

Type I 93.45 62.25 66.77 0.933 

Type I’ 99.28 84.83 67.76 0.985 

Type II 97.90 85.75 67.99 0.983 

Type II’ 99.44 70.49 58.16 0.976 

Type IV 90.18 39.16 47.83 0.823 

Type VI 98.07 26.08 8.43 0.880 

Type VIII 90.18 64.85 16.76 0.892 

BT547 

Type I 93.54 64.29 68.89 0.935 

Type I’ 99.36 80.44 76.05 0.989 

Type II 98.05 85.44 71.77 0.982 

Type II’ 99.42 74.22 58.94 0.982 

Type IV 89.78 43.18 47.92 0.832 

Type VI 89.08 54.20 3.07 0.847 

Type VIII 92.28 63.85 22.10 0.916 

BT823 

Type I 93.65 66.25 68.46 0.940 

Type I’ 99.36 85.88 74.65 0.991 

Type II 98.10 84.82 72.12 0.983 

Type II’ 99.45 68.60 63.35 0.978 

Type IV 90.51 38.88 51.80 0.828 

Type VI 96.36 36.37 6.81 0.869 

Type VIII 89.90 74.37 17.63 0.916 

 
Table 6. MCCs comparison between the competing methods in predicting β-turn types on the BT426, BT547, and BT823 
datasets.                                                                                                 

Dataset Method Type I Type I’ Type II Type II’ Type IV Type VI Type VIII 

BT426 

Our method 0.61 0.75 0.75 0.64 0.38 0.14 0.30 

Shi et al. [18] 0.71 0.51 0.68 0.42 0.46 - 0.25 

NetTurnP [8] 0.36 0.23 0.31 0.16 0.27 - 0.16 

DEBT [9] 0.36 - 0.29 - 0.27 - 0.14 

COUDES [17] 0.31 0.23 0.30 0.11 0.11 - 0.07 

BT547 

Our method 0.63 0.78 0.77 0.66 0.40 0.11 0.35 

Nakamura et al. [19] 0.40 - 0.31 - 0.38 - 0.26 

Shi et al. [18] 0.53 0.54 0.55 0.34 0.31 - 0.04 

DEBT [9] 0.38 - 0.33 - 0.27 - 0.14 

BT823 

Our method 0.64 0.80 0.77 0.66 0.40 0.15 0.33 

Nakamura et al. [19] 0.37 - 0.30 - 0.35 - 0.17 

Shi et al. [18] 0.64 0.42 0.63 0.36 0.32 - 0.13 

DEBT [9] 0.39 - 0.33 - 0.27 - 0.14 
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(a)                                          (b) 

 
(c)                                          (d) 

 
(e)                                          (f) 

 
(g) 

Figure 5. ROC curves of our method in predicting β-turn types on the three datasets BT426 
(black), BT547 (green), and BT823 (blue). (a) type I; (b) type I’; (c) type II; (d) type II’; (e) 
type IV; (f) type VI; and (g) type VIII.                                               

 
search, and then applied for SMOTE. Table 8 presents the Accuracy, Sensitivity, Specificity, and G-mean of the  
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Table 7. The descriptions of the UCI datasets.                                                                  

Dataset Number of samples Attributes Minority class label Imbalance ratio 

Haberman’s Survival 306 3 patient died within 5 years 1:2.78 

Pima Indian Diabetes 768 8 tested positive for diabetes 1:1.87 

Glass Identification 214 9 Headlamps 1:6.38 

Landsat Satellite 6435 36 Damp grey soil 1:9.28 

Yeast 1484 8 ME2 1:28.10 

 
Table 8. The comparison of competing methods on the UCI datasets.                                                

Dataset Method Accuracy (%) Sensitivity (%) Specificity (%) G-mean (%) 

Haberman’s Survival 

No Over-Sampling 73.63 19.01 93.29 42.00 

SMOTE 61.86 58.64 63.02 60.74 

FOST 60.00 74.20 54.89 63.80 

Pima Indian Diabetes 

No over-sampling 75.95 55.07 87.14 69.27 

SMOTE 73.87 72.69 74.50 73.58 

FOST 74.09 77.09 72.48 74.75 

Glass Identification 

No over-sampling 96.26 72.41 100.00 85.10 

SMOTE 94.86 76.55 97.73 86.49 

FOST 96.21 77.24 99.19 87.52 

Landsat Satellite 

No over-sampling 93.50 51.49 98.02 71.04 

SMOTE 93.78 67.51 96.61 80.67 

FOST 92.79 75.72 94.63 84.65 

Yeast 

No over-sampling 96.71 4.31 100.00 20.22 

SMOTE 95.91 29.61 98.27 47.20 

FOST 91.37 63.92 92.35 76.81 

 
competing methods. Specificity and G-mean are defined as follows: 

( )Specificity TN TN FN= +                                (6) 

-mean Sensitivity SpecificityG = ×                             (7) 

We also performed the two-sample t-test with equal variance to assess if the average G-means of different 
methods are significantly different. Table 9 presents the p-values of these t-test comparisons between each pair 
of corresponding methods. All the p-values are smaller than 0.05, it means that our method achieves the better 
G-mean on all five benchmark datasets.  

4. Conclusion 
In this study, we presented a new method to identify β-turns and β-turn types in protein sequences. We showed 
that the use of predicted protein blocks as the input features well affected the prediction results. We also pro-
posed a novel over-sampling algorithm FOST to relax the class-imbalance for the β-turn datasets effectively and 
improve the prediction performance. The combination of our new algorithm and the protein blocks features led 
to the significant improvement in prediction of β-turn types, especially, could predict type VI which is often  
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Table 9. The assessment by two-sample t-test with equal variance.                   

Dataset  No Over-Sampling SMOTE 

Haberman’s  
Survival 

No Over-Sampling - - 

SMOTE 6.39E−12 - 

FOST 1.37E−13 1.354E−03 

Pima Indian  
Diabetes 

No Over-Sampling - - 

SMOTE 1.736E−12 - 

FOST 1.901E−14 3.175E−05 

Glass Identification 

No Over-Sampling - - 

SMOTE 3.261E−06 - 

FOST 2.537E−07 1.195E−02 

Landsat Satellite 

No Over-Sampling - - 

SMOTE 1.243E−08 - 

FOST <2.2E−16 7.159E−04 

Yeast 

No Over-Sampling - - 

SMOTE 6.2E−03 - 

FOST <2.2E−16 2.867E−03 

 
ignored by the previous methods. The experimental results on the UCI Machine Learning Repository datasets 
showed that FOST achieved better G-mean and Sensitivity than the control method and SMOTE with p-values 
less than 0.05. It means that our method is also effective for various imbalanced data other than β-turns and 
β-turn types. 
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