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ABSTRACT 
Detailed knowledge of interfacial region between in-
teracting proteins is not only helpful in annotating 
function for proteins, but also very important for 
structure-based drug design and disease treatment. 
However, this is one of the most difficult tasks and 
current methods are constrained by some factors. In 
this study, we developed a new method to predict re-
sidue-residue contacts of two interacting protein do-
mains by integrating information about evolutionary 
couplings andamino acid pairwise contact potentials, 
as well as domain-domain interaction interfaces. The 
experimental results showed that our proposed me-
thod outperformed the previous method with the 
same datasets. Moreover, the method promises an 
improvement in the source of template-based protein 
docking. 
 
KEYWORDS 
Residue-Residue Contacts; Domain-Domain  
Interactions; Protein-Protein Interactions; Domain 
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1. INTRODUCTION 
Proteins take part in many biological processes such as 
DNA replication, gene expression, catalyzing metabolic 
reactions, and transporting molecules in living cells. To 
implement their functions, proteins often interact with 
other proteins to form permanent or transient protein 
complexes. The regions where proteins interact with each 

other are called protein interfaces. The knowledge of 
these regions is not only helpful for providing insights 
into the biological functions of the protein at proteomic 
level, but also for structure-based drug discovery and 
therapeutics development. Biophysical methods such as 
NMR (Nuclear Magnetic Resonance) and X-ray crystal-
lography can provide detailed information about struc-
ture of protein-protein complexes, but their costs are still 
high. Therefore, it is motivated to develop computational 
methods in characterizing protein-protein interactions 
(PPIs). 

The first approach that aims to investigate the inter-
face of interacting proteins is prediction of PPI binding 
sites. Developed methods of this approach [1-7] are often 
based on sequence, structure, and physico-chemical cha-
racteristics to discriminate the interface residues from 
non-interface residues in a single protein. However, one 
protein may have two or more interfaces and each of 
them has specificity to some partner proteins. Hence it is 
also needed to develop methods that can infer residue 
contacts: contacts between residues of two interacting 
proteins [8]. Docking methods are able to meet this de-
mand, but current docking methods require a time-con- 
suming computational process and are difficult to define 
the best solution [9]. In addition, the conformation 
changes of monomers during the formation of protein- 
protein complexes are also a challenge in them [8]. Re-
cently, some docking methods combined knowledge of 
PPI binding sites with the docking process to improve 
their performance [8,10], but their applicability is still 
limited. Because of these limitations, it is difficult to 
predict large protein complexes consisting of many 
structure units (e.g., domains and monomers) by docking *Corresponding author. 
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methods. In this circumstance, the development of new 
and better methods is therefore urgent [8]. 

Covariance-based methods of sequence analysis are 
other approaches to identifying interacting residues be-
tween interacting proteins or domains [11-14]. This ap-
proach relies on the premise that amino acid substitution 
patterns between interacting residues are constrained and 
correlated to each other. These couplings can be detected 
through mutual constraint of the amino acid substitutions 
in the two columns of a multiple sequence alignment. 
Solely depending on sequence information, this approach 
promises an application to the prediction of large-scale 
protein complexes, especially to predict transient ones. 
However, it requires a large set of binary PPIs or do-
main-domain interactions (DDIs) between protein mem-
bers of two protein or domain families. 

Recently, González et al. [15] introduced a method 
that relies on interaction profile hidden Markov model 
(ipHMM) proposed in [6] to predict residue contacts for 
two interacting protein domains. They used two ipHMMs 
to learn interaction sites from observed DDI interfaces of 
two interacting domain families and then applied the 
trained ipHMMs to predict interfaces of other unknown 
interacting domain pairs. The prediction results showed 
that their methods achieved high accuracy, true positive 
rate, and AUC (area under the ROC curve).  

In this study, we aim to develop a new method to pre-
dict residue-residue contacts (RRCs) in interacting do-
main pairs, which not only uses domain interfaces like 
[15], but also integrates the other constrains in interact-
ing residue pairs to improve performance of the predictor. 
In our novel method, the advantages of the previous re-
searches are combined. Firstly, it inherits the advantage 
of using ipHMM proposed by Friedrich et al. [6] to 
transfer interaction information among members within a 
protein (or domain) family. Secondly, it utilizes an ad-
vanced covariance-based method to capture the coevolu-
tion relationship of residue pairs of PPIs. Finally, it inte-
grates contact potentials of amino acids, which are often 
used in docking protein complexes and in protein struc-
ture prediction. The experimental results showed that our 
method outperformed the method of Gonzáslez et al. 
[15]. In addition, it accurately predicts residue contacts 
of hetero DDIs in the KBDOCK database [16], a source 
of the template-based protein docking. 

The rest of this paper is organized as follows: Section 
2 introduces frameworks of our novel method; Section 3 
presents how we processed data; Section 4 shows the 
experimental results and compares the performances of 
our proposed method with the previous method. Finally, 
conclusions are described in Section 5. 

2. METHOD 
Figure 1 illustrates the general framework of our method. 

It includes three main steps for data filtering, feature 
construction, and classification. Here, it is expected that 
proteins with similar sequences often interact in similar 
ways [17] and one domain family may contain one or 
more interfaces [16,18]. Hence, we assumed that interac-
tion between the query domain sequences are more likely 
to resemble DDIs that have the highest sequence identity 
with them. Based on this assumption, in the first step, we 
filtered out a subset of known interface DDIs such that 
the number of substitutions between their sequences and 
query domain sequences is smaller than a given thre-
shold t. In the second step, the filtered DDIs were used to 
estimate two ipHMMs. Then, interaction probability (in-
teractability) of residues, which belong to the query DDI 
and the filtered DDIs, were obtained from the estimated 
ipHMMs. Besides, we computed coevolution scores and 
contact potential scores for residue pairs based on direct 
coupling analysis algorithm (mfDCA) [19] and amino 
acid pairwise contact potentials (AAPCPs) [20], respec-
tively. Subsequently, feature vector of residue pairs were 
formed. In the last step, we trained an SVM classifier 
and then used it to classify class label for residue pairs of 
the query DDI. The final output is a characterized query 
DDI: residue pairs of two given domain sequences con-
tacting with each other. More details of our method are 
shown in two algorithms below. The algorithm 1 
represents how we filtered out DDIs and trained 
ipHMMs, while the algorithm 2 represents how we coor-
dinated information sources to construct feature vectors, 
and how we trained and tested a residue-residue contact 
classifier with SVM. In the next subsections, we first  
 

 
Figure 1. The framework of proposed prediction method. It 
includes three main steps: data filtering, feature construction, 
and classification. 
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describe more about ipHMMs and their applications 
tothe prediction of DDIs and residue contacts. We then 
describe how to calculate co-evolution scores and contact 
potential scores. 
 

Algorithm 1 Extracting DDIs and training ipHMMs 

# _ ()substitution distance  is a function that calculates the number 
of substitutions between two domain sequences.  

Given 

( ),M Nqd qd : a pair of interacting domain sequences belonging to 
two domain families M and N 

 : a set of d DDIs of two domain families M and N and their inte-
raction interfaces  

t : a threshold 

Find a set of DDIs Train_DDIs_ipHMM and two trained ipHMMs: 

MpHMM , NpHMM  

Train_ipHMM ( )( ), , ,M Nqd qd t ) 

1): Train_ DDIs_ipHMM = empty array 

2): for each DDIs ( ) ( )( ),k k
M Nd d ∈ , 1 k d≤ ≤  do 

3): Calculate distanceM ← ( )( )_ , k
M Mqd dsubstitution distance  

4): Calculate distanceN ← ( )( )_ , k
N Nqd dsubstitution distance  

5): if distance tand distanceM N t≤ ≤  then 

6): ( )_ _ k
M M MTrain ipHMM Train ipHMM d=   

7): ( )_ _ k
N N NTrain ipHMM Train ipHMM d=   

8): ( ) ( )( )_ _ _ _ ,k k
M NTrain DDIs ipHMM Train DDIs ipHMM d d= 

 

9): end if 

10): end for 

11): if number_element_of ( )_ _ 3Train DDIs ipHMM ≥  

12):Train MipHMM  by _ MTrain ipHMM , and  

Train NipHMM  by _ NTrain ipHMM  

13): end if 

Algorithm 2 Classifying residue contacts by SVM 

# _ _ ()get ipHMM score  is a function that calculates a residue’s 
ipHMM score (Section 2.1). 

# ()mfDCA  is a function that calculates co-evolution scores for 
residue pairs of two domain sequences (Section 2.2). 

# _ _ ()get statical potentials  is a function that calculates contact 
potentials for a residue pair (Section 2.3).  

#concat() is a function that concatenates features of a residue pair to 
form a feature vector. 

Given 

( ),M Nqd qd : the pair of interacting domain sequences 

Train_DDIs_ipHMM, MipHMM , NipHMM  obtained from the 
algorithm 1 

 : a set of d DDIs of two domain families M and N 

Find Characterized query domain sequences ( ),M Nqd qd  (i.e., 
residue contacts of domain sequences) 

RRC_Classifier (Train_DDIs_ipHMM, MipHMM , 

( )( ), ,N M NipHMM qd qd   

#Training 

1): l←count_number_elements (Train_DDIs_ipHMM) 

2): train Data = empty array 

3): for each DDIs ( )( ) ( ),k k
M Nd d ∈ Train_DDIs_ipHMM, 1 k l≤ ≤  

do 

4): Align ( )k
Md  to MipHMM , and ( )k

Nd  to NipHMM  

5): Calculate ( )_ k
MNtrain CoEvolutions ← ( ) ( )( ), ,k k

M Nmf d dDCA   

6): for each residue i of ( )k
Md  and residue j of ( )k

Nd  do 

7): Get _ Mtrain ipHMM ← ( ) ( )( )_ _ k
Md iget ipHMM score  

8): Get _ Ntrain ipHMM ← ( ) ( )( )_ _ k
Nd jget ipHMM score  

9): Get _ MNtrain CoEs ← ( ) ( )_ ,k
MNtrain CoEvolutions i j  

10): Get _ MNtrain staPotentials ← ( )_ _ ,i jget statical potentials  

11): Create train Sample←concat ( _ Mtrain ipHMM , 
_ Ntrain ipHMM , _ MNtrain CoEs , _ MNtrain staPotentials ) 

12): Add train Sample←assign_class_lablel (train Sample) 

13): train Data←train Data   train Sample 

14): end for 

15): end for 

16): Train a classifier by SVM and train Data 

#Testing 

17): Align Mqd  to MipHMM , and Nqd  to NipHMM  

18): Calculate _ MNtrain CoEvolutions ← ( ), ,M Nqd qdmfDCA   

19): for each residue i of Mqd  and residue j of Nqd  do 

20): Get _ Mtest ipHMM ← ( )( )_ _ Mqd iget ipHMM score  

21): Get _ Ntest ipHMM ← ( ) ( )( )_ _ k
Nqd jget ipHMM score  

22): Get _ MNtest CoEs ← ( ) ( )_ ,k
MNtest CoEvolutions i j  

23): Get _ MNtest staPotentials ← ( )_ _ ,i jget statical potentials  

24): Create test Sample←concat ( _ Mtest ipHMM , 

_ Ntest ipHMM , _ MNtest CoEs , _ MNtest staPotentials ) 

25): Predict label class for test Sample by the classifier 

26): end for 
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2.1. Interaction Profile Hidden Markov Models 
and Its Applications 

In a multiple sequence alignment of homologous proteins, 
the conserved regions manifest structure and function of 
protein sequences [21]. Profile hidden Markov model 
(pHMM) is a kind of hidden Markov model which con-
verts a multiple sequence alignment into a position-spe- 
cific scoring system to model protein families [22]. 
Based on pHMM, Friedrich et al. proposed ipHMM to 
predict binding sites for protein domains [6]. ipHMM 
embeds interaction information of protein domain se-
quences extracted from Protein Data Bank (PDB) to a 
domain family by dividing each match state of the 
pHMM into two states: that is interacting and noninte-
racting match states. Each interaction match state 
presents posterior interaction probability of residues 
aligned at that position. The ability of ipHMM is that it 
can transfer the binding site information among the 
member in the domain family. In other words, using only 
known binding sites of sequences to estimates its para-
meters, it can infer binding sites of other sequence 
members that are solely known as sequences. This ad-
vantage is inherited from pHMM and it makes ipHMM a 
scalable method. However, like other PPI binding site 
prediction methods, ipHMM is only applied tothe predic-
tion of binding sites in a single protein. 

Taking the advantages of ipHMM into account, 
González and Liao [23,24] applied it to predict binary 
DDIs (i.e., do two domain sequences interact?). The 
probability features in the ipHMM are extracted and then 
transferred into a Fisher vector, which represents the 
derivatives of the probability for a query sequence to 
belong to the domain family. Therefore, the feature vec-
tor of a pair of domain sequences is formed by the con-
catenation of two Fisher vectors. Then, the singular value 
decomposition and support vector machine were em-
ployed to do the feature selection and binary classifica-
tion of DDIs and nonDDIs. What is interesting in their 
method is that they used two leaning models ipHMM and 
SVM in tandem. ipHMM was used to transfer the bind-
ing site information among the member in the family, 
while the SVM was used to classify DDIs and nonDDIs. 
More recently, they extended their method to predict 
residue-residue contacts for a given binary interaction 
domain pair [15]. In [15], each residue in a domain se-
quence are represented by a Fisher vector of size 20 cor-
responding the number of amino acids such as: 

( ) ( ) ( )
1 2 20

log , log , , log
i i i

A A A
M M M

x x x
e e e

θ θ θ∂ ∂ ∂
∂ ∂ ∂

 , 

where ( )log x θ  is the probability of the domain x  
given the model θ . Here, θ  is a parameter of an 
ipHMM that represents a domain family. k

i

A
Me ,  

1 20k≤ ≤  is the emission probability of amino acid 
kA  at the interacting or noninteracting match state iM . 

Hence, a concatenation of two Fisher vector representsa 
feature vector for a pair of residues. In addition, their 
method uses solely binding sites information.  

Like [15], in this study, we also apply the approach of 
using the ipHMM to transfer binding sites among mem-
bers in a domain family and the SVM to classify residue 
contacts and nonresidue contacts. However, unlike their 
method, our method has the following differences: 
1) Introduce a threshold parameter t to filter out DDIs 

except the ones that have most similar interaction 
interfaces with the query domain sequences to train 
ipHMM.  

2) Integrate more interaction constraints for residue 
pairs, i.e. evolutionary couplings of PPIs and amino 
acid pairwise contact potentials, to improve the per-
formance of the predictor. 

In Section 4, the effect of the threshold parameter t 
and the improvement of the performance are shown. 

2.2. Direct Coupling Analysis 
In the analyses of protein structures and protein-protein 
interactions, covariance-based methods have been used 
for defining residue contacts in intra- and inter-proteins. 
The basic concept of covariance is defined as a relation-
ship between a correlated substitution pattern and resi-
due-residue contacts. If two residues of a protein or a 
pair of interacting proteins have an attractive interaction, 
the change of amino acid by substitution at one position 
may leads to the change at another position in order to 
maintain their contact [19]. For example, given a mul-
tiple sequence alignment (MSA) of a set homologous 
protein, the correlation of two columns i and j in the 
MSA can be defined by the mutual information 

( ) ( )
( ) ( )

1 2

1 2

1 2 1 2

20
, 1

,
, ln

k k
ij i jk k

ij ij i jk k k k
i i j j

f A A
MI f A A

f A f A=
=

×
∑ ,  (1) 

where ( )k
i if A , 1 20k≤ ≤  is the frequency of the 

amino acid k  in the column i; ( )1 2,k k
ij i jf A A  is the 

co-occurrence frequency of two amino acids 1k  and 1k  
at column i and column j, respectively. 

However, Eq.1 could not distinguish direct correla-
tions from indirect correlations [13,14]. Hence, Weigt 
and his colleagues recently have developed an algorithm 
named direct coupling analysis (DCA) based on maxi-
mum-entropy modeling to capture direct information of 
residue pairs [14,19]. Their experimental results indi-
cated that DCA method could obtain a large number of 
correctly predicted contacts, generalize the global struc-
ture of the contact maps between protein domains, and 
especially detect clear signals beyond intra-domain resi-
due contacts and inter-domain interaction in protein oli-
gomers, etc. Furthermore, the scalability of DCA method 
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is confirmed by the research group of Marks et al. [25,26] 
through the successful utilization of it to predict the three 
dimensional structure of membrane proteins, that is one 
of the main challenge in predicting protein structure. 
Another important application of the DCA is that it can 
be applied to define PPI interface of a pair of proteins 
rather than single protein [19]. Currently, DCA is ap-
plied to define the residue contacts for PPIs of the bac-
terial two-component signal transduction system [14, 
27]. 

Figure 2 and 3 illustrate how we applied mfDCA al-
gorithm proposed in [19] to obtain pairwise residue co- 
evolution scores. In Figure 2, sequences of observed 
DDIs between two domain families M and N are firstly 
aligned to the corresponding pHMM built in the Pfam 
database [28]. These aligned sequences are then conca-
tenated to form a multiple alignment (concatenated 
MSA). In Figure 3, two query sequences belonging to M 
and N are also aligned and concatenated to form an 
aligned query sequence, then put into the mfDCA. Based 
on the concatenated MSA (Figure 2), the mfDCA com-
putes the correlation between two residues i and j, which 
belong to the query sequences of domain families M and 
N, respectively. Note that the mfDCA returns both local 
correlation (i.e., mutual information, Eq.1) and global 
correlation (i.e., direct information). We used both of 
them as the features for residue pairs. 

2.3. Statistical Amino Acid Pairwise  
Contact Potentials 

Amino acid pairwise contact potentials are energy func-
tions derived from interfacial regions of protein struc-
tures by statistical analysis. They are collected and orga-
nized in AAindex database [20]. In this study, we chose 
12 contact potentials to integrate into our method as fea-  

tures for each residue pairs (Table 1). Each of chosen 
contact potentials is a matrix of size 20 × 20 where each 
entry presents energy relationship of a pair of amino ac-
ids. Since the contact potentials have different value 
ranges, we normalized them into the same scale before 
using. 

3. DATA PROCESSING 
For each pair of Pfam families, we obtained interaction 
information of DDIs from a database of 3D Interacting 
Domains (3did) [29] (as of December 2011). 3did used 
known 3D structure protein complexes in Protein Data 
Bank (PDB) to extract protein-protein interaction inter-
faces at domain and residue levels. A residue pair be-
longing to two domain sequences is considered to be 
contacting if it meets at least five contacts of vander 
Waals, electrostatic, and hydrogen bonds. Then, we 
mapped Pfam domain information organized in 3did to  
 

 
Figure 2. An example of concatenated multiple alignment 
formed by domain-domain interactions between two domain 
families M and N. The sequences of a set of DDIs are aligned 
to correspond pHMM built in the Pfam database and then are 
concatenated together to form a multiple alignment. Correla-
tion between two columns i and j in the concatenated MSA is 
evaluated based on the frequency of amino acids in a single 
column or pairs of amino acids in the two columns. 

 

 
Figure 3. Computational pipeline for pairwise residue-residue co-evolution scores. A given sequence pair of two 
domain families M and N is firstly aligned to their pHMMs and then is concatenated to form query concatenated 
sequence to put into the mfDCA model. Based on the concatenated MSA, the mfDCA will calculate direct in-
formation for residue pairs. 
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Table 1. List of contact potentials. 

ID Accession # Description 

1 BONM030101 
Quasichemical statistical potential for the 
antiparallel orientation of interacting  
side groups 

2 BONM030102 
Quasichemical statistical potential for the 
intermediate orientation of interacting 
side groups 

3 KESO980101 
Quasichemical transfer energy derived from 
interfacial regions of protein-protein  
complexes 

4 KESO980102 
Quasichemical energy in an average protein 
environment derived from interfacial  
regions of protein-protein complexes 

5 KOLA930101 Statistical potential derived by the  
quasichemical approximation 

6 MICC010101 Optimization-derived potential 

7 MIYS990107 Quasichemical energy of interactions in an 
average buried environment 

8 MIYS960103 Number of contacts between side chains  
derived from 1168 X-ray protein structures 

9 MOOG990101 
Quasichemical potential derived from  
interfacial regions of  
protein-protein complexes 

10 SKOJ000101 Statistical quasichemical potential with the 
partially composition-corrected pair scale 

11 SKOJ000102 Statistical quasichemical potential with the 
composition-corrected pair scale 

12 SKOJ970101 Statistical potential derived by the  
quasichemical approximation 

 
PDB database to retrieve domain sequences for DDIs. 

The DDIs in the 3did can be classified into three 
types: intra DDI is the DDI where two domains belong 
to a single protein chain, homo DDI is the DDI where 
two domains belongs to two different instances of the 
same protein chain, and hetero DDI is the DDI where 
two domains belongs to two different protein chains [16]. 
Because the intra DDIs may be caused by the formation 
of protein structure rather than by biological function, we 
eliminated them from our obtained DDI data. In addition, 
because of many duplicated DDIs existing in a PDB en-
try, we clustered the remaining DDIs between domain 
family pairs into groups that sequence members are at 
least 95% similar. In each groups, we chose a DDI as a 
representative.  

Furthermore, for satisfying statistical analysis, suffi-
cient amount of DDI data is needed in the calculation of 
the residue co-evolution score by DCA. Based on the 
analysis in [19], we kept domain family pairs that have at 
least 100 DDIs remaining after the data processing. Table 2  

Table 2. Datasets used for experiments. 

ID DomainM DomainN #DDIs 

1 C1-set C1-set 482 

2 C1-set MHC_I 124 

3 C1-set V-set 125 

4 GST_C GST_N 113 

5 Proteasome Proteasome 207 

6 V-set V-set 840 

7 adh_short adh_short 187 

8 Avidin Avidin 120 

9 CLP_protease CLP_protease 107 

10 ECH ECH 111 

11 Fib_alpha Fib_alpha 101 

12 GFP GFP 145 

13 Globin Globin 223 

14 Histone Histone 108 

15 Hormone_recep Hormone_recep 139 

16 Insulin Insulin 103 

17 Lectin_legB Lectin_legB 111 

18 MR_MLE_N MR_MLE_N 101 

19 Pkinase Pkinase 270 

20 Pkinase_Tyr Pkinase_Tyr 129 

21 PNP_UDP_1 PNP_UDP_1 253 

22 Rhv Rhv 101 

23 RVP RVP 118 

24 Thrombin_light Trypsin 142 

25 Trypsin Trypsin 146 

 
lists the names of 25 domain family pairs and the number 
of their DDIs that we used to do experiments. In the rest 
of this paper, each domain family pair is simply called a 
dataset. 

4. RESULTS 
To evaluate the performance of our methods, we con-
ducted experiments investigating the following three 
aspects.  
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1) The effect of the threshold t to the predicted results. 
2) The improvement of the performance comparing 

with the method proposed in [15] when we inte-
grated more information. 

3) The application of our method enriches the data 
source for template -based protein docking 

Additionally, we also attempted to know whether the 
transfer of posterior interaction probability of residues 
into Fisher vectors is more effective than directly using 
posterior interaction probability from the ipHMM (he-
reinafter called Fisher score and ipHMM score, respec-
tively). Hence, a combination of three different feature 
sets was tested. The first feature set consists of Fisher 
scores proposed in [15]. The second feature set consists 
of the ipHMM score, the co-evolution scores, and the 
contact potentials. The last feature set is the combination 
of the Fisher scores, the co-evolution score, and the con-
tact potentials. We named these three feature sets are 
named ipFis_RRC, ipCoEP_RRC, and ipCombine_RRC, 
respectively. 

For each dataset in Table 2 and for each value of the 
threshold t described in Section 2, we repeated cross va-
lidation procedure five times for three feature sets ip-
Fis_RRC, ipCoEP_RRC, and ipCombine_RRC based on 
the framework in Figure 1 and two algorithms described 
in Section 2. However, the number of possible residue 
pairs generated from two domain sequences is often 
large and highly imbalanced (i.e., the number of contact 
residue pairs is much smaller than the number of non-
contact residue pairs). Therefore, when the value of the 
threshold t is large, the number of filtered DDIs also in-
creases and the training set becomes so large. To tackle 
this problem, we decreased the size of training data in 
two approaches. The first approach is that we randomly 
took 10 DDIs from filtered DDIs to generate training 
data if the size of the set was greater than 10 (otherwise, 
all filtered DDIs were used). The second approach is that 
we firstly generated residue pairs from all filtered DDIs 
and randomly sampled noncontact residue pairs equal to 
the number of contact residue pairs. For short, we call 
the former sampling DDI case and the latter sampling 
nonRRC case. 

The predictive performance was evaluated using three 
measures: true positive rate (TPR), false positive rate 
(FPR), and the Matthew correlation coefficient (MCC). 
They are defined as: 

( ) ,TPR TP TP FN= +  

( ) ,FPR FP TN FP= +  

( ) ( ) ( ) ( )

MCC
TP TN FP FN

TP FN TP FP TN FP TN FN
× − ×

=
+ × + × + × +

 

where TP and TN are the number of contact residue 
pairs and noncontact residue pairs predicted correctly, 
and FN and FP are the number of contact residue pairs 
and noncontact residue pairs predicted incorrectly. The 
higher TPR (or MCC) is better, while the lower FPR is 
better. In addition, MCC is a balanced measure that takes 
all TP, TN, FP, and FN into account and therefore it is a 
good measure when the data is imbalanced. Here, be-
cause the datasets are imbalanced, we gave a primary 
significance to MCC in comparing the performance of 
methods.  

Figure 4 shows the averages of TPR, FPR, and MCC 
of predicted results of all three feature sets on 25 datasets 
with various values of the threshold tin both cases of 
sampling DDIs (Figure 4, left column) and sampling 
nonRRC (Figure 4, right column). In this figure, we 
made the following observations: 
1) The lower value of the threshold t leads to the better 

TPR, FPR, and MCC. This result demonstrates that 
the sequence distance affects to the predicted results. 

2) The TPRs in the case of sampling nonRRC is much 
better than the case of sampling DDIs. Otherwise, 
the FPRs of the sampling DDIs are better than the 
sampling nonRRC. 

3) The average MCCs show that the ipCoEP_RRC is 
the worst predictor, while the ipCombine_RRC is 
better than the ipFis_RRC. This suggests that trans-
ferring probabilities from ipHMM to the Fisher scores 
is better than directly using them. Moreover, the in-
tegration of residue co-evolution and contact poten-
tials improves the performance. It also confirms that 
our proposed method outperforms the one in [15]. 

In addition, we obtained some hetero DDIs of a pair of 
domain families C1-set/MHC-I from KBDOCK database 
as the queries and tried to predict their residue contacts. 
KBDOCK [16] is a database that integrates 3did, PDB, 
and Pfam into one, then uses spatial clustering technique 
to cluster binding sites for proteins. It extracts only hete-
ro DDIs of 3did for supporting knowledge-based protein 
docking. Then, we conducted the experiments of pre-
dicting residue contacts for hetero DDIs by the feature 
set ipFisCoR_RRC and sampling nonRRC with various 
values of the threshold t. Table 3 shows the prediction 
performance with the value of the threshold t = 0.5. It 
can be seen that our method can accurately predict resi-
due contacts for hetero DDIs. Hence, this demonstrates 
that the method may be utilized to enrich the data source 
of template-based protein docking. 

5. CONCLUSIONS 
In this study, a new method to predict residue-residue 
contacts was presented. The method follows an approach 
that has ability to aggregate the ipHMM and SVM for  
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(a)                                                    (b) 

  
(c)                                                  (d) 

  
(e)                                                          (f) 

Figure 4. Comparison of TPR, FPR, and MCC by three methods ipFis_RCC, ipCoEP_RCC, and ioCombine_RCC predicting 
results in two cases: (a), (c), and (e) for sampling DDIs; and (b), (d), and (f) for sampling nonRRC. 

 
inferring residue-residue contacts between interactive 
domains. The ipHMM was used to transfer binding site 
information among members in a domain family, while 
SVM was used to classify RRCs and nonRRCs. Besides 
binding site information, our proposed method utilized 
information of residue co-evolution and amino acid 
pairwise contact potentials to empower the classifier. It 
improved the performance of the predictor when com-
paring with the previous method. 

On the other hand, we restricted the calculation of 
co-evolution of residue pairs by the observed DDIs in 
3did. This may lead to decreasing its effectiveness to the 
performance and detracting the scalability of our method. 
These limitations could be overcome by collecting extra 
DDIs from binary PPI data. However, it is known that 
PPI data contain high false positive and high false nega-

tive, so we need to validate them before using.  
In addition, the current trends in docking methods in-

tegrate knowledge of protein interfaces to improve their 
performance. The initial results of applying our method 
to predict residue contacts of some hetero DDIs in the 
KBDOCK database demonstrate that our method promises 
to enrich the source of template-based protein docking. 
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Table 3. Prediction performance of hetero DDIs of the domain 
family pair C1-set/MHC-I in the KBDOCK (t = 0.5). 

Pdbid Chain1 Chain2 TPR FPR MCC 

1a1m B A 0.757 0.020 0.252 

1a9b B A 0.824 0.015 0.299 

1e27 B A 0.867 0.021 0.258 

1ldp L H 0.885 0.004 0.509 

1s7s B A 0.485 0.004 0.315 

1sys B A 0.833 0.027 0.197 

1xr9 B A 0.906 0.020 0.284 

1zt1 B A 0.880 0.005 0.445 

2bck B A 0.885 0.023 0.236 

2bvp B A 0.765 0.023 0.230 

2esv B A 0.912 0.025 0.266 

2fwo B A 0.800 0.004 0.518 

3bo8 B A 0.867 0.016 0.289 

3bp4 B A 0.931 0.021 0.270 

3bxn B A 0.939 0.021 0.292 

3gjf B A 0.733 0.014 0.261 

 
(ROIS), National Institute of Genetics (NIG). 
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