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ABSTRACT 

This paper proposes a Van der Pol (VDP) oscillator 
screening for peripheral arterial disease (PAD) in 
patients with diabetes mellitus. The long-term ele- 
vated blood sugar levels produce a high risk of pe- 
ripheral neuropathy and peripheral vascular disease, 
especially in the foot of a diabetic. Early detection is 
important, in order to prevent foot problems for dia- 
betic patients with PAD. Photoplethysmography (PPG) 
is a non-invasive method for the detection of blood 
volume changes in peripheral arteries. Because of 
changes in the resistance-compliance, the rise time 
and transit time for the PPG signals increase and 
change in their shape are highly correlated with PAD 
severity. In this study, the Burg autoregressive (AR) 
method is used to determine the characteristic fre-
quencies of the right- and left-side PPG signals. For 
bilateral frequency spectra, the VDP oscillator uses 
asynchronous signals. This produces damped sinu-
soidal responses and the oscillation overshoot (OS) is 
an approximating function only of the damped factor. 
This index is used to estimate the degree of PAD, in-
cluding normal the condition and diabetic patients 
with PAD. The results show that the proposed me- 
thod is efficient and more accurate in the estimation 
of PAD. 
 
Keywords: Van der Pol (VDP) Oscillator; Peripheral 
Arterial Disease (PAD); Burg Autoregressive Method; 
Oscillation Overshoot 

1. INTRODUCTION 

Type 2 diabetes is a chronic, metabolic disease that is 
prevalent in developed and developing countries, associ- 
ated with mortality and morbidity due to increasing risk 
factor for cardiovascular diseases. Patients with diabetes 
mellitus incur substantantial medical expenditure to con- 
trol their glycemic concentrations and complications. 
Peripheral arterial disease (PAD) is highly prevalent in 
patients with diabetes mellitus. However, it is usually 
underestimated by patients as well as physicians, espe- 
cially in the foot of diabetics, mostly contributing to the 
slow progress of arterial atherosclerosis in lower limbs. 
Manifestations of this peripheral arterial obstruction can 
vary from a symptom to total occlusion or gangrene of 
toe or foot [1]. Besides classic presentation of intermit- 
tent claudication, foot ulceration or diabetic foot may 
develop, signaling a significant degree of arterial occlu- 
sion and high risk for future amputation. PAD is respon- 
sible for 47% of amputations in diabetic patients [1]. In 
recent years, many imaging techniques, such as Doppler 
ultrasound, colour duplex ultrasound (CDU), X-ray an- 
giography, computed tomographic angiography (CTA), 
and magnetic resonance angiography (MRA), have been 
used to diagnose PAD, verifying the presence of a steno- 
sis inside the vasculature of diabetes [2-4]. Although 
these methodologies are reliable and highly accurate, a 
noninvasive and inexpensive technique for early diagno- 
sis and monitoring of PAD remains unsettled in hospitals 
and primary care settings. Modern ultrasound technique 
is well-developed, compact, fast, and free of irradiation, 
but they can only be correctly operated by a well-trained 
technician clinical physician. Therefore, this study pro- *Corresponding authors. 
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poses a non-invasive means of measurement and an 
automatic diagnostic algorithm to estimate the degree of 
PAD, purporting for screening and monitoring of lower 
limb vascular occlusion for high-risk groups like patients 
of diabetes, dyslipidemia, and hypertension, and the eld- 
erly. 

Photoplethysmography (PPG) is an optical and nonin- 
vasive technique, widely applied to measure oxygen sa- 
turation, monitor heartbeat, and detect blood volume 
changes in the vascular bed. The advantages of PPG like 
compactness fast, and easy-to-operate [5-8] take the form 
of a portable instrument for routine screening. PPG sig- 
nals can be obtained from multiple-site measurements 
including earlobe, forearm, fingertip, thumb, and toe [9- 
17]. A typical waveform of PPG is triphasic. Biphasic or 
monophasic form indicates a degree of arterial obstruc-
tion. 

In signal processing, time-domain and frequency-do- 
main analysis has been applied to assist diagnosis of 
PAD. Previous research reports that frequency parame- 
ters verify the differences between healthy and PAD 
subjects, using high-frequency and low-frequency char- 
acteristics [5-7,15]. The most common parameters of 
PPG waveforms are transit time, amplitude, and shape 
changes, which are helpful for evaluation of arterial com- 
pliance single or bilateral measurements of lower limbs. 
Previous research reports that these timing parameters 
and shape characteristics reflect the degree of vascular 
stenosis, contributing to time delay, damping, amplitude 
reduction, and changes of resistance and compliance pro- 
perties of occlusive peripheral arteries, with variations 
depending on a subject’s age and measurement sites [11, 
13,15]. Therefore, an alternative for applying PPG to 
evaluate PAD is proposed, including bilateral or multi- 
channel PPG techniques resulting from the findings of 
significant bilateral asymmetry and increased difference 
in timing and frequency parameters along with increased 
PAD severity [13-15,18]. Multi-channel measurements 
were used to study the age-related changes in the char-
acteristics of PPG shape at the ear, finger, and toe sites. 
The largest changes with age were seen at the ear and 
finger sites for the systolic rising edge region, and the 
finger site for the dicrotic notch region. The smallest 
changes with age are for the toe site [9-11]. Accordingly, 
in this experiment, bilateral measurement at the right and 
left great toes was designed for PAD estimation. 

The objective of this study was to construct a fre- 
quency-based Van der Pol (VDP) oscillator to evaluate 
the degree of PAD in patients with diabetes mellitus, and 
apply Burg autoregressive (AR) method as a parametric 
method for time-domain and frequency-domain signal 
processing [19-24], purporting to smooth the spectra and 
find characteristic frequencies from the PPG signals re- 
corded. Given a bilateral frequency spectrum, a second- 

order VDP system has a step response that is character- 
ized by damped oscillation [25-28]. The oscillation over- 
shoot (OS) is an approximating function of the damped 
factor, and determines the severity of PAD: normal con- 
dition (Nor), mild-to-moderate disease (MD), and severe 
disease (SD). With twenty-one subjects, the test results 
demonstrate that the proposed method is efficient and 
accurate in the estimation of PAD in the feet of diabetics. 

2. FREQUENCY SPECTRA ANALYSIS 

In signal processing of plethysmographic waveforms, 
higher frequency characteristics are preferred for fre- 
quency analysis to identify normal pulse waves [5-7]. On 
the other hand, low frequency is used to characterize 
PAD in diabetic patients. Both frequency-based methods, 
such as Fourier transforms (FTs), and frequency spec- 
trum methods, are the non-parametric techniques that are 
used to preprocess the PPG signals. They are disadvan- 
tageous for their spectral leakage effect, because of the 
size of sampling window. Wavelet transform is a para- 
metric method and provides better time-frequency reso- 
lution than non-parametric methods, and would be a 
promising method to extract features from non-stationary 
biosignals. However, significant frequencies are extracted 
at specific wavelet coefficients with different wavelets, 
and several frequency bands are analyzed using the cas- 
caded low-pass or high-pass filters and down-sampling/ 
up-sampling operations through trial procedures. 

In literatures [17-20], the Burg autoregressive (AR) 
method is able to derive the frequency spectra by fitting 
an AR model of a given specific order. Its advantages 
over above-mentioned methods include smooth spectra, 
high frequency resolution, stable AR model, and compu- 
tationally efficient. The Burg AR method is also a para- 
metric method for time-domain and frequency-domain 
signal processes. It could smooth spectra in comparison 
with frequency-based methods to find the characteristic 
frequencies with distinguishing peak central/main spectra 
by fitting an AR model of a given specific order. 

The frequency spectra of PPG signals is expressed as a 
linear combination of the previous samples and the re- 
sidual values, resi. For a discrete set of n sampling points, 
P coefficients are used to approximate the original data, 
i, 1, 2,3, ,i n  , where  is a discrete frequency spec- 
trum of the PPG signal. The residual value is assumed to 
be independent of the previous samples and is calculated 
by [20,21] 

1

, 1,2,3, ,
P

i i p i p
p

res i n   


           (1) 

where i is the frequency spectrum of the PPG signal, P 
is the order of the AR model, and , and 
p are the coefficients of the AR model. 

1,2,3, ,p P 
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The optimal coefficients, p, are used to minimize the  

square error, , between the original data   2

in
E res 

and the approximated data. For the forward and back- 
ward linear prediction, the object is to minimize Fp and 
Bp, as shown in [22] 
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where t, t[p, n], is a linear weighted combination of p 
previous sampling data, and t, t[0, ntp], is a linear 
weighted combination of p subsequent sampling data. 
The sum of the residual energy (SORE) in stage p is Ep = 
Fp + Bp. The Levinson-Durbin recursion algorithm is 
used to minimize the SOREs to estimate the model coef- 
ficients. The coefficients of p, p[1, P], are stored in a  

vector  and an inverted 

order vector . Therefore,  

T
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the recursion formula is the following [22] 
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The concept of Burg AR method adjusts the parameter 
 to minimize the SORE Ep using the final prediction 
error criterion (PEC) [23,24]. Then update the Ap and 
update fp(i) and bi(i) as 

     1 1p p pf i f i b i p             (6) 

     1 1p p pb i b i f i p             (7) 

The optimal coefficients p are chosen to minimize the 
squared error, whereas the forward and backward linear 
prediction equations attempt to minimize Fp and Bp. The 
entries of i represent samples of a discrete data, and P is 
the integer order of an AR model, used in estimating the 
power spectral density (PSD), log(i)/max{|log(i)|} 
dB/kHz, . This property of the AR model 
is used to smooth the frequency spectrum, which tends to 
favor the peaky spectra. Qualitatively different PSDs are 

observed by normalized process, which different values 
within the specific ranges of normalized log-magnitude 
and scaled frequency. Therefore, PSD can be used to 
identify the characteristic frequencies and magnitudes in 
each frequency spectra.  

1, 2,3, ,i  

In the physiological measurements, PPG signals were 
obtained using optical sensors (940 nm near infrared, 
spectral bandwidth: 45 nm) with 1 KHz sampling rate, as 
shown in Figure 1(a). The dashed line represents a nor- 
mal subject and the solid line represents a diabetic pa- 
tient [14,27,28]. It was found that the Fourier transform 
based estimation methods has some drawbacks, such as 
spectral leakage into sidelobes and characteristic spectral 
broadening, as shown in Figures 1(b) and (c). In order to 
find characteristic frequencies, the Burg AR method is 
used to estimate the PSD by fitting an AR model with 
given specific orders, P = 8, 12, and 16, to the PPG sig- 
nals. The characteristic frequencies of the PPG signals 
easily found in the frequency spectra between 0 Hz and 
500 Hz. The PSDs are shown in Figures 1(d)-(f). The 
peaky spectra for diabetic subjects and the smooth fre- 
quency spectra for normal subjects fall into different 
frequency bands, respectively. Depending on these bands, 
frequency-based parameters provide information for the 
estimation of PAD in diabetic patients. 

3. THE ESTIMATION OF PERIPHERAL 
ARTERIAL DISEASE (PAD) SEVERITY 

3.1. Feature Extraction Using the Van der Pol 
(VDP) Oscillator 

PAD can develop in the arteries of most visceral organs 
and extremities. Atherosclerosis in the brain and heart 
draws much attention for clinical diagnosis and interven- 
tion; by contrast, lower limb PAD is underestimated by 
the patients, even in diabetics whose progress of vascular 
atherosclerosis is accelerated by the metabolic disease. 
PPG is a noninvasive technique capable to optically gen- 
erate a plethysmograph at great toes, index fingers, and 
ears, and monitor blood pressure, blood oxygen satura- 
tion (SaO2), and blood volume changes in an artery or a 
vascular bed of tissue. A PPG signal consists of AC (Al- 
ternating Current) and DC (Direct Current) components. 
The AC component reveals physiological information, 
such as cardiac synchronous changes in the blood vol- 
ume with each heartbeat and vasomotor activity [8-10, 
15]. Time-domain and frequency-domain parameters 
have been used to detect the degree of PAD severity for 
diabetic patients with normal condition (Nor), mild-to- 
moderate disease (MD), and severe disease (SD). For the 
time-domain parameters, ECG R-peak as a timing refer- 
ence is used to obtain pulse rise time (RT), pulse transit 
time (PTT) from R-peak to pulse foot (PTTf), pulse tran- 
it time from R-peak to pulse peak (PTTp), and PPG am-  s  
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Figure 1. (a) Time-domain PPG signal analysis for normal subjects and diabetic subjects, (b) and (c) PSD estimation using the 
frequency spectrum method, (d), (e), and (f) PSD estimation using the Burg method for an AR model with orders P = 8, 12, and 16 
for normal subjects and diabetic subjects. 
 
plitude (plus foot-to-plus peak amplitude), as shown in 
Figure 2(a). The timing parameters, PTT and RT, are 
prolonged as due to the resistance of peripheral vessels 
increases, and the amplitude (AMP) and shape of pulse 
waves are smoothed [11]. Parameters, PTT and AMP, 
and shape differences vary with ages for individual sites, 
but the smallest variations with age occur at the great toe 
sites [9-15]. Thus, bilateral differences in the timing pa- 
rameters, ∆PTTf, ∆PTTp, and ∆RT, provide time delay 
information for the estimation of PAD. Bilateral differ- 
ences in frequency spectra are similar and are used to 
distinguish between the normal subjects and diabetic 
subjects. 

 OPEN ACCESS 

This study uses frequency-based parameters to esti- 
mate the degree of PAD. The PSDs are estimated using 
the Burg AR method. The Van der Pol (VDP) system is 
used to quantify the features of the right- and left-side 
PSDs. It is an oscillator with nonlinear damping that is 
defined by a second-order differential equation. The 
formulation has the form of an autonomous system with 
two state variables. The state equations are evaluated as 
below [23-26]: 
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              (8) 
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    (9) 

where r() and l() are the functions with respect to 
frequency , r() is the PSD of the right-side PPG sig- 
nal, except for  = 0, and l() is the PSD of the left- 

side PPG signal, right and left are denoted by the sub- 
scripts r and l. The parameter, , is a control parameter, 
and  > 0 reflects the degree of nonlinearity of the sys- 
tem [21]. When the term, (r())2, becomes dominant, 
the VDP system becomes a nonlinear equation with posi- 
tive damping. The dynamics of the system are stable and 
are restricted to a fixed point.  

Equation (9) gives the frequency of self-oscillation, as 
determined by a real parameter, , and demonstrates 
dissipation or damping. If the parameter,  = 0, then 
Equation (9) reduces to that for a simple harmonic oscil- 
lator. When the PSDs, r() and l(), are different (not 
symmetrical), l() provides the damping in the VDP 
oscillator that results in self-sustained oscillations. The 
multiple peaks and amplitudes of these peaks demon- 
strate the nonlinearity of the frequency spectrum. PSD 
l() is used to determine the response of the VDP 
oscillator. The VDP system demonstrates a damped si- 
nusoidal response for a general second-order system. The 
transient response consists of a sinusoidal oscillating 
waveform with an exponentially decaying amplitude. 
The sinusoidal frequency is called the damped frequency 
of oscillation.  

In order to evaluate the discrete frequency spectrum, 
the PSD is estimated using the Burg AR method. As- 
suming a set of n points from the PSD, i, , 
(n = 500 in this study), the continuous VDP system can 
be modified as a discrete VDP system. Therefore, the 
discrete VDP system that is proposed for the estimation 
of PAD, as 

1, 2,3, ,i n 
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where the index, i, is the integer scale of the frequency, 
. A bifurcation is a fundamental change in 

the nature of a solution. For different initial conditions, 
1, 2,3, ,i  

 1r i   and  1l i  , the output,  l i , given by 
Equation (11), has a step response that is characterized 
by a damped oscillation in the frequency domain. It ex- 
hibits a rich variety of nonlinear dynamic behaviors and 
generates the limit cycle for small values of , and de- 
velops into relaxation oscillations when  becomes large. 
If the VDP oscillators use different PSDs, the oscillations 
become unstable, as the amplitudes of spectra peaks in- 
crease. The step response of the bilateral PSDs is shown 
in Figure 2. A second-order step response is character- 
ized by damped oscillations. From Figure 2(c), the per- 
centage overshoot OS% is given by the following Equa- 
tion [29]: 

max min

min

%
c c
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c

 
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100%         (12) 

The percentage overshoot OS% defines the amount by 
which the oscillation overshoots the minimum value cmin 
= b. The term cmax is determined by curve fitting the 
function at the maximum value, as [29] 
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For the step response, substituting Equations (13) and 
(14) into Equation (12) gives 

  21
% exp 1 100%OS

b
           (15) 

Equation (15) demonstrates that the percentage over- 
shoot is a function only of the index, , and allows the 
determination of the OS%, given the index, . The in-
verse of the equation allows a solution for  given the 
OS%. The inverse is given by 

 
 2 2

ln %

ln %

b OS

b OS


 


  
          (16) 

The relationship between the index, , and the multi- 
ple characteristic frequencies is clearly seen. The higher 
the value of , the more oscillatory is the response in the 
frequency-domain from Equations (10), (11), (15), and  

 
(a) 

 
(b) 

 
(c) 

Figure 2. (a) ECG and PPG signals and pulse landmarks, (b) 
The bilateral PSD functions for right-side and left-side PPG 
signals, (c) The damped sinusoidal response. 
 
(16). The increase in the resistance of peripheral vessels 
produces multiple characteristic frequencies, so this 
study uses the index, , is used to estimate the degree of 
PAD. The various ranges of the index  are obtained 
from specific subjects, including those with normal con- 
dition (Nor), mild-to-moderate disease (MD), and severe 
disease (SD). 

3.2. Physiological Measurement 

PPG signals were collected from twenty-one subjects in 
a hospital (Chi-Mei Medical Center, Department of In- 
fectious Disease and Immunology, Tainan City, Taiwan). 
The subjects, aged from 24 to 65 years, were divided into 
three groups: Nor, MD and SD, in terms of diabetic dis- 
ease. In a clinical examination, the ABPI (Ankle-Bra- 
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chial Pressure Index) was used as an early detection 
method to decide the degree of PAD. The degrees were 
categorized by clinical manifestations, ABPI values, and 
angiographic findings. For preliminary PAD estimation 
using the APBI, the indices signify ABPI ≥ 0.9 for nor- 
mal subjects and diabetic subjects with MD, ABPI < 0.9 
(at least one leg) for diabetic subjects with SD, as shown 
in Table 1 [28-30,32]. Despite the non-invasive nature of 
the examination to assess death rate and cardiovascular 
diseases in high-risk patients, the accuracy of the ABPI 
measurement is reduced in patients with calcified blood 
vessels, caused by conditions such as diabetes and chro- 
nic renal failure. However, measurement of the ABPI 
must be repeated several times (>10 minutes) and is of 
limited use in routine vascular screening in a primary 
care setting [13].  

Bilateral timing parameters could offer a quick as- 
sessment for the screening of PAD in primary care. Bi- 
lateral measurements simultaneously acquire PPG sig- 
nals from the right and left big toes. The absolute timing 
differences are used to reference one side of the body 
(right side) with the contra-lateral side (left side), in or- 
der to calculate the parameters, PTTf, PTTp and RT, 
so various ranges are obtained for specific groups. Each 
parameter has a mean value and a specific range between 
maximum (Max) and minimum (Min) values. A com- 
parison of the bilateral differences demonstrates that 
these parameters increase as the severity of the disease 
increases. Therefore, clinical physicians would consider 
timing differences to be a good reference for PAD as- 
sessment. The three groups are divided into ten normal 
subjects (No. 1 - No. 10), eight MD diabetic subjects (No. 
11 - No. 18) and three SD diabetic subjects (No. 19 - No. 
21), as shown in Table 1. 

For these twenty-one subjects, Equations (12) and (16) 
were used to compute the index, . The indices, , also 
represent the specific ranges for diabetic patients, non- 
diabetic patients with PAD and normal subjects as a con- 
trol, as shown in Figure 3. Severe PAD causes more 
asymmetrical PPG signals and the damped oscillation 
increases as PAD increases, which is caused by the re- 
sistance of the peripheral vessels. Therefore, the index, , 
also increases in diabetic patients with increased PAD. 
The index, , is less than 0.64 for normal subjects with 
an ABPI ≥ 0.9, from 0.64 to 0.65 in diabetic patients 
with an ABPI ≥ 0.9 and greater than 0.65 for diabetic 
patients with an ABPI < 0.9. The standard indices, , are 
established, as shown in Table 1. The sensitivity is greater 
than 85.7%, and positive predictivity is also greater than 
80.0% to quantify the performance of the proposed mea- 
surement method. These specific ranges also confirm the 
degree of PAD noted by clinical physicians. The trend in 
the degeneration of PAD is clearly demonstrated. De- 
pending on the severity of the PAD assessment, these 

specific ranges provide key information for the evalua-
tion of the degree of PAD. 

4. EXPERIMENTAL RESULTS AND 
DISCUSSION 

4.1. Experimental Setup 

Using the bilateral non-invasive measurement, two opti- 
cal sensors (reflection mode), consisting of light sources, 
photo-detectors, trans-impedance amplifiers, and high- 
pass filters, were placed at the right and left great toes. 
Near infrared (NIR) has large differences in the extinc- 
tion coefficients of deoxyhaemoglobin and oxyhaemo- 
globin. Thus, the light source 940 nm NIR was chosen in 
this optoelectronic design. The reflection mode, includ- 
ing light source and photo-detector, was positioned side 
by side with 5 mm spacing, and the light is directed 
down into the skin and is backscattered from the skin 
adjacent to the photo-detector [10]. Two optoelectronic 
probes (circle shape, diameter: 20.0 mm, height: 8.2 mm) 
were synchronized using a data acquisition controller. 
PPG signals are captured at a sampling rate of 1 kHz for 
15 minutes [30]. A DAQ card (National Instruments 
DAQ Card, 16 Channels, 1.25 MS/s) served as an ana- 
log-to-digital (A/D) converter between the optical meas- 
urement system and a computer. Locating each pulse 
foot (PF)-pulse foot (PF) interval of PPG signal, 800 
sampling data were acquired within a sampling window. 
In this study, we used the Burg AR method to estimate 
the PSDs of PPG signals. The suitable AR order can be 
used to identify the peaky spectra. Figure 4 shows the 
variation of residual energy versus AR model order. We 
use model orders, from order 1 to order 30, to calculate 
the SORE. To obtain the suitable order, Akaike’s final 
prediction criterion is used to select the model order 
[22,24]. For considering convergent condition, we con- 
sidered SORE ≤ 10−1 to stop the Burg AR algorithm. 
Then, the Burg method using model order P = 8 with 
optimal coefficients was used to estimate the PSDs.  

The VDP oscillator shows the step responses in the fre- 
quency-domain, as shown in Figure 5. The oscillations of 
the step responses are smaller than those for normal sub- 
jects. The higher the value of , the more oscillatory the 
response are important information for the degree of 
PAD assessment, which may be useful for determining the 
trends of PAD in routine examination. The proposed algo- 
rithms were developed on a PC AMD Celeron (R) CPU 
2.40GHz with 2.39 GHz, 224 MB RAM GHz with 1.75 
GB RAM and Matlab software. Portable optical meas-
urement was used to obtain the PPG signals in the labo-
ratory and medical center. To demonstrate the effective-
ness of the proposed method, the database of 21 subjects 
were used to design the gold standard of PAD assess-
ment using the VDP oscillator from selected 6 subjects      
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Table 1. The ABPI, bilateral differences in timing parameters [30], and index  for PAD estimation. 

ABPI ≥ 0.9 
(10) 

0.5 ≤ ABPI < 0.9 
(8) 

ABPI < 0.5 
(3) 

Normal subject Diabetic subject Diabetic subject 

                     Subject  
                      Category 

Parameter 
Normal (Nor) Mild-to-moderate disease (MD) Severe disease (SD) 

PTTf (ms) 
Mean 

Min-Max 
2.58 

0.3 - 7.4 
9.2 

5.1 - 23.7 
29.2 

23.6 - 34.8 

PTTP (ms) 
Mean 

Min-Max 
7.3 

0.4 - 22.3 
22.6 

14.3 - 56.5 
52 

46.2 - 57.8 

RT (ms) 
Mean 

Min-Max 
6.84 

1.3 - 15.6 
14.6 

3.4 - 32.3 
23.4 

11.5 - 35.3 

Index  
Mean 

Min-Max 
0.616  0 .014 
0.597 - 0.636 

0.645  0.002 
0.640 - 0.647 

0.668  0.012 
0.652 - 0.681 

Note: The values of PTTf, PTTp, and RT are absolute values. (1) f RfPTT PTT PTT   Lf , (2) p Rp LpPTT PTT PTT   , (3) R LRT RT RT   , where 

suffix words R and L are defined right and left legs, (4) ABPI: it is calculated using the highest of the right and left ankle systolic blood pressure divided by the 
highest of the right and left arm brachial systolic blood pressure [13]. 

 

 

 

Figure 3. The specific ranges of the index  in normal subjects 
and diabetic patients with PAD. 
 

 

Figure 5. The step responses of the VDP Oscillator for severe 
disease (SD), mild-to-moderate disease (MD), and normal con- 
dition (Nor). 
 
and diabetic patients with PAD were tested using physio- 
logical measurement. There were two normal subjects 
(No. 1 and No. 2), four diabetic patients, two of which 
were MD subjects (No. 11 and No. 12) and two of which 
were SD subjects (No. 19 and No. 20). The preliminary 
diagnosis and ABPI classification were performed by 
clinical physicians and the results are shown in Table 2. 
However, the ABPI is significantly lower for normal 
subjects and diabetic patients with MD (ABPI ≥ 0.9). For 
bilateral PPG measurement, two optical sensors were 
placed on the right and left great toes and PPG signals 
were obtained from the three groups, as shown in Figure 
6. The transit time is prolonged for an occluded leg and 
gradually increases as the disease becomes more severe, 
as seen in the interval between the dashed lines. For ex- 
ample, the bilateral-timing differences are 

Figure 4. Variation of residual energy versus AR model order. 
 
(three groups: Nor, MD, and SD) were used to test, as shown 
in Table 2. The result demonstrates the computational 
efficiency and accurate diagnosis achieved by this study. 

4.2. Experimental Results 
� Normal Subject-No. 1: PTTf = 2.733, PTTp = 

1.977, RT = 3.133, In order to verify the proposed method, normal subjects  
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Table 2. The experimental results of PAD estimation. 

Mean values of bilateral differences 
Subject 

No. 
PTTf (ms) PTTp (ms) RT (ms) 

ABPI
R-Leg

ABPI
L-Leg

Clinical 
physician
decision

Bilateral
timing

difference

ANFIS  
decision 
(output) 

Fuzzy logic 
decision 
(output) 

The proposed
method 

(index ) 

1 2.7330%  7.05% 1.9970%  16.26% 3.1330%  0.19% 1.0650 1.1138 Nor Nor 
Nor 

(0.1988) 
Nor 

(0.1750) 
Nor 

(0.6199) 

2 1.1730%  2.78% 5.8700%  4.05% 4.6950%  3.97% 1.1404 1.1333 Nor Nor 
Nor 

(0.1990) 
Nor 

(0.1620) 
Nor 

(0.6223) 

3 2.3330%  12.07% 3.6660%  5.44% 13.330%  3.97% 1.1440 1.1101 Nor Nor 
Nor 

(0.1978) 
*Failure 

Nor 
(0.6336) 

11 15.321%  16.92% 17.286%  10.50% 1.9640%  4.05% 1.1788 1.2357 MD MD 
MD 

(0.4000) 
MD 

(0.4000) 
MD 

(0.6451) 

12 6.3850%  13.44% 16.923%  16.76% 17.556%  0.39% 1.2735 1.3076 MD MD 
MD 

(0.3988) 
MD 

(0.3830) 
MD 

(0.6478) 

13 23.667%  13.62% 33.333%  7.58% 32.833%  16.63% 1.0714 1.0446 MD *SD 
MD 

(0.4000) 
MD 

(0.4020) 
MD 

(0.6476) 

19 33.072%  10.06% 48.500%  14.18% 15.428%  8.57% 1.0817 0.8941 SD SD 
SD 

(0.6000) 
SD 

(0.6000) 
SD 

(0.6733) 

20 23.606%  13.64% 57.700%  6.05% 35.000%  10.83% 1.0442 0.8945 SD SD 
SD 

(0.5988) 
*MD 

(0.4000) 
SD 

(0.6810) 

Note: ANFIS and Fuzzy Logic: 1 output variable with 3 triangular membership functions, the center values of the functions are 0.2, 0.4, and 0.6 for Nor, MD, 
and SD. 

 

 

Figure 6. Time-domain PPG signals of the three groups of patients. 
 
� MD Subject-No. 11: PTTf = 15.321, PTTp = 

17.286, RT = 1.964, 
� SD Subject-No. 19: PTTf = 33.072, PTTp = 48.500, 

RT = 15.428. 
The shape of the PPG signals for a SD subject with a 

unilateral occluded leg is substantially different. The 
PPG signals at the right and left sites are asynchronous in 
the time-domain. According to the standard established 
in Table 1 [30], the degree of PAD from the preliminary 
estimate is confirmed, as shown in Table 2. However, 
the ABPI and bilateral timing differences are not the only 

parameters that determine classification. 
Using twenty bilateral PPG signals, the diagnostic re- 

sults for six subjects are shown in Figure 7, where the 
horizontal axis is the number of PPG signals and the ver- 
tical axis is the index, , for each PAD assessment. The 
Burg AR method is used to estimate the frequency spec- 
tra from the bilateral PPG signals. Using the bilateral 
frequency spectra, the VDP oscillator shows the dynamic 
characteristics to be step damped oscillation responses 
for diabetic patients with PAD. In this study, the index, , 
is a parameter that represents the degree of PAD that is    
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Figure 7. Different indexes  for separating the diabetic PAD from the normal subjects. 
 
assessed using the VDP oscillator, for the Nor, MD and 
SD groups. A comparison of the results shown in Figure 
7, demonstrates that the index, , is a significant pa- 
rameter for the separation of diabetic patients with PAD 
from normal subjects. According to the standard values 
in Table 1, the values are centered at 0.645 (±0.002) for 
MD subjects and are greater than 0.65 for SD subjects 
(0.668 ± 0.012). Within these specific ranges, the index, 
, can also be used to estimate the degree of PAD. 

Experimental tests show that the proposed VDP oscil- 
lator can be used to assess the degree of severity and can 
be used to monitor the trends in PAD degeneration at the 
borders between Nor and MD (subjects No. 3, No. 6, and 
No. 12), or between MD and SD (subject No. 21). In this 
study, the index, , is used to monitor the trends in the 
degeneration of PAD to allow early detection or screen- 
ing and monitoring. Diabetes mellitus is a chronic dis- 
ease that may require therapy to prevent further problems. 
In particular, for the feet of diabetics, adequate treatment 
may improve the risk profile of chronic complications. 
This research provides a potential method for early de- 
tection, monitoring, and prevention of PAD by early in- 
tervention to control its risk factors. 

4.3. Discussions 

Table 2 shows a comparison of the experimental results 
using the proposed method, bilateral timing difference, 
Fuzzy logic decision, and an adaptive network based 
fuzzy inference system (ANFIS). Using the bilateral 
timing difference, the timing parameters, PTTf, PTTp 
and RT, are used to estimate the degrees of PAD sever- 
ity. For example, subjects, No. 2 and No. 12, were con- 
firmed as a healthy subject and a MD diabetic patient, 
respectively. According to the Table 1, the timing pa- 
rameters, ∆PTTf = 6.3850 and ∆PTTp = 16.923, signify 

an overlap between Nor (standard: ∆PTTf = 0.3 - 7.4 and 
∆PTTp = 0.4 - 22.3) and MD (standard: ∆PTTf = 5.1 - 
23.7 and ∆PTTp = 14.3 - 56.5). If there is overlapping of 
the ranges of the timing parameters, the inferences are 
affected by the timing reference (heart rate) and meas- 
urement errors. This demonstrates that timing parameters 
alone are insufficient for the estimation of the degree of 
PAD. The clinical physicians decided the possible degree 
using a combination of the variances in the three timing 
parameters. However, this examination method required 
off-line analysis to obtain a diagnosis. 

According to the Table 1, each timing parameter has a 
mean value and a specific range between the minimum 
(Min) and maximum (Max) values. A triangular mem- 
bership function is parameterized by its triplet values 
(Min, Mean, Max) and is decomposed into three fuzzy 
partitions, defined as Nor, MS and SD, as shown in Fig- 
ure 8. Therefore, the Fuzzy logic decision has three input 
variables with nine triangular membership functions and 
1 output variable with three triangular membership func- 
tions. The fourteen linguistic Fuzzy rules for the three 
degrees are determined by professional physicians over 
many examinations, as shown in Table 1. Inference uses 
the centre of the mean of the maximal defuzzifier. For 
adaptive and self-organizing applications, the literature 
[30,31,33,34] also cites the gradient descent method, the 
least-square algorithm and the modified least-square al- 
gorithm for training a network structure and network 
parameters. The ANFIS structure is immediately deter- 
mined after the presentation of each input-output pair 
and the inference rules. Updating of the parameters is 
then performed after the network structure has been de- 
cided. In this study, the least-square algorithm is used to 
tune network parameters. For the same subjects, the 
overall results are shown in Table 2. The sensitivity is 
76.2% using Fuzzy logic deci ion. The ANFIS has more  s 
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Figure 8. The value of certainty degree versus index, , and bilateral timing 
parameters for separating the diabetic PAD. 

 
than 90% of sensitivity, but the adaptive mechanism is 
difficult implement in hardware devices, because of 
needs to assign and update network parameters [35]. 

The experimental results validate the effectiveness of 
the proposed VDP oscillator. A comparison with the pro- 
posed method and other examination methods, the results 
of the 21 patients demonstrate the 85.7% of sensitivity 
and allow early detection between Nor and MD or be- 
tween MD and SD. However, the trends of the index, , 
increases as the PAD gradually becomes severity. The 
proposed screening method provides a finding to evalu- 
ate the orders of PAD for a routine examination. Its ad- 
vantages are summarized as follows. 
 The Burg AR method overcomes spectral leakage and 

smoothes the spectra to determine the characteristic 
frequencies. 

 The proposed algorithm for the VDP oscillator is eas- 
ily implemented in hardware devices, such as em- 
bedded system (ES) and field-programmable gate ar- 
ray (FPGA) chips. 

 The proposed VDP oscillator can also be imple- 
mented using analog electronic circuits. 

The proposed method potentially allows the use of a 
portable monitor for the estimation of diabetic foot PAD 
in daily homecare. 

5. CONCLUSION 

The Van der Pol (VDP) oscillator was able to detect pho- 
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toplethysgraphic signals to estimate severity of periph- 
eral arterial disease (PAD) in patients with diabetes mel- 
litus. In addition, bilateral non-invasive optical sensors 
were helpful for acquiring the PPG signals at the right 
and left great toes, combined with the Burg AR method 
for determining the frequency spectra of the right- and 
left-side PPG signals. Using the bilateral frequency spec- 
tra, the VDP oscillator shows the step damped oscillation 
responses for diabetic patients with mild and severe se- 
verity, respectively, with the increasing amplitudes of 
damped oscillation as PAD severity worsening. The os- 
cillation amplitude is expressed as an index  to differen- 
tiate between diabetic patients with PAD and normal 
subjects. The numerical experiments reveal specific ranges 
that allow confirmation of the degree, which allows 
tracking the trends of PAD for screening and monitoring 
of high-risk patients in primary settings as well as in hos- 
pitals. For an improved diagnostic design, the proposed 
method can be combined with a fuzzy inference system 
to derive an index for the diagnosis of PAD. The pro-
posed method potentially allows for constructing a port-
able bio-monitor and the use of telemedicine in a variety 
of clinical environments. 
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