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ABSTRACT 

Alzheimer disease has been defined as Type 3 Diabetes 
due to their shared metabolic profiles. Like our pre- 
viously research, results of Alzheimer’s disease and 
other neurodegenerative diseases, systematic ana- 
lysis of diabetes- and glucose metabolism-related pro- 
teins also provides help in the treatment of Alzhei- 
mer’s patients. Some interesting results indicate that 
diabetes-related proteins (DRPs) are rich in Lys and 
the content of Trp can distinguish between type 1 and 
type 2 diabetes mellitus in particular, while glucose 
metabolism-related proteins (GMRPs) possess Leu- 
rich and Trp-poor character. Moreover, the usage 
biases of codons depend on GC contents to a great 
extent, in concord with all codons of the highly ex-
pressed genes with the terminal of C/G. Especially, 
the deficit of CpG dinucleotides is largely attributed 
to the hypermutability of methylated CpGs to UpGs 
by the mutational pressure. Besides a common node 
insulin receptor, there are some similar node proteins, 
such as glucose transporter member, protein tyrosine 
phosphatase, and adipose metabolism signal protein. 
The sharing proteins involve glucagon, amylin, insu- 
lin, PPARγ, angiopoietin, PC-1/ENPP1, and adiponectin 
mediated signal pathway. Meanwhile, the gene se- 
quences of node proteins contained the binding sites 
of 37 transcription factors divide into four kinds of 
superclasses. Additionally, BAD complex can inte- 
grate pathways of glucose metabolism and apoptosis 
by BH3 domain of BAD directly interacting with GK 
as well as GK binding with the consensus motif 
[G]-[1]-[K]-[2]-[S/T] or [L/M]-[R/K]-[2]-[T] of PP1 or 
WAVE1. This facilitates the therapies for diabetes 
mellitus as well as Alzheimer’s disease.  

Keywords: Codon Biases; Protein-Protein Interaction 
Network; Transcription Factors; BAD Complex;  
Bioinformatics 

1. INTRODUCTION 

Alzheimer’s disease (AD) and diabetes are both age- 
associated diseases [1]. AD is a late-onset neurological 
disorder characterized by progressive loss of memory 
and cognitive abilities as a result of excessive neurode- 
generation in the hippocampus and cortex [2], accompa- 
nied by the accumulation of intracellular neurofibrillary 
tangles (NFTs) consisting of hyperphosphorylated tau 
protein and extracellular amyloid beta (Aβ) peptides 
containing senile plaques [3]. Aβ peptides originate from 
an abnormal proteolytic processing of the amyloid pre- 
cursor protein (APP) which is a large transmembrane 
type 1 (cytosolic C-terminal) glycoprotein. Cleavage of 
the APP ectodomain by β-secretase at the amino-terminus 
of Aβ is followed by cleavage of the β-secretase-gener- 
ated carboxyl-terminal fragment (β-CTF, C99) at two 
sites of the carboxyl terminus of Aβ by γ-secretase [4], to 
produce either the Aβ residue 1-40 (Aβ 40) or a longer, 
more amyloidogenic form that contains the residues 1 - 
42 (Aβ42) [99]. On the other hand, diabetes mellitus is a 
chronic metabolic disorder in the endocrine system and 
systemic underway disease with high blood glucose, 
specified to mammal and not to be effective cured until 
now [5]. Insulin-dependent diabetes mellitus (IDDM, 
type 1), accounting for 5% - 10% of diabetes, in which the 
body does not produce any insulin due to islet beta-cell 
apoptosis, most often occurs in children and young adults 
[6,7]. Noninsulin-dependent diabetes mellitus (NIDDM, 
type 2), accounting for 90% - 95%, in which the body 
does not produce enough, or properly use, insulin due to 
the damage of insulin gene, its receptor gene, glucokinase 
gene, and mitochondria gene, is nearing epidemic pro-  *Corresponding author. 
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portions, because of an increased number of elderly peo- 
ple, and a greater prevalence of obesity and sedentary 
lifestyles [8,9]. Diabetes mellitus is associated with de- 
creased body insulin production than required (type 1) 
and impaired insulin signaling (type 2/T2DM). Diabetes 
especially T2DM and AD follow the same pathological 
mechanisms resulting in misfolded proteins, insulin im- 
pairment, abnormal glucose metabolism, abnormal fatty 
acid metabolism, mitochondrial dysfunction, and high 
oxidative stress [1]. These shared metabolic profiles and 
diabetes as extreme risk factor for AD lead to the as- 
sumption that AD may reflect type-3 diabetes. 

We have previously finished construction of cell model 
for screening Alzheimer’s drugs [10], codon usage biases 
in AD and other neurodegenerative diseases [11], and 
protein-protein interactions related to AD based on com- 
plex network [12]. Similarly, we are to propose a com- 
putational analysis on codon biases of some proteins 
related to diabetes and glucose metabolism, hoping that 
the findings might be useful for developing new thera- 
peutic treatment for diabetes as well as AD. Moreover, 
the proteins related to diabetes are located at signal 
transduction pathway [13,14], gene control pathway [15, 
16], glucose metabolic pathway [17,18], etc. A large 
number of research work on these proteins and their 
structures, functions, pathways, networks, and relations 
to diabetes have been conducted yet [19,20]. It is 
strongly significant to pay close attention to the system- 
atical integration of known diabetes-related proteins 
(DRPs) for treatment of diabetes mellitus and its com- 
plications, which helps to the treatment of Alzheimer’s 
patients. With the application of bioinformatics and func- 
tional proteomics to drug research and development, we 
try to systematically analyze the property of glucose me- 
tabolism-related proteins (GMRPs) and DRPs, involving 
the amino acid compositions, protein-protein interaction 
network, codon biases, and transcript factors binding 
sites, etc. Up to now, there have not been enough effec- 
tive ways to treat diabetes thoroughly as well as its com- 
plications, while the control and treatment of diabetes 
and its complications mainly depend on the chemical or 
biochemical agents, namely insulin, insulin-like growth 
factor, alpha-glycosidase inhibitors, aldose reductase in- 
hibitor, sulfonylureas, biguanide, and others. 

Additionally, mitochondrial dysfunction, as one of the 
shared metabolic profiles between diabetes and AD, re- 
sults in increased oxidative stress and induces glycerol- 
dehyde-derived advanced glycation end products (AGEs) 
[21,22]. The progressive deposition of fibrillar Aβ in the 
brain can induce disruption of the mitochondrial mem- 
brane, resulting in the production of reactive oxygen 
species, the release of cytochrome c from mitochondria 
into the cytosol, and the activation of caspase-dependent 

apoptotic pathways [23]. The PI3K/Akt-mediated inter- 
action between Bad and Bcl(XL) plays an important role 
in maintaining mitochondrial integrity [24]. Zeng KW et 
al. have demonstrated that hyperoside, a bioactive fla- 
vonoid compound from Hypericum perforatum, signifi- 
cantly inhibited Aβ(25-35)-induced cytotoxicity and 
apoptosis by reversing Aβ-induced mitochondrial dys- 
function, including mitochondrial membrane potential 
decrease, reactive oxygen species production, and mito- 
chondrial release of cytochrome c via PI3K/Akt/Bad/ 
Bcl(XL)-regulated mitochondrial apoptotic pathway [24]. 
Additionally, Danial and co-workers have indicated that 
human BAD (a pro-apoptotic Bcl-2 family member) re- 
sides in a mitochondrial complex together with protein 
kinase A (PKA) and protein phosphatase 1 (PP1) cata- 
lytic units, Wiskott-Aldrich family member WAVE-1, 
and glucokinase (GK, hexokinase D, HXK4), integrating 
pathways of glucose metabolism and apoptosis [25]. 
Glucose deprivation results in dephosphorylation of BAD 
and BAD-dependent cell death, while the phosphoryla-
tion status of BAD helps regulate glucokinase activity. In 
this study, we sought to discuss some proteins contribut- 
ing to diabetes emergence and development. This present 
paper addresses the key attempts to propose ways for 
future discovery and validation of potential targets for 
diabetes as well as AD therapies. 

2. METHODS 

2.1. Data 

The amino acid sequences of all proteins come from 
SWISSPORT (http://au.expasy.org/) and their coding 
sequences were extracted from EMBL-EBI  
(http://www.ebi.ac.uk) linked to GenBank database 
(http://www.ncbi.nlm.nih.gov). Firstly, there are five 
groups of diverse proteins in various species for analysis 
of amino acid composition, composed of 211 DRPs, 31 
proteins related to diabetes type I (DRPsI), 66 to diabetes 
type II (DRPsII), 223 GMRPs, 100 human GMRPs 
(hGMRPs) and 123 mouse GMRPs (mGMRPs), respec- 
tively. Secondly, a series of complete genes (including 
initiation and stop codons) were analyzed and are avail- 
able for codon usage biases, such as 211 DRPs, 100 
hGMRPs and 123 mGMRPs. And then some indices of 
codon biases in the coding sequences of DRPs and GMRPs 
were calculated and the frequency of optimal codons 
(FOP) was analyzed. A correlation between codon usage 
for DRPs and gene expression level was built using cor- 
respondence analysis (COA) while the codon usage pat- 
tern in the two data sets was compared using chi square 
test. Thirdly, protein-protein interaction networks for 
DRPs and GMRPs were built using Osprey software. 
Finally, BAD complex was analyzed and evaluated. 
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2.2. Amino acid Composition codon to other synonymous codons coding the same 
amino acid) [29], and the frequency of optimal codons 
[30] were computed using the program CodonW version 
1.4 (www.molbiol.ox.ac.uk/cu) and GCUA [31]. Fur-
thermore, the correlation analysis and cluster analysis 
were carried out by SPSS version 13.0. 

According to our methods [26,27], the accumulative 
times  ic  and the percentage  of each amino acid 
in 211 known DRPs, 100 hGMRPs and 123 mGMRPs 
(Table 1) were analysized and calculated by symbolic 
statistic method as follows:  

 iC

We estimated codon frequencies from the observed 
codon counts of these protein-coding sequences men-
tioned above. 64 codons are obtained using the sliding 
window method one by one from 5’-terminal of pro-
tein-coding sequences to 3’-teminal: a sequence of n 
residues gives rise to 3n  units [32]. The accumulative 
times  lM  of each codon in 211 DRPs and 223 
GMRPs were analysized and calculated as follows: 

   
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2.3. Relative Synonymous Codon Usage 

Codon usage, COA, GC3s (the frequency of codons 
ending in C and G, excluding Met, Trp and stop codons), 
A3s, T3s, G3s, C3s (the ratio of A/T/G/C content at the 
third position in codon to total gene bases), c  (the 
“effective number of codons”) [28], RSCU (relative 
synonymous codon usage, relative probability of certain  
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Table 1. Content percentage of 20 types of standard amino acids in a series of proteins distributed over various species. 

Amino acid 
DRPs 
(%) 

DRPs I 
(%) 

DRPs II 
(%) 

hGMRPs
(%) 

mGMRPs
(%) 

BAD 
(%) 

PKA 
(%) 

PP1 
(%) 

WAVE1 
(%) 

GK 
(%) 

Ala 4.93 5.83 4.91 7.44 6.73 7.70 15.60 5.80 7.00 6.00 

Arg 3.73 3.97 3.82 5.62 5.66 9.50 6.30 7.20 6.30 6.90 

Asn 8.66 9.80 8.72 3.80 4.25 1.20 4.20 5.00 2.30 2.60 

Asp 3.29 3.57 3.09 5.38 5.77 4.80 5.10 5.00 4.80 6.20 

Cys 1.43 1.39 1.45 1.89 1.73 0.00 0.40 2.20 0.90 2.60 

Gln 4.73 4.96 4.54 4.10 3.63 6.50 2.50 5.80 4.70 3.20 

Glu 4.55 4.85 4.38 6.39 6.74 7.70 5.90 6.50 7.50 10.30 

Gly 4.57 5.14 4.79 7.29 6.97 11.30 7.40 7.20 3.20 8.60 

His 9.12 9.99 9.17 2.61 2.38 3.60 1.10 1.40 3.20 2.20 

Ile 3.17 2.83 3.12 4.84 5.52 1.20 2.70 4.30 4.30 3.70 

Leu 7.52 8.71 7.49 9.85 9.42 4.20 8.60 10.10 9.10 9.00 

Lys 10.69 11.54 10.61 5.01 5.85 2.40 2.70 2.90 4.30 5.40 

Met 1.62 1.81 1.67 2.40 2.46 2.40 1.70 1.40 1.40 4.90 

Phe 2.77 2.63 2.73 4.47 4.52 3.60 4.40 3.60 2.30 3.90 

Pro 4.40 5.29 4.40 5.42 5.06 8.90 6.90 10.80 17.70 1.90 

Ser 5.50 6.22 5.71 6.75 6.48 16.10 10.90 3.60 7.90 6.70 

Thr 3.71 3.76 3.82 5.20 4.84 3.00 5.10 7.20 5.20 4.90 

Trp 9.20 1.00 9.52 1.52 1.52 3.00 0.60 1.40 0.50 0.60 

Tyr 2.07 2.11 1.89 3.27 3.47 1.20 2.30 0.70 1.40 2.40 

Val 4.35 4.61 4.16 6.76 6.99 1.80 5.70 7.90 5.90 8.00 

Sum of Protein 211 31 66 100 123      

Sum of residues 151851 21813 47599 58852 75084      

Note: DRPs and GMRPs mean proteins related to diabetes and to glucose metabolism, respectively. (P < 0.01). 
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where l  express the times of 64 codons of each pro-
tein. The usage frequency of 64 codons respectively in 
each protein was calculated by using C++ program writ-
ten by us. 

m

To normalize synonymous codon usage within dataset 
of different amino acid compositions, RSCU is calcu- 
lated by dividing the observed frequency of a codon by 
the expected frequency assuming all synonymous codons 
are used equally [33]. The RSCU values of different 
codons in each sequence were calculated as follows: 

j j
ij

aa aa

N N
RSCU k

N k N
  . 

Here,  means relative usage probability of the 
codon at  position in  mRNA sequence; 

ijRSCU
thj thi jN , 

the actual observed number of certain codon in some 
template sequence; aa , the actual observed number of 
other synonymous codons coding the same amino acid 
coded by certain codon in the template sequence; k, the 
number of synonymous codons coding the same amino 
acid. It is obvious that RSCU values close to 1.0 indicate 
a lack of bias for the corresponding codon [34]. 

N

2.4. Indices of Codon Biases 

As Ghosh and co-worker [35] mentioned, some indices 
of codon biases were introduced and calculated for each 
gene, such as GC3s, c , A3s, T3s, G3s, and C3s. c  
whose value ranges from 20 to 61 was used to quantify 
the codon usage bias of a gene. This is a measure of gen-
eral non-uniformity of synonymous codon usage. The 
expected c  value under random synonymous codon 
usage can be calculated for any value of GC3s by the 
following formula: 

N N

N

   2 2

3 32 29 1c s sN GC GC GC     3s

 . 

When all sense codons are used randomly, c  takes a 
value of 61. Lower values of c  indicate stronger bias, 
with an extreme value of 20 when only one synonym is 
used for each amino acid. The values of c  would fall 
on the continuous curve described by the formula, if the 
G + C composition at the synonymous third position is 
the only determinant factor shaping the codon usage [36]. 

N
N

N

2.5. Statistical Analysis 

COA was used to investigate the major trend in codon 
usage variation among genes [37]. In this study, the 
RSCU values of genes in each proteins related to diabe- 
tes and glucose metabolism were plotted in a multidi- 
mensional space of 59 axes, according to their usage of 
the 59 sense codons (excluding Met, Trp and stop 
codons), and COA identified a series of new orthogonal 
axes accounting for the greatest variation among genes. 
The analysis yielded the coordinate of each gene on each 

new axis, and the fraction of the total variation was ac- 
counted for by each axis. By this means, the axis that 
contributes most to the total variation among different 
genes as well as the primary trend of codon usage can be 
identified. The analysis was performed using the RSCU 
values in order to minimize the effects of amino acid 
composition [38]. COA of RSCU values was carried out 
to determine the major source of variation among genes. 
Hence, each sequence is described by a vector of 59 
variables, which is the number of codons for which there 
are synonyms. COA plots these genes in a multidimen- 
sional space of 59 axes. Then a certain number of axes 
are identified. 

2.6. The Relative Abundance of Dinucleotides 
Based on DRPs 

16 dinucleotide relative abundances (DRA) in DRPs’ 
open reading frames (ORFs) were obtained using the 
method described by Karlin and Burge [39]. The odds 
ratio  xy xy x yP f f f , where fx denotes the frequency 
of the nucleotide X and fxy the frequency of the dinucleo- 
tide XY, etc., for each dinucleotide were calculated. As a 
conservative criterion, for  (or < 0.78), the 
XY pair is considered to be of high (or low) relative 
abundance compared with a random association of 
mononucleotides. 

1.23xyP 

2.7. Protein-Protein Interaction Network 

Many properties of complex system are decided by in- 
teraction compositions not by single. Life activity is a 
complex system while the research is dependent upon 
protein interaction network, which is beneficial to iden- 
tifying and validating the drug targets and prediction of 
new functional proteins [40]. Protein-protein interaction 
networks are mostly large network and actually a scale- 
free network, which follows power-law principle:   7P k k  
[41]. Here, the network consists of nodes and edges, 
which express proteins and their interactions, respec- 
tively. The mark k donates link degree, namely the link- 
ing numbers of certain node protein.  displays the 
distributing coefficient of link degree that means the link 
degree of single node protein, namely the link degree 
divided by the numbers of nodes. The sign <k> presents 
the mean link degree of whole nodes in some network. 
The node proteins of the protein interaction network are 
maybe more conservative during molecular evolution 
[42]. Search for the protein-protein interaction in IntAct 
database (

 P k

http://www.ebi.ac.uk/intact/index.jsp) of EMBL- 
EBI and map the protein-protein interaction network 
using Osprey software. 

2.8. Cluster Analysis of Codon Usages of DRPs 
Based on Protein Interaction Network 

Cluster analysis refers to assign a set of samples into 
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groups according to the sample characteristics and the 
adjacency and similarity of pattern space. The basic op- 
eration process of hierarchial cluster analysis is as fol- 
lows. First, respectively classified the n samples as a 
category, calculated the distances between samples, and 
then selected a couple of samples with the minimum dis- 
tance into a new class. Second, calculated the distances 
between the new class and other classes and merged the 
two classes with the minimum distance into another new 
class. This moved in circles until all the samples are 
combined into one category. Here, the variable group 
composed of different RSCU value of a signal mRNA 
sequence of 11 node proteins in DRPs were regarded as a 
point in the multidimensional space. Tryptophan (Trp) 
and methionine (Met) because of their codons UUG and 
AUG with degeneracy of 1 were not considered as well 
as 3 termination signals (UGA, UAA and UAG). So, the 
space dimension is 59. Every gene sequence of 11 node 
proteins was viewed as the space vector consisting of 59 
variable components. The Euclidean distance coefficient 
of codon usage bias between two genes i and k is calcu- 
lated as follows [43]:  

 
59 2

1
ik ij kj

j

d R R


  . 

Here, the group average linkage method was used for 
clustering by SPSS software.  

11 node proteins in DRPs are listed as follows: 
O43707 (ACTN4_human), P13987 (CD59_human), 
Q64521 (GPDM_mouse), P19357 (GTR4_rat), P20823 
(HNF1A_human), P02545 (LMNA_human), P06213 
(INSR_human, Q05329), P06858 (LIPL_human), 
P62845 (RS15_rat), Q16849 (PTPRN_human), and 
Q14191 (WRN_human).  

2.9. Analysis of Transcription Factors at DNA 
Level Based on DRPs’ Node Proteins 

The regulation of a gene depends on the binding of tran- 
scription factors (TFs) to specific sites located in the 
regulatory region of the gene. Transcription regulation is 
carried out by the interactions between TFs and their 
binding sites in DNA. Transcription factor binding to 
specific DNA sequence of its gene promoter activates or 
represses transcription of genes, which plays a critical 
role in regulation of specific gene expression and spe- 
cific stress response. Transcription factor binding sites 
(TFBS), short, degenerate nucleotide sequences (usually 
6 - 20 bps), are very important in drug research and de- 
velopment taking transcription factors as targets. Here, 
we search for the TFBS of DRPs interaction with tran- 
scription factors using TRANSFAC 7.0-Public database 
(http://www.gene-regulation.com/pub/databases.html). 

2.10. Prediction of BAD Complex Proteins Based 
on the Theoretical Model 

Analyze and calculate a series of parameters of BAD 
complex and assess whether these proteins might par- 
ticipate in diabetes pathogenesis in comparison with the 
results mentioned above.  

Molecular Modeling of BAD Complex 
According to our methods [44,45], molecular modeling 
of the three-dimensional (3D) structure of human BAD 
and its complexes were performed on a Silicon Graphics 
Iris O2 (SGI Inc., Silicon, CA, USA) workstation using 
the Homology modules of the commercial software 
packages InsightII 2000 (MSI, St Louis, Mi, USA). Mo- 
lecular dynamics and molecular mechanics were used to 
optimize the model. The final model was assessed by 
PROCHECK (a protein structure validation program). 

3. RESULTS 

3.1. Diabetes-Related Proteins and Glucose  
Metabolism-Related Proteins 

Diabetes-related proteins compiled here are composed of 
211 kinds of proteins, which originated from mammali-
ans, namely human, mouse, rat, Rhesus macaque, Guinea 
pig, Fat sand Rat, Bovine, Chinese hamster, Nutria, 
Golden hamster, Dog, Cat, Lowland gorilla, Chimpanzee, 
and Pig-tailed macaque, in turns. Among these proteins, 
66 are related to NIDDM, 31 to IDDM, 17 to its compli-
cations, 10 to MODY1-6 type of diabetes, 7 to BBS syn-
drome 1-8 type, and other. These proteins are divided 
into six classes based on their function as follows: a) 
regulation of immunity processes, involving T-cell acti-
vating signal transduction, recognization of cytotoxin 
reacted with MHC-I or restrained T-cell, T-cell activa-
tion, transcript factors, adjustment of immunity cell 
function, etc; b) metabolic regulation, including synthe-
sis of fatty acids, acidification of sugars, leptin receptor, 
signal transduction pathways related to obesity, energy 
balance, avoirdupois balance, etc; c) insulin effect, re-
lated to ATP-sensitive potassium channels and insulin 
release, related protein phosphate kinases, hormone bal-
ances, synthesis of cyclic ADP-ribose, activation of insu-
lin excretion, adrenalin excretion, transcript factor bind-
ing with insulin gene E-box, insulin receptor, pancreas 
islet β-cell, insulin signal transduction, etc; d) blood 
glucose control, associated with glucose balance, fat me-
tabolism, insulin sensitivity, related enzymes, glucose 
transport factors, synthesis of glycogen, etc; e) hormone 
regulation, relevant to calcium-related hormones excre-
tion, pancreas-related regulating factors, hormone proc-
esses, differentiation and growth of islet β-cell, growth of 
islet endothelium cell, etc; and f) other, such as regula-
tion of transcript, oxidation-reduction, retina, kidney, and 
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blood vessel. 
Similarly, glucose metabolism-related proteins consist 

of 223 kinds of proteins, involving total 54 kinds of pro- 
tein families, namely 20 common families, 27 human- 
only families and 7 mouse-only families. The former 
includes ADIPOR family, AGC Ser/Thr protein kinase 
family, aldose epimerase family, calcitonin family, ga- 
lactose-1-phosphate uridylyltransferase type 1 family, 
glucagons family, glucose-6-phosphate dehydrogenase 
family, glycogen phosphorylase family, glycosyl hy- 
drolase 30 family, glycosyltransferase 2 family, glycol- 
syltransferase 31 family, hexokinase family, inositol 
monophosphatase family, insulin family, myo-inositol- 
1-phosphate synthase family, non-lysosomal glucosylce- 
ramidase family, PDK/BCKDK protein kinase family, 
phosphohexose mutase family, short-chain dehydro- 
genases/reductases (SDR) family, and sugar epimerase 
family; the latter contains 5’-AMP-activated protein 
kinase gamma subunit family, cyclic nucleotide phos- 
phodiesterase family, FAD-dependent glycerol-3-phos- 
phate dehydrogenase family, peptidase S10 family, PEP- 
utilizing enzyme family, TORC family, and UDP-gly- 
cosyltransferase family. The rest is mainly 3-hydroxya- 
cyl-CoA dehydrogenase family, 6-phosphogluconate de- 
hydrogenase family, apolipoprotein A2 family, CAL- 
COCO family, class I fructose-bisphosphate aldolase 
family, dTDP-4-dehydrorhamnose reductase family, 
FGGY kinase family, glucosamine/galactosamine-6-pho- 
sphate isomerase family, glycogen debranching enzyme 
family, glycogenin family, glycosyl hydrolase 1 family, 
glycosyl hydrolase 31 family, glycosyl hydrolase 37 fa- 
mily, GPI family, G-protein coupled receptor 2 family, 
LDLR family, mammalian/fungal glycogen synthase 
family, nuclear hormone receptor family, nucleotide py- 
rophosphatase/phosphodiesterase family, phosphofructo- 
kinase family, protein-tyrosine phosphatase family, SLC 
37A family, Sugar transporter (TC 2.A.1.1) family, tran- 
sketolase family, Tyr protein kinase family, UDP-glu- 
cose/GDP-mannose dehydrogenase family, and UDPGP 
type 1 family. 

In addition, motif is some similar steric shape or to-
pology structure occurring in local region of various pro-
teins, which displays structure conserved regions (SCR) of 
proteins during evolution. The important motifs of DRPs 
involve the immunity-related motifs (i.e. Ig-like, Ig_c1, 
and Ig_MHC), the transport-related (e.g. Sub_transporter, 
MFS, and Sugar_transpt), the transcript- and adjust-
ment-related (such as Homeobox and Homeodomain-re), 
the phosphorylation-related (including TYR_phosphatase, 
Tyr_PP, and Prot_kinase), and the insulin-related (i.e. 
Ins/IGF/relax and Insulin-like). On the other hand, there 
are NAD (P)-bd motif and Glc-6-P_DHase motif with a 
percentage of 5.47% and 2.57%, respectively, in human 
GMRPs, while G6PDH motif, Glyco_trans_35 motif, 

Glycg_phsphrylas motif, and Znf_ring motif with a per-
centage of 9.62%, 6.54%, 6.54%, and 3.85% in turn, 
exist in mouse GMRPs. 

Furthermore, there are 14 kinds of same proteins be-
tween DRPs and GMRPs as follows: P01308 (INS_hu- 
man, insulin), P01325 (INS1_mouse, insulin-1), P01326 
(INS2_mouse, insulin-2), P06213 (INSR_human, insulin 
receptor), P10997 (IAPP_human, islet amyloid polypep-
tide), P12968 (IAPP_mouse), P22413 (ENPP1_human, 
ectonucleotide pyrophosphatase/phosphodiesterase 1), 
P31749 (AKT1_human, RAC-alpha Serine/threonine- 
protein kinsae, protein kinase B, PKB), P35557 (HXK4_ 
human, hexokinase D), P37231 (PPARG_human, perox-
isome proliferator-activated receptor), P47871 (GLR_ 
human, glucagon receptor), P43428 (G6PT_rat, glucose- 
6-phosphatase), P52789 (HXK2_human, hexokinase 
type II), Q15848 (ADIPO_human, adiponectin), and 
Q9BY76 (ANGL4_human, angiopoietin-related protein 
4). 

3.2. Amino Acid Composition 

20 standard kinds of amino acids in 211 known DRPs are 
ranged by their percentages as follows: Lys, Trp, His, 
Asn, Leu, Ser, Ala, Gln, Gly, Glu, Pro, Val, Arg, Thr, 
Asp, Ile, Phe, Tyr, Met, and Cys in turn (Table 1). 
NIDDM is the most familiar diabetes whose composition 
of amino acid residues is consistent with that of the 
whole. Comparison NIDDM with IDDM, the obvious 
difference is the percentage of Trp that the former is 
9.52% and the latter is 1.00%, which is supported by the 
results that the maladjustment of Trp could lead to type 2 
diabetes because aromatic residues have been identified 
as crucial in formation and stabilization of amyloid 
structures. Similarly, 20 amino acids in 100 hGMRPs are 
listed in descending order of their percentages as follows: 
Leu, Ala, Gly, Val, Ser, Glu, Arg, Pro, Asp, Thr, Lys, Ile, 
Phe, Gln, Asn, Tyr, His, Met, Cys, and Trp. The amino 
acids in 123 mGMRPs are arranged by descending as 
follows: Leu, Val, Gly, Glu, Ala, Ser, Lys, Asp, Arg, Ile, 
Pro, Thr, Phe, Asn, Gln, Tyr, Met, His, Cys, and Trp. 

On the basis of amino acid composition, percentages 
of histidine (His), asparagine (Asn) and tryptophan (Trp) 
in DRPs are different from those of GMRPs (Figure 1). 
The percentages of His and Asn in DRPs are more than 
those of GMRPs whileas the percentage of Trp in DRPs 
is less than that of GMRPs. The Trp percentage of type I 
diabetes is similar to GMRPs. Table 2 also revealed that 
the content percentages of UGG coding Trp in DRPs, 
hGMRPs and mGMRPs were 1.74%, 1.57% and 1.46%, 
respectively, and more than those of UGG in healthy 
people. This means tryptophan disorders associated with 
diabetes mellitus by insulin, which is supported by Oxenk-
rug GF’s results that tryptophan-kynurenine metabolism 
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might be a new target for prevention and treatment of 
metabolic syndrome, age-associated neuroendocrine dis-
orders [46]. 

and AGA, show higher usage biases. The codon compo-
sition of those hGMRPs and DRPs are more close to 
those of normal person from reference [47]. Comparison 
of RSCU values of 64 types of codons of all various 
proteins with their percentage reveals that all RSCU are 
adjacent to each other with the exception of the eight 
residues of mGMRPs mentioned above. On the other 
hand, the genes of most DRPs are GC-rich and the aver-
age of GC3s is 61.8%. Due to base composition con-
straints, it is expected that G and/or C containing codons 
will predominate in the coding regions. 

3.3. Synonymous Codon Usage Biases 

About codon usage biases, their percentage trendlines of 
64 types of codons of various proteins in various species 
are basically consistent with each other except Ser, Pro, 
Thr, Ala, Cys, Gly, Arg and Asp residues of mGMRPs 
(Table 2). Especially Arg contains six codons showing 
diversity, and four codons, such as CGC, CGG, AGG 
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Figure 1. Content percentage of 20 standard amino acids in sixteen types of proteins 
possessing various biology activities, including diabetes-related proteins and glucose 
metabolism-related proteins. 

 
Table 2. Content percentage and RSCU of 64 types of codens in a series of proteins possessing various biology activities. 

Content percentage (%) RSCU** (%) 
Amino acid coden 

hGMRPs mGMRPs DRPs Reference* hGMRPs mGMRPs DRPs Reference*

Phe UUU 1.87 2.07 1.68 1.30 0.87 0.95 0.84 0.63 

 UUC 2.43 2.30 2.31 2.81 1.13 1.05 1.16 1.37 

Leu UUA 0.48 0.74 0.71 0.20 0.30 0.46 0.40 0.12 

 UUG 1.10 1.54 1.30 0.90 0.68 0.96 0.72 0.54 

 CUU 1.06 1.85 1.32 0.90 0.65 1.16 0.74 0.53 

 CUC 2.02 1.75 2.28 2.71 1.24 1.10 1.26 1.60 

 CUA 0.62 0.81 0.72 0.70 0.38 0.51 0.40 0.42 

 CUG 4.46 2.88 4.47 4.71 2.74 1.80 2.48 2.79 

Ile AUU 1.49 1.85 1.55 1.10 0.97 1.03 1.03 0.85 

 AUC 2.57 2.67 2.36 2.40 1.68 1.48 1.57 1.85 

 AUA 0.53 0.88 0.61 0.40 0.35 0.49 0.41 0.30 

Met AUG 2.32 2.43 2.34 1.60 1.00 1.00 1.00 1.00 

Val GUU 0.97 1.86 1.02 0.90 0.59 1.08 0.65 0.53 

 GUC 1.58 1.45 1.58 2.10 0.97 0.84 1.01 1.24 

 GUA 0.58 0.79 0.66 0.50 0.36 0.46 0.43 0.29 

 GUG 3.40 2.81 2.98 3.31 2.08 1.63 1.91 1.94 

Ser UCU 1.15 1.58 1.40 1.60 0.96 1.39 1.06 1.23 

 UCC 1.78 1.17 1.88 1.80 1.48 1.02 1.43 1.38 

 UCA 0.98 1.25 1.07 0.90 0.81 1.09 0.81 0.69 
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 UCG 0.52 0.56 0.44 0.20 0.43 0.49 0.34 0.15 

 AGU 0.94 1.06 1.11 1.20 0.78 0.93 0.84 0.92 

 AGC 1.86 1.24 2.00 2.10 1.55 1.08 1.52 1.62 

Tyr UAU 1.23 1.58 1.26 1.00 0.79 0.97 0.85 0.61 

 UAC 1.86 1.70 1.71 2.30 1.21 1.03 1.15 1.39 

Pro CCU 1.48 1.67 1.69 1.40 1.02 1.33 1.13 1.22 

 CCC 2.14 1.15 2.06 1.70 1.47 0.92 1.37 1.48 

 CCA 1.48 1.58 1.54 1.00 1.02 1.25 1.03 0.87 

 CCG 0.70 0.63 0.70 0.50 0.48 0.89 0.47 0.43 

Thr ACU 1.11 1.30 1.19 1.50 0.83 1.04 0.90 1.00 

 ACC 2.15 1.51 2.00 2.81 1.61 1.21 1.50 1.87 

 ACA 1.33 1.53 1.47 1.10 1.00 1.23 1.11 0.73 

 ACG 0.76 0.65 0.66 0.60 0.57 0.52 0.50 0.40 

Ala GCU 1.85 2.19 1.76 2.81 0.99 1.30 0.99 1.30 

 GCC 3.33 2.15 3.03 3.81 1.78 1.28 1.71 1.77 

 GCA 1.50 1.71 1.51 1.40 0.80 1.02 0.85 0.65 

 GCG 0.80 0.68 0.78 0.60 0.43 0.40 0.44 0.28 

His CAU 1.00 1.05 0.99 1.00 0.77 0.90 0.78 0.65 

 CAC 1.59 1.29 1.56 2.10 1.23 1.10 1.22 1.35 

Trp UGG 1.74 1.57 1.46 1.20 1.00 1.00 1.00 1.00 

Cys UGU 0.92 0.90 0.87 1.00 0.88 1.03 0.85 0.87 

 UGC 1.17 0.84 1.18 1.30 1.12 0.97 1.15 1.13 

Gln CAA 0.86 1.24 1.18 1.00 0.42 0.70 0.53 0.53 

 CAG 3.20 2.34 3.31 2.81 1.58 1.30 1.47 1.47 

Asn AAU 1.49 1.93 1.52 0.80 0.82 0.93 0.84 0.44 

 AAC 2.12 2.22 2.12 2.81 1.18 1.07 1.16 1.56 

Gly GGU 1.17 1.72 1.02 2.20 0.62 1.00 0.62 1.09 

 GGC 2.77 1.73 2.29 3.21 1.48 1.00 1.40 1.58 

 GGA 1.66 2.00 1.60 1.60 0.89 1.16 0.98 0.79 

 GGG 1.88 1.44 1.66 1.10 1.00 0.83 1.01 0.54 

Arg CGU 0.51 0.76 0.45 0.80 0.53 0.79 0.51 1.04 

 CGC 1.27 0.85 1.13 1.10 1.32 0.90 1.26 1.43 

 CGA 0.59 0.68 0.59 0.40 0.61 0.72 0.66 0.52 

 CGG 1.29 0.84 1.16 0.50 1.34 0.89 1.29 0.65 

 AGA 0.97 1.43 1.00 0.80 1.00 1.49 1.12 1.04 

 AGG 1.15 1.16 1.06 1.00 1.20 1.21 1.18 1.32 

Asp GAU 2.09 2.98 2.06 1.60 0.83 1.06 0.87 0.80 

 GAC 2.97 2.64 2.67 2.40 1.17 0.94 1.13 1.20 

Glu GAA 2.14 2.88 2.51 2.10 0.70 0.87 0.77 0.76 

 GAG 3.96 3.75 4.03 3.41 1.30 1.13 1.23 1.24 

Lys AAA 1.63 2.25 2.08 1.90 0.69 0.77 0.80 0.56 

 AAG 3.11 3.59 3.13 4.91 1.31 1.23 1.20 1.44 

Stop UAG 0.07 0.06 0.05 0.00 0.00 0.00 0.00 N/A 

 UAA 0.07 0.09 0.04 0.00 0.00 0.00 0.00 N/A 

 UGA 0.22 0.18 0.10 0.00 0.00 0.00 0.00 N/A 

Sum of protein 100 123 76 211  100 123 211  

Sum of codons 55833 62986 27554 104991 998 55833 62986 104991 998 

Note: “*” means the data from reference [46]. “**”RSCU values are average of all of proteins and N means the total times of each codon. The colored numbers 
show the higher values corresponding to codons of each amino acid (P < 0.01). 
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Although the overall RSCU values in a genome could 

unveil the codon usage pattern of a whole genome, there 
may be potential heterogeneity of codon usage among 
genes in DRPs: GC3s values both range from 24.6% to 
92.2% with a mean of 61.8% and a standard deviation 
(S.D.) of 1.53%; while c  values both range from 
31.37 to 61.0 with a mean of 48.11 ± 7.06. Similarly, in 
human GMRPs: GC3s values both range from 23.75% to 
87.73% with a mean of 61.21% and a standard deviation 
(S.D.) of 1.62%; while c  values both range from 
34.35 to 61.19 with a mean of 47.94 ± 6.60; in mouse 
GMRPs: GC3s range from 25.6% to 95.7% with a mean 
of 62.1% ± 1.76% while c  from 31.25 to 61.0 with a 
mean of 47.25 ± 7.33. The plot of c  against GC3s can 
be effectively used to explore the heterogeneity (Figure 
2), and most genes fall within a restricted cloud, near the 
area of the axes with GC3s between 0.40 and 0.85 and 

c  from 40 to 60. The points in the plot are quite 
spreaded out and the bulk of genes appear to be follow- 
ing a less slope than that of the theoretical curve, which 
suggests that there are possibly other contributors to the 
codon usage pattern in DRPs, hGMRPs, and mGMRPs 
besides the genomic composition. If the codon usage 
pattern of the genes has some influence other than the 
GC content, the comparison of the actual distribution of 
genes with the expected distribution under no selection 
could be indicative. In other words, if GC3s is the only 
determinant factor shaping the codon usage pattern, the 
values of c  would fall on a continuous curve, which 
represents random codon usage [48].  

N

N

N
N

N

N

 
(a) 

 
(b) 

3.3.1. A Correlation between Codon Usage and Gene 
Expression Level 

 

A more extensive and quantitative analysis of the sources 
of codon usage variation among genes can be achieved 
using multivariate statistical analysis [49]. In the present 
work, COA of codon usage in DRP genes which was 
performed on RSCU values shows that the first axis ac-
count for 34.59% of all variation among DRP genes and 
43.65% of variation among human DRP genes, whereas 
the rest of the axes account for no more than 5.06% and 
5.74% among all DRP and human DRP genes, respec-
tively (Figure 3). The first principle trend apparently 
describes a quite large weight of the codon usage varia- 
tion, which suggests that the major trend in codon bias is 
as strong as in other species [50]. The plots of genes on 
the first twenty axes show the relative inertia and cumu-
lative inertia. From the plots, it can be seen that most 
genes falling within the first axis, demonstrating that 
there is a single major trend in codon usage in genes re-
lated to diabetes, especially human DRPs. According to 
two-way chi square  2  contingency test, codon us-
age differences in the two data sets for diabetes genes at 
between high and low expresses level was compared  

(c) 

Figure 2. The effective number of codons (Nc) used 
in a gene plotted against the G+C content at the 
synonymously variable third position (GC3s) for 
some genes. a) DRPs; b) human GMRPs; c) mouse 
GMRPs. The solid curve indicates the expected Nc 
value if bias is due to GC3s alone when codens are 
random used; the dispersed points the correspond- 
ing actual Nc value at certain GC3s value. 
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(a) 

 
(b) 

Figure 3. The relative inertia and cumulative inertia of codon 
usage biases plotted against explanation of the variation in the 
first twenty axes for some genes using correspondence analysis 
(COA). a) various species DRPs; b) human DRPs. The columns 
indicate relative inertias, whereas the curve indicates the trend 
of cumulative inertia. 
 
with the criterion of  to assess significance, 
respectively. In order to find out whether translational 
selection is acting on the codon usage in diabetes, a new 
COA of the RSCU values of the genes located on the 
leading strand was conducted, since most of the highly 
expressed sequences are located on that strand, namely 
the first axis where synonymous codons usages of these 
genes exist. To investigate the expression trend in codon 
usage on axis 1, we selected 10 genes from the bottom of 
axis 1 (the High data set, mainly consisted of genes 
known to be expressed at high levels), and 10 genes from 
the other extreme (the Low data set, mainly including 
genes known to be expressed at low levels) (Figure 3). 
Statistical analysis showed that the position of gene on 
the first axis was high positive correlated with the GC3s 
content ( ; human ). 
Similarly, the position of gene on the first axis was also 
positive correlated with A3s ( r ; human 

), T3s (

0.01P 

0.05s 0.989,  r 

, 0.13s 

0.985, 0.06r s 

28, 0.12s 
932, 0.12s

0.9
0.r0.933r    ; human 

0.946, 0.12r s 
0.865, 0.19r s

), G3s ( ; human 0.857, 0.17r s 
 

0.939,r
), and C3s ( ; hu-

man 
0.924, 0r s .13

0.13s  ) content, respectively. Thus, the 
value of GC3s plays a decisive influence in synonymous 
codon usage variation of DRPs.  

Moreover, optimal codons are defined as those occurr 
significantly more often in highly expressed genes than 
they do in lowly expressed genes. 27 codons for 18 
amino acids in diabetes genes were identified as signifi- 
cantly  0.01P 

0.78

 more frequent in the high set (Table 
3). These codons are thought to be optimal for translation. 
16 codons of them terminate in C (59.3%), 11 in G 
(40.7%), but no in A/U. The contrast indicates that codon 
usage biases of DRPs are induced by the composing re- 
striction of those high-expressed GC-rich genes to a 
great extent. This is consistent with the result that DRP 
genes generally full contain GC, which hints the compo- 
sitional restriction plays an important role in boosting 
GC3s usages of DRP codons. Here, the highest frequent 
codon are Phe (UUC), Leu (CUG), Ile (AUC), Met 
(AUG), Val (GUG), Ser (AGC), Tyr (UAC), Pro (CCC), 
Thr (ACC), Ala (GCC), His (CAC), Trp (UGG), Cys 
(UGC), Gln (CAG), Asn (AAC), Gly (GGC), Arg 
(CGG), Asp (GAC), Glu (GAG), Lys (AAG), and STOP 
(UGA), in turn. Ser and Arg don’t show certain bias but 
have lowest frequent codon, namely Ser (UCG) and Arg 
(CGU). COA results also revealed that the bigger RSCU 
value is, the higher codon usage bias is. The codon with 
RSCU value greater than 1.5 was Leu (CUG), Val 
(GUG), Ile (AUC), Thr (ACC), Ser (AGC), and Ala 
(GCC). Especially, RSCU values of Leu (CUG) and Val 
(GUG) were significantly higher than their synonymous 
codons, while the two amino acids had very high codon 
usage preference in diabetes for further study. Moreover, 
GC contents are evidently more than AU contents and 
the usage biases of codons depend on GC contents to a 
great extent. In high-expression gene, all codons show 
the terminal of C/G, which is consistent with the usage 
biases of codons, namely all biased codons with the ter- 
minal of C/G. This helps to treat and control diabetes at 
gene level by site mutant.  

3.3.2. Effect of Relative Abundance of Dinucleotide 
and CpG Suppression Based on DRPs 

It has been reported that dinucleotide biases can affect 
codon bias. Using the calculating method of a previous 
research about CpG under-representation in classical 
swine fever virus (CSFV) [51], we are supposed to de-
termine whether the relative abundances of dinucleotides 
in human diabetes related genes affects codon usage. As 
a conservative criterion told above, for  (or 1.23xyP 
 ), the XY pair is considered to be of high (or low) 
relative abundance compared with a random association 
of mononucleotides. The frequencies of occurrence for 
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16 dinucleotides in DRPs were not randomly distributed as follows (Figure 4): 
 
Table 3. Codon usages of high and low expression genes of diabetes-related proteins.a 

Amino 
acid 

coden NH 
RSCUH 

(%) 
NL 

RSCUL 
(%) 

Amino 
acid 

coden NH 
RSCUH 

(%) 
NL 

RSCUL

(%) 

Phe UUU 27 0.28 202 1.35 Ala GCU 41 0.39 153 1.65 

 UUC* 164 1.72 97 0.65  GCC* 234 2.23 64 0.69 

Leu UUA 1 0.01 165 1.34  GCA 28 0.27 141 1.52 

 UUG 30 0.39 148 1.20  GCG* 116 1.11 13 0.14 

 CUU 23 0.30 171 1.39 His CAU 10 0.19 138 1.47 

 CUC* 124 1.63 58 0.47  CAC* 96 1.81 50 0.53 

 CUA 12 0.16 82 0.67 Trp UGG 70 1.00 96 1.00 

 CUG* 267 3.51 114 0.93 Cys UGU 13 0.28 107 1.30 

Ile AUU 11 0.22 230 1.51  UGC* 81 1.72 58 0.70 

 AUC* 134 2.70 118 0.77 Gln CAA 5 0.07 145 0.93 

 AUA 4 0.08 109 0.72  CAG* 134 1.93 168 1.07 

Met AUG 113 1.00 175 1.00 Asn AAU 15 0.26 261 1.43 

Val GUU 8 0.12 160 1.43  AAC* 102 1.74 103 0.57 

 GUC* 87 1.32 50 0.45 Gly GGU 33 0.40 103 1.09 

 GUA 3 0.05 122 1.09  GGC* 205 2.50 68 0.72 

 GUG* 165 2.51 117 1.04  GGA 23 0.28 157 1.66 

Ser UCU 23 0.48 212 1.82  GGG* 67 0.82 51 0.54 

 UCC* 95 1.97 70 0.60 Arg CGU 12 0.32 27 0.50 

 UCA 9 0.19 182 1.56  CGC* 115 3.08 13 0.24 

 UCG* 48 0.99 9 0.08  CGA 19 0.51 41 0.77 

 AGU 9 0.19 155 1.33  CGG* 43 1.15 24 0.45 

 AGC* 106 2.19 72 0.62  AGA 7 0.19 138 2.58 

Tyr UAU 16 0.25 175 1.39  AGG 28 0.75 78 1.46 

 UAC* 112 1.75 76 0.61 Asp GAU 18 0.27 296 1.37 

Pro CCU 44 0.53 159 1.58  GAC* 115 1.73 136 0.63 

 CCC* 154 1.85 57 0.57 Glu GAA 36 0.33 457 1.41 

 CCA 25 0.30 171 1.70  GAG* 184 1.67 193 0.59 

 CCG* 110 1.32 15 0.15 Lys AAA 16 0.18 382 1.21 

Thr ACU 19 0.41 164 1.48  AAG* 160 1.82 249 0.79 

 ACC* 92 1.99 60 0.54 Stop UAG 1 0.30 4 1.20 

 ACA 14 0.30 193 1.74  UAA 6 1.80 1 0.30 

 ACG* 60 1.30 27 0.24  UGA 3 0.90 5 1.50 

Note: aHigh and Low refer to subsets of genes from the extremities of the correspondence analysis axis 1. N=Number of codons; and RSCU=Relative 
synonymous codon usage values. “*” codons are those more frequent (P<0.01) in highly expressed genes, designated as optimal codons. 
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Figure 4. Relative abundance of the 16 dinucleotides in diabetes related 
proteins. P < 0.01. 
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ApA , ApC ,  0.995 0.142 0.873 0.122 

ApG , ApU ,  1.186 0.150 0.893 0.154

CpA , CpC   ,  1.232 0.148 1.090 0.126

CpG , CpU 0.465 0.183  1.310 0.165 , 

GpA , GpC ,  1.120 0.131 1.012 0.127 

GpG , GpU ,  1.033 0.127 0.793 0.113

UpA  0.520 0.129 , UpC  1.026 0.121 , 

UpG  1.421 0.153 , UpU . 0.969 0.194 
The relative abundances of CpG and UpA are lower than 
the “normal range” compared with a random association 
of mononucleotides, while those of UpG, CpU and CpA 
are higher than the “normal range”. These observations 
indicated that the composition of dinucleotides, which 
are independent of the overall base composition but still 
the result of differential mutational pressure, also deter- 
mines the variation in synonymous codon usage among 
different diabetes related proteins ORFs. 

To explore the possible effects of CpG under-repre- 
sentation on codon usage bias, RSCU values of the eight 
CpG-rich codons (CCG, GCG, UCG, ACG, CGC, CGG, 
CGU, and CGA) were analyzed. Six codons, CCG with 
mean RSCU value of 0.52, GCG (mean 0.45), UCG 
(mean 0.36), ACG (mean 0.53), CGU (mean 0.47), and 
CGA (mean 0.62), were more or less suppressed, while 
only two codons, CGC (mean 1.31) and CGG (mean 
1.36), were over-represented. Likewise, to study the pos-
sible effects of UpG and CpU over-representation on 
codon usage bias, five UpG-rich codons (UUG, CUG, 
GUG, UGU and UGC) and seven CpU-rich codons 
(CUU, CUC, CUA, CUG, UCU, CCU and GCU) were 
analyzed. Three UpG containing codons, CUG (mean 
2.59), GUG (mean 1.97) and UGC (mean 1.19), were 
over-used, while two codons, UUG (mean 0.71) and 
UGU (mean 0.81), were suppressed. CUC (mean 1.25) 
and CUG (mean 2.59) were over-used, while CUU 
(mean 0.70) was slightly suppressed. In the rest four 
CpU containing codons, GCU (mean 0.95), UCU (mean 
0.99) and CCU (mean 1.05) were almost equally used 
while only CUA (mean 0.37) was highly suppressed.    

3.4. Protein-Protein Interaction Network 

3.4.1. Diabetes-Related Proteins 
Searching for the interaction in IntAct database  
(http://www.ebi.ac.uk/intact/index.jsp) of EMBL-EBI, 
36 DRPs directly or indirectly possess interaction be- 
tween each other and 4 proteins, such as P52789 (HXK2, 
hexokine type II), P40424 (PBX1, pre-B-cell leukemia 
transcription factor 1), Q03518 (TAP1, antigen peptide 

transporter 1), and P35557 (HXK4, hexokine D), can 
interact with other proteins. The indirect interactions of 
DRPs are connected by less than three other proteins 
during building of the interaction network. There are 86 
node proteins and 148 links in the network and its mean 
link degree <k> is 1.72. Eleven central node proteins 
exist in this network, Q16849 (PTPRN_human, receptor- 
type tyrosine-protein phosphatase like N), P06213 
(INSR_human, insulin receptor), Q64521 (GPDM_ 
mouse, Glycerol-3-phosphate dehydrogenase), P02545 
(LMNA_human, Lamin A/C), P13987 (CD59_human, 
CD59 glycoprotein), P19357 (GTR4_rat, Solute carrier 
family 2, facilitated glucose transporter member 4), 
P62845 (RS15_rat, 40S ribosomal protein S15), P20823 
(HNF1A_human, hepatocyte nuclear factor 1-alpha), 
Q14191 (WRN_human, Werner syndrome ATP-de- 
pendent helicase), O43707 (ACTN4_human, alpha-ac- 
tinin-4), and P06858 (LIPL_human, lipoprotein lipase), 
are related to diabetes whose connect degrees (k) are 3, 3, 
6, 23, 22, 5, 5, 3, 4, 23, and 4, respectively. Specially 
P02545, P13987 and O43707 almost connect the rest 36 
proteins and play important roles in protein interaction 
network (Figure 5).     

Based on the Euclidean distance coefficients (dik) of 
codon usage biases, cluster analysis (Figure 6) show that 
the 11 node proteins in DRPs mentioned above were 
divided into two groups. Group I contains six node pro- 
teins, O43707, P20823, P02545, P06213, P62845, and 
Q16849, while group II includes five proteins, P13987, 
Q64521, P19357, P06858, and Q14191. Here, a class of 
O43707 and P20823 hints cytoskeletal protein associa- 
tion with hepatocyte nuclear factor. The former related to 
anchor with diabetes nephropathy as a good marker pro- 
tein to examine the relation between O-linked N-acetyl- 
glucosamine (O-GlcNAcylation) and diabetic nephropa- 
thy [52]. The latter is a hepatocyte nuclear factor as key 
metabolic regulators of energy homeostasis pathways 
including GnT-4a (glycosyltransferase) glycosylation 
and glucose transporter expression [53]. Elevated free 
fatty acid (FFA) concentrations impair the expression 
and function of FOXA2 and HNF1A transcription factors 
sufficiently in beta cells to deplete GnT-4a glycosylation 
and glucose transporter expression. FFAs induce the 
activation of one or more beta cell G protein-coupled 
FFA receptor such as GPR40, while the chronic elevation 
of FFAs increases mitochondrial oxidation and reactive 
oxygen species. The resulting dysfunction of beta cells 
leads to impaired glucose tolerance and failure of GSIS 
(glucose-stimulated insulin secretion) and further con- 
tributes to hyperglycemia, hepatic steatosis and systemic 
insulin resistance. The molecules that impinge upon this 
pathway to sustain beta cell GnT-4a activity and glucose 
transporter expression may suggest new therapeutic 
targets to achieve effective prevention and treatment of 
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Figure 5. Interaction network of HXK 1 (green dot) and the diabetes-related proteins by Osprey 1.2.0 (91). HXK1 interacts with 
O43768 (ENSA_HUMAN, Alpha-endosulfine) by P09104 (ENOG_HUMAN, gamma enolase, Neuron-specific enolase). Here, red 
dots donate the proteins related to diabetes and the bigger ones do hub proteins of network, whilst yellow dots express the proteins 
whose anti-diabetes activities have not been reported until now, they nevertheless exist in the network. However, the smaller red dots 
at right corner under the figure don’t exist in the above network although they are related to diabetes. Moreover, the blue lines show 
the interaction among diabetes-related proteins by the other proteins while the purple lines figure the direct interactions between dia-
betes-related proteins. And the indirect interactions of the diabetes-related proteins are connected by less than three other proteins 
during building of the interaction network. 
 

 

Figure 6. Cluster analysis. Here, number 1~11 displays O43707 
(ACTN4_human), P13987 (CD59_human), Q64521 (GPDM_ 
mouse), P19357 (GTR4_rat), P20823 (HNF1A_human), P02545 
(LMNA_human), P06213 (INSR_human, Q05329), P06858 
(LIPL_human), P62845 (RS15_rat), Q16849 (PTPRN_human), 
and Q14191 (WRN_human), in turn. 

diabetes [53]. A class of Q64521 and P06858 related to 
glycerin metabolism, indicating that adipose tissue dys- 
function correlate with systemic insulin resistance and 
type 2 diabetes. Rogers C and co-worker have found that 
only ErbB1 expression was correlated with insulin sensi- 
tivity using ELISA and real-time PCR technology [54]. 
Additionally, EGF receptor (ErbB1) levels correlated 
positively with PPARγ and several PPARγ-regulated 
genes including acyl-coenzyme A synthetase long-chain 
family member 1 (ACSL1), adiponectin, adipose tissue 
triacylglycerol lipase (ATGL), diacylglycerol acyl trans- 
ferase 1 (DGAT1), glycerol-3- phosphate dehydrogenase 
1 (GPD1), and lipoprotein lipase (LPL), but negatively 
with CD36 and fatty acid- binding protein 4 (FABP4). 
These findings demonstrate a key role for ErbB1 in adi- 
pogenesis and suggest that lower ErbB1 protein abun- 
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dance may lead to adipose tissue dysfunction [54]. A 
class of P02545 and P62845 hints ribosome protein may 
play a role in diabetes-related protein synthesis. The 
former related to Familial partial lipodystrophy (FPLD), 
an autosomal dominant disorder caused due to missense 
mutations in the lamin A/C (LMNA) gene encoding nu- 
clear lamina proteins [55]. The latter related to insuli- 
noma [56]. A class of P13987 and Q14191 concerned 
with diabetes by enzyme signal pathway. P13987 as 
membrane attack complex (MAC) inhibition factor plays 
an important role in diabetic macrovascular diseases as- 
sociated with protein tyrosine kinase signal pathway [57]. 
Q14191 as a ATP- and Mg2+-dependent DNA helicase 
participates in DNA repair, replication, recombinetion 
and telomere maintenance, which isolated from Werner’s 
syndrome, a rare human autosomal recessive segmental 
progeroid syndrome clinically characterized by athero- 
sclerosis, cancer, osteoporosis, type 2 diabetes mellitus 
and ocular cataracts [58].  

3.4.2. Glucose Metabolism-Related Proteins 
There are 330 node proteins and 296 links in the pro- 
tein-protein network related to GMRPs (Figure 7) and 

its mean link degree <k> is 0.89. Some node proteins are 
surrounded by a large number of proteins whose link 
degrees are far greater than the average degree of the 
whole network. 15 central node proteins exist in this 
network, P01308 (insulin), P02652 (apolipoprotein A-II), 
P06213 (insulin receptor), P11166 (solute carrier family 
2, facilitated glucose transporter member 1), P13807 
(glycogen synthase), P18031 (tyrosine-protein phos- 
phatase non-receptor type 1), P31749 (RAC-alpha serine/ 
threonine-protein kinase), P35568 (insulin receptor sub- 
strate 1), P37231 (peroxisome proliferator-activated re- 
ceptor gamma), P52790 (hexokinase-3), P60484 (phos- 
phatidylinositol-3,4,5-trisphosphate 3-phosphatase and 
dual-specificity protein), Q15118 (pyruvate dehy-dro- 
genase kinase isozyme 1), Q9P1Z2 (calcium-binding and 
coiled coil domain-containing protein 1), Q9UH92 
(Max-like protein X), and P04075 (fructose-bisphosphate 
aldolase A), are related to diabetes whose connect de- 
grees (k) are 11, 6, 46, 9, 6, 25, 48, 48, 24, 5, 11, 6, 5, 6, 
and 5, respectively. Q86YI5 (dihydrolipoamide S-ace- 
tyltransferase) doesn’t exist in GMRPs whose connect 
degrees (k) is 5. Specially, P31749, P35568 and P06213 
play important roles in protein-protein interaction network. 

 

 

Figure 7. Protein-protein interaction network of GMRPs by Osprey 1.2.0. Here, red dots donate the proteins 
related to human glucose metabolism; bule dots don’t exist in the above network. 
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P31749 (RAC-alpha serine/threonine-protein kinase, 

protein kinase B, PKB) is one of closely related serine/ 
threonine-protein kinases (AKT1, AKT2 and AKT3) 
called the AKT kinase, and which regulate many proc- 
esses including metabolism, proliferation, cell survival, 
growth and angiogenesis. This is mediated through ser- 
ine and/or threonine phosphorylation of a range of 
downstream substrates. AKT is responsible of the regu- 
lation of glucose uptake by mediating insulin-induced 
translocation of the SLC2A4/GLUT4 glucose transporter 
to the cell surface. PTP1B is a protein tyrosine phos- 
phatase that negatively regulates insulin sensitivity by 
dephosphorylating the insulin receptor [59]. Phosphory- 
lation of PTPN1 by AKT at Ser50 negatively modulates 
its phosphatase activity creating a positive feedback 
mechanism for insulin signaling, namely preventing 
dephosphorylation of the insulin receptor and the at- 
tenuation of insulin signaling. AKT phosphorylation of 
TBC1D4 (the Rab GTPase-activating protein, 160-kDa 
Akt substrate) triggers GLUT4 translocation and the 
binding of this effector to inhibitory 14-3-3 proteins, 
which is required for insulin-stimulated glucose transport 
[60]. AKT regulates also the storage of glucose in the 
form of glycogen by phosphorylating GSK3A at Ser21 
and GSK3B at Ser9, resulting in inhibition of its kinase 
activity. 

P35568 (insulin receptor substrate 1, IRS1) functions 
as one of the key downstream signaling molecules in 
both the insulin receptor and the insulin-like growth 
factor-1 receptor signaling pathways (IGF-1R). Thus 
genetic changes in IRS-1 may potentially contribute 
toward the development of insulin resistance [61]. After 
autophosphorylation of the insulin receptor, the receptor 
kinase is activated and phosphorylates IRS-1 and other 
intracellular substrates. This signaling molecule then acts 
as a docking protein for multiple Src homology-2 domain 
(SH2)-containing proteins, including phosphatidylinosi- 
tol 3-kinase (PI3-k), Grb-2, and SHP2. The G972R 
polymorphism is found near the C terminus of IRS-1 
flanked by two tyrosine phosphorylation consensus sites 
(EY941MLM and DY989MTM), which are known binding 
sites for the p85α regulatory subunit of PI 3-kinase. The 
G972R polymorphism impairs the ability of insulin to 
stimulate glucose transport, glucose transporter translo- 
cation, and glycogen synthesis by affecting the PI3K/ 
AKT1/GSK3 signaling pathway. The polymorphism at 
G972R may contribute to the in vivo insulin resistance 
observed in carriers of this variant. G972R could con- 
tribute to the risk for atherosclerotic cardiovascular dis- 
eases associated with non-insulin-dependent diabetes 
mellitus (NIDDM) by producing a cluster of insulin re- 
sistance-related metabolic abnormalities [62]. In insulin- 
stimulated human endothelial cells from carriers of the 
G972R polymorphism, genetic impairment of the IRS1/ 

PI3K/PDPK1/AKT1 insulin signaling cascade results in 
impaired insulin-stimulated nitric oxide (NO) release and 
suggested that this may be a mechanism through which 
the G972R polymorphism contributes to the genetic pre- 
disposition to develop endothelial dysfunction and car- 
diovascular disease. The G972R polymorphism not only 
reduces phosphorylation of the substrate but allows IRS1 
to act as an inhibitor of PI3K, producing global insulin 
resistance [61].   

3.5. Analysis of Transcription Factors at DNA 
Level Based on DRPs 

The genes of 25 DRPs exist in TRANSFAC database but 
the matching TF binding information of only 15 proteins 
can be found, including CP2E1_Rat (cytochrome P450, 
family 2, subfamily E, polypeptide 1; gene name: Cyp2e1; 
pretein/genomic DNA code: P05182/M20131), GLUC_ 
human (glucagon, Gcg, P01275/K02808), GTR4_mouse 
(glucose transporter member 4, Glut4, Slc2a4, P14142/ 
M29660), GTR4_rat (Glut4, Slc2a4, P19357/L36125), 
DQB1_human (MHC class II histocompatibility antigen, 
DQ beta 1 chain, HLA-DQB1, P01920/K02405), HBB_ 
human (hemoglobin subunit beta, HBB, P68871/U01317), 
HNF4A_human (hepatocyte nuclear factor 4 alpha, 
HNF4A, P41235/Z49825), IAPP_human (human islet 
amyloid polypeptide, IAPP, P10997/M26650), INSR_ 
human (insulin receptor, INSR, P06213/J03466), INS_ 
human (insulin, INS, P01308/J00265), LIPL_human 
(lipoprotein lipase, LPL, P06858/X68111), NR0B2_ 
human (nuclear receptor subfamily 0 group B member 2, 
NR0B2, Q15466/AF044316), TNFA_mouse (tumor ne- 
crosis factor, Tnf, P06804/Y00467), IGF1_rat (insulin- 
like growth factor, Igf1, P08025/M84484), and PDGFB_ 
human (platelet-derived growth factor subunit B, 
PDGFB, P01127/M19719). Most of gene sequences of 
15 proteins contain several TFBS, especially glucagon 
gene, hemoglobin subunit beta gene, etc. Moreover, a 
total of 37 TFs interact with DRPs, which cover four 
kinds of superclasses of transcription factors, such as 
basic domain (such as AP-1, C/EBP, USF, and NF-E2), 
beta-Scaffold factors with minor groove contact (i.e. CP2, 
NF-κB and p50), helix-turn-helix (HTH) (i.e. HNF, 
POU2F1, IPF, Pax, and RFX), and zinc-coordinating 
DNA-binding domains (i.g. Sp1, GATA-1, MAZ, and 
CACCC-binding factor), except the following CBF, BP1, 
CTF, and CAC-binding protein (Table 4). Sequence 
alignment shows that BP1 binding site presents a con- 
served motif of A-Py-AT-[0,1]-TA-Py-Pu-TA-A/T-ATA 
while the leucine zipper factor family C/EBP distin- 
guishs a nine-nucleotide motif of T-[1]-C-[1]-G/C-[1]- 
A-Pu-T in Slc2a4 and INSR gene. Here, pyrimidines and 
purines are abbreviated as Py and Pu, respectively. The 
transcription factor BP1 is believed to be a repressor of 
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the β-globin (HBB) gene. HNF bind with an adenine-rich 
motif,   
A-[5]-AA-[1]-A/T-G/C-[1]-A-[2]-[A/T]6-[2]-[A/T]2-C, 
in Igf1, Gcg, and Cyp2e1 genes, while Pax interacts with 
a thymine-rich motif of  
TT-T/A-TT-Py-AC-Pu-C/G-[1]-TGA and a A/T-rich 
motif of T-[1]-A-[1]-AT in Gcg and INS genes. Simi- 
larly, IPF binding site contains a seven-nucleotide motif 
of TAATGAC in LAPP and INS genes, while POU2F1 
binding site involves in a conserved motif of ATT-[0,1]- 
T-Pu-CAT in HBB and LPL genes. Interestingly, Cys4 
zinc finger family GATA-1 binding site displays two 
reverse symmetry motifs, such as Py-TATC-A/T and 
A/T-GATA-Pu, existing in HBB gene. 

3.6. Prediction of BAD Complex Proteins 

Danial and co-workers indicates an unanticipated role for 
BAD in integrating pathways of glucose metabolism and 
apoptosis using proteomics, genetics and physiology [25].  

In liver mitochondria, BAD (Q92934) resides in a func- 
tional holoenzyme complex together with PKA (Q4P0B3) 
and PP1 (Q9FSU8) catalytic units, WAVE-1 (Q92558), 
and GK (P35557). BAD complex includes phosphoryla- 
tion motif (hexokinase and cAMP_kin), dephosphoryla- 
tion motif (T_phtase_apaH), apoptosis regulator related 
motif (Bcl2_BH and BCL2_apoptsis), cyclic nucleotide- 
binding domain (cNMP_bd), cytoskeleton regulation 
related motif (WH2_actin_bd), and regulatory subunit 
portion of type II PKA R-subunit (RIIa). Comparison 
with the frequency of amino acids in BAD complex, 
these proteins basically accord with the amino acid 
composition, especially GK, WAVE1 with lowest Trp 
contents (Table 1). The Cys contents of BAD and PAK 
are the lowest but the Tyr content of PP1 is the lowest. 
Table 5 displays the usage biases of codons of BAD 
complex. Usage biases of codons reveal that GK are 
consistent with the results of DRPs while BAD and PKA 
nearly coincide with the codon biases. But WAVE1 and 
PP1 depart from the codon usage biases. 

 
Table 4. Classification of transcription factors. 

Superclass Class Family Subfamily Factors Genes of 15 DRPs 

Basic Domains Leucine zipper factors (bZIP) bZIP / PAR  AP-1 HBB 

  CREB  CREB Gcg, INS 

  C/EBP-like factors  C/EBP-α Slc2a4, INSR 

  AP-1(-like) components Fos c-Fos HBB 

   Jun c-Jun HBB 

   NF-E2 NF-E2 HBB 

    Nrf1 HBB 

    Nrf2 HBB 

 
Helix-loop-helix / leucine zipper 
factors 

Ubiquitous bHLH-ZIP 
factors 

USF USF INS 

beta-Scaffold  
Factors with Minor 
Groove Contacts 

Grainyhead Grainyhead CP2 CP2 HBB 

   CP2a CP2a HBB 

 RHR (Rel homology region) Rel/ankyrin NF-κB NF-κB Tnf 

   p50 p50 Tnf 

Helix-turn-helix Fork head / winged helix fork head  RFX1 HLA-DQB1 

    RFX2 HLA-DQB1 

    RFX3 HLA-DQB1 

  Tissue-specific regulators  HNF-3α Igf1 

    HNF-3γ Igf1 

    HNF-3β Gcg, Igf1 

 Homeo domain POU domain factors II POU2F1 HBB, LPL 

  
Homeo domain with LIM 
region 

Homeo domain  
with LIM region 

Lmx1 IAPP 

  Homeo domain only HNF1 HNF-1α Cyp2e1 
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Continued 
   Cad Cdx-3 Gcg, IAPP 

   Antp IPF1 IAPP, INS 

 Paired box Paired plus homeo domain Pax-4a Pax-4a Gcg, INS 

   Pax-4c Pax-4c INS 

   Pax-6 Pax-6 Gcg 

Zinc-coordinating 
DNA-binding do-
mains 

Cys2His2 zinc finger domain Ubiquitous factors  Sp1 
Slc2a4, HNF4A,  
INSR, PDGFB 

    
CACCC-binding 
factor 

HBB 

    MAZ IAPP 

    ZNF174 PDGFB 

 diverse Cys4 zinc fingers GATA-Factors 
vertebral 
GATA-Factors 

GATA-1 HBB 

Others    CBF(2) Cyp2e1 

    
CAC-binding 
protein 

HBB 

    BP1 HBB 

    BP2 HBB 

    CTF HBB 

 
Table 5. Usage biases of Codons of BAD complex. 

Amino acids 
(Codon) 

HXK 1 HXK 2 HXK 3 GK BAK BAD PKA WAVE1 PP1 

Phe (UUC) √ √ √ √ √ Phe(UUU) Phe(UUU) Phe(UUU) Phe(UUU) 

Leu (CUG) √ √ √ √ √ Leu(CUC) √ Leu(UUG) Leu(UUG) 

Ile (AUC) √ √ √ √ √ √ √ Ile (AUU) Ile (AUA) 

Met (AUG) √ √ √ √ √ √ √ √ √ 

Val (GUG) √ √ √ √ √ √ √ Val(GUU) Val(GUC) 

Ser (AGC) Ser(UCC) √ √ √ √ √ Ser (UCG) Ser (UCA) Ser (UCU) 

Tyr (UAC) √ √ √ √ √ Tyr (UAU) √ Tyr (UAU) Tyr (UAU) 

Pro (CCC) Pro CCA) √ √ √ Pro(CCA) √ √ Pro (CCA) Pro (CCA) 

Thr (ACC) √ √ √ √ √ Thr(ACG) Thr(ACG) Thr (ACA) Thr (ACU) 

Ala (GCC) √ √ √ √ √ Ala (GCA) Ala(GCG) Ala(GCU) Ala(GCU) 

His (CAC) √ √ √ √ √ His (CAU) His (CAU) His (CAU) His (CAU) 

Trp (UGG) √ √ √ √ √ √ √ √ √ 

Cys (UGC) √ √ √ √ √ Cys(UGU) √ Cys(UGU) Cys(UGU) 

Gln (CAG) √ √ √ √ √ √ √ √ √ 

Asn (AAC) √ √ √ √ √ √ √ Asn (AAU) √ 

Gly (GGC) √ √ √ √ √ √ √ Gly(GGU) Gly(GGG) 

Arg (CGG) Arg(AGG) √ √ Arg(CGC) Arg(CGC) Arg(CGC) Arg(CGU) Arg(UGU) Arg (AGA) 

Asp (GAC) √ √ √ √ √ √ √ Asp(GAU) Asp(GAU) 

Glu (GAG) √ √ √ √ √ √ √ Glu (GAA) Glu (GAA) 

Lys (AAG) √ √ √ √ √ √ √ √ Lys (AAA) 

Note: The mark “√” donates that the codons of each pending protein are the same as the common codon biases of 211 diabetes-related proteins. The underlined 
letters express the codons consistent with those of the common codon biases due G/C rich and codon compatibility whilst the italics display nevertheless the 
codons inconsistent with those. 
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The interaction between BAD complex and other pro- 

teins was searched in IntAct database. The B cell leuke- 
mia-2 gene product (Bcl-2) family of proteins can be 
divided into three different subclasses based on conser- 
vation of BCL-2 homology (BH1–4) domains: multido- 
main anti-apoptotic proteins (BCL-2, BCL-XL, MCL-1, 
BCL-W, and Bfl-1/A1), multidomain proapoptotic pro- 
teins (BAX and BAK), and BH3-only proapoptotic pro- 
teins (BID, BAD, BIM, PUMA, NOXA, and NBK/BIK) 
[44,63]. Notably, BH3-only proteins are not able to kill 
cells that lack BAX and BAK, indicating that BH3-only 
proteins function upstream of and are dependent on BAX 
and BAK [64]. IntAct database shows that BAD interacts 
with Bcl-2, Bcl-x, Bcl-w, RNA-binding protein EWS, 
and 14-3-3 protein sigma, respectively. BAK could con- 
tact the node protein Lamin-A/C by E1B protein of the 
following pathway, namely Q16611 (BAK_human, 
Bcl-2 homologous antagonist/killer)-P03247 (E1BS_ 
ADE02, E1B protein, small T-antigen)-P02545 (LMNA_ 
Human: Lamin-A/C). 

On the other hand, gamma-enolase might associate the 
node protein alpha-endosulfine with HXK 1, viz. HXK 1 
(P19367, Hexokinase-1)-P09104 (ENOG_human, Gamma- 
enolase)-O43768 (ENSA_human, alpha-endosulfine). 
Figure 5 shows HXK1 (green dot) interaction with 
O43768 by P09104. O43768 is the endogenous ligand 
for sulfonylurea receptor, while endosulfine is the en- 
dogenous ligand for the ATP-dependent potassium 
channels that occupy a key position in the control of in- 
sulin release from the pancreatic beta cell by coupling 
cell polarity to metabolism. By inhibiting sulfonylurea 
from binding to the receptor, it reduces K+ channel cur-
rents and thereby stimulates insulin secretion. P09104, 
neuron-specific enolase, has neurotrophic and neuropro- 
tective properties on a broad spectrum of central nervous 
system (CNS) neurons, binding to cultured neocortical 
neurons in a calcium-dependent manner to promote cell 
survival. It is normally expressed in neural tissue and 
involves a freely reversible cytosolic reaction in glycoly- 
sis where one molecule each of phosphoenolpyruvate and 
water react to form one molecule of 2-phosphoglycerate. 
It is of possible clinical interest as a marker of some 
types of neuroendocrine and lung tumors. Moreover, 
HXK2 interacts with ubiquilin-1, while GK interacts 
with two consensus peptides, EYLSAIVAGPWP of 
GCKR1 (Glucokinase regulatory protein) and HGMK- 
VWTLPATS of PFKFB1 (F261, 6-phosphofructo-2- 
kinase/fructose-2,6-biphosphatase 1) by phage display, 
respectively. The homology of WAVE1 and PKA by 
alignment of F261 or GCKR is more than 35%, respec-
tively. Our results show that GK might distinguish from 
PP1 or WAVE1 in a special pattern by binding with the 
consensus motif [G]-[1]-[K]-[2]-[S/T] or 
[L/M]-[R/K]-[2]-[T] of PP1 or WAVE1, which is sup-

ported by our previous results that GK distinguishing a 
nine-residue motif EGLKFYTNP (146-154) of WAVE1 
construct the BAD-GK-PKAc-PP1c-WAVE1 complex 
[45]. Additionally, BAD and GK play key roles because 
of BAD as a substrate for the PKA-PP1 pair and by BH3 
domain directly interacting with GK. Apparently, this 
may be the reason of the BAD complex existing in liver 
mitochondria, regardless of phosphorylated and dephos- 
phorylated BAD, integrating glycolysis and apoptosis. 

3.7. Molecular Modeling of BAD Complex 

Knowledge, both from the 3D structures of homologous 
proteins and from the general analysis of protein struc- 
ture, is of value in modeling a protein of known sequence 
but unknown structure. Many models are constructed by 
homologous modeling on graphics devices. Our group 
has even built molecular models of HIV-1 co-receptor 
CCR5 [65], fibrinogen receptor [66], ADP receptor [27], 
and recombinant SCF-MCSF (Stem Cell Factor-Macro- 
phage Colony Stimulating Factor) fusion proteins and 
their receptors [67] using the same method, especially 
integrin GPIIB and purinergic receptor P2Y12 were em- 
bodied into PDB database, and their PDB codes were 
1UV9 and 1VZ1, respectively. Here we mainly discuss 
the mechanism of BAD complex using homologous 
modeling and molecular dynamics. Firstly, human BAD 
model was built using NMR structure of mouse Bid 
(PDB code: 1DDB) [68] as a template. Secondly, based 
on the sequence alignments between BAD and CAPKI 
and between PKAc and GK, taking X-ray crystal struc- 
ture of PKAc interaction with its inhibitor (CAPKI) 
(PDB code: 1CTP) [69] as a template, a complex model 
of BAD with GK was constructed using Biopolymer 
module. Similarly, a complex model of PKAc, BAD, and 
GK was built using a complex model of human BAD 
with Bcl-xL and PKAc [70] built by us as a template. 
Thirdly, based on the structure of PP1c-MYPT1 (myosin 
phasphatase targeting subunit 1) complex (PDB code: 
1S70) [71], a structural model of PP1c-GK complex was 
constructed using Biopolymer module. Combined with 
BAD complex with GK and PKAc, a complex model of 
PP1c, BAD, GK, and PKAc was built. Finally, the four- 
member complex by interaction with the dimerization 
domain of PKA regulatory subunit could also connect 
with WAVE1 to construct the nine-member complex, 
namely (BAD-GK-PKAc-PP1c)2-WAVE1 complex.  

The survey for their interactions in the complex with 
human BAD and GK focuses on a helical region (98 to 
126 residues) of BAD and a shallow pocket at surface of 
GK (Figure 8). The direct interatomic contacts are made 
between BAD and GK by van der Waals contacts, hy- 
drophobic interaction, electrostatic interaction, hydrogen 
bond, and salt bridge, respectively. Residues in contact 
are congregated in five scattered regions of human BAD: 
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Gln12-Ser16 (loop, pink), Ala27 (loop, pink), Leu44- 
Glu53 (turn, yellow), Arg98-Lys126 (BH3 domain, red), 
and Gln152-Ser167 (loop and helix, green); and they 
spread over six segments of GK: Asp78-Met87 at a turn, 
two loops (Ser100-Glu112 and Gly170), two helices 
(Glu128-Phe133 and Arg327-Gln347), and a span from 
415 to 446. Besides the interaction between BAD and 
GK mentioned above, other interactions exist in the 
complex with BAD, GK, PP1c and PKAc. Especially the 
amidogen hydrogen of Lys81 and Lys83 of PKAc make 
hydrogen bridges with the carbonyl oxygen of Leu314 
and Pro359 of GK, respectively. Besides, the direct in- 
teratomic contacts are made between 7 residues of BAD 
and 6 residues of PKAc as follows: the active sites of 
BAD distributing over three segments: two loops 
(Glu68-Ser71 and Glu84-Glu88) and a turn (Tyr76- 
Gly79); and the active sites of GK over three parts: a 
helix (Glu248-Ser252) and two loop regions (Gln242 and 
Lys254-Arg256). Additionally, the direct interatomic 
contacts are made between 5 residues of GK and 5 resi- 
dues of PP1c. Residues in contact are concentrated in 
three dispersed regions of GK: Gln18 residue at a helix, 
Gln24-Leu25-Gln26 motif and Glu421 residue at loops; 
and they are distributed over three segments of PP1c: 
Asp179-Gln181, Arg188 residue, and Typ216-Glu218 
segment. 

Our research results reveal that BAD-GK-PKAc-PP1c 
complex by GK distinguishing a nine-residue motif 
EGLKFYTNP (146-154) of WAVE1 construct the BAD- 
GK-PKAc-PP1c-WAVE1 complex, which is supported 
by Danial NN’s results [25]. This is a case study of how 
human BAD was phosphorylated and inactivated at 
Ser75 by PKAc. Another for dephosphorylated and acti- 
vated BAD on Ser75, maybe substitute PP1c for PKAc 
in the complex where PP1c interacts with BAD to result 
in the dissociation of PKAc and its binding to the regu- 
latory subunit of PKA. Thus, PKA by the dimerization 
domain of the regulatory subunit could interact with 
N-terminal peptides of WAVE1, which is supported by 
Newlon MG’s results [72]. Additionally, we have built a 
complex model of double PKA with a peptide from 
WAVE1 [73]. Moreover, PKA by WAVE1 interacts with 
GK to form (BAD-GK-PKAc-PP1c)2-WAVE1 complex.   

4. DISCUSSION 

Diabetes is an important endocrine disorder whose 
pathogenesis is so complex and indefinite that it has 
never been reported that someone had recovered totally 
from diabetes. Genomic and proteomic data analysis is 
essential for understanding the underlying factors that are 
involved in human disease, such as AD previously re- 
ported by ourselves [11]. By extracting significant ge- 
nomic and proteomic biomarkers in controlled experi- 
ments, scientists come closer to understanding how bio- 

logical mechanisms contribute to human diseases such as 
neurodegenerative diseases and cardiovascular disorders, 
and how drug treatments interact with the nervous sys- 
tem. By integrating proteins associated with the pathol- 
ogy of AD into a database and mapped into a protein 
interaction network, we report a novel approach to predict 
protein-protein interactions and their potential interaction 
 

 
(a) 

 
(b) 

Figure 8. Molecular modeling of BAD complex. a) a 
four-member complex model of human BAD (orange) 
with GK (green), PKAc (cyan), and PP1c (red); b) a 
nine-member complex model of double four-member 
complex with a peptide of WAVE1, here, BAD colored 
by orange and blue, respectively, GK (green and purple), 
PKAc (cyan and gray), and PP1c (red and white). 
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sites, based on the characteristics of the free-scale net- 
work [74]. These networks are constructed with the pro- 
teins being the “nodes” and an observation of interaction 
being an “edge”. The scale free nature of the protein in- 
teraction network indicates that a limited number of pro- 
teins have a large number of interactions, and function as 
“hubs” [74]. Thus, protein interaction networks provide 
an indication of which proteins are more likely to be 
critical for overall functioning, and to indicate groups of 
proteins sharing common functions. 

Similarly, we analyzed and built protein-protein inter- 
action networks for DRPs and GMRPs with a common 
node protein P06213 (insulin receptor, ISR). There are 
some similar node proteins in DRP interaction network 
(DRPIN) and GMRP interaction network (GMRPIN), 
such as glucose transporter members P19357 (GLUT4) 
and P11166 (GLUT1), protein tyrosine phosphatases 
(PTP) Q16849 (PTPRN) and P18031 (PTP1B, tyrosine- 
protein phosphatase 1B), and adipose metabolism signal 
proteins P06858 (LIPL, lipoprotein lipase) and P02652 
(APOA2, apolipoprotein A2). Moreover, GMRPIN’s 
node protein P37231 (PPARγ) could regulate expression 
of the following genes: ACSL1 (acyl-coenzyme A syn- 
thetase long-chain family member 1), adiponectin, 
ATGL (adipose tissue triacylglycerol lipase), and 
DGAT1 (diacylglycerol acyl transferase 1), as well as the 
expression of DRPIN’s node proteins Q64521 (glycerol- 
3-phosphate dehydrogenase) and P06858 (lipoprotein 
lipase) [54]. Our research results reveal that the motifs of 
these proteins mainly involve in the immunity, transfer- 
ring, transcription, phosphonation, insulin metabolism and 
so on. The sharing proteins involve some signal pathway, 
such as glucagon receptor [75], amylin (islet amyloid 
polypeptide) receptor [76], insulin- [77], PPARγ- [78], 
angiopoietin-[79], PC-1/ ENPP1 (Plasma cell membrane 
glycoprotein-1 or ectonucleotide pyrophosphatase/phos- 
phodieterase)- [80], and adiponectin- [81] mediated sig- 
nal pathway.  

Insulin is traditionally thought to reduce blood glucose 
levels by stimulating glucose uptake into skeletal muscle 
and adipose tissues via GLUT4 and by suppressing he- 
patic glucose production [82]. The insulin receptor (ISR) 
recruits adaptor protein IRS (insulin receptor substrates) 
to connect with downstream signalling pathways [77]. 
Insulin activates the ISR tyrosine kinase, which subse- 
quently tyrosine phosphorylates IRS [83] (Figure 9). In 
the fed state, dietary carbohydrate increases plasma glu- 
cose and promotes insulin secretion from the pancreatic 
beta cells. In the skeletal muscle, insulin increases glu- 
cose transport, permitting glucose entry and glycogen 
synthesis. In the liver, insulin promotes glycogen synthe- 
sis and de novo lipogenesis while also inhibiting glu- 
coneogenesis. In the adipose tissue, insulin suppresses 
lipolysis and promotes lipogenesis [83]. A family of IRS 

proteins was defined based on three major common 
structural elements: amino-terminal PH and PTB domains 
(PH/PTB) that mediate protein-lipid or protein-protein 
interactions, mostly carboxy-terminal multiple tyrosine 
residues (multi-Tyr) that serve as binding sites for pro- 
teins that contain one or more SH2 domains, and serine/ 
threonine-rich regions (Ser/Thr-yich) which may be rec- 
ognized by negative regulators of insulin action [77]. 
Glucagon, a major insulin counterregulatory hormone, 
binds to specific Gs protein–coupled receptors (GPCRs) 
to activate glycogenolytic and gluconeogenic pathways 
via adenylyl cyclase and phospholipase C (PLC) signal- 
ing pathways leading to increased intracellular cAMP 
and [Ca2+]i, causing blood glucose levels to increase [75]. 
Inappropriate increases in serum glucagon play a critical 
role in the development of insulin resistance and target 
organ damage in type 2 diabetes. Xiao C et al. have 
demonstrated that glucagon activated specific receptors 
to increase rat mesangial cell proliferation by stimulating 
MAPK ERK1/2 phosphorylation and that glucagon-in- 
duced ERK 1/2 phosphorylation requires receptor-medi- 
ated activation of cAMP-dependent PKA and PLC/ 
[Ca2+]i-mediated signaling cascades [75]. Hepatic gluca- 
gon action increases in response to accelerated metabolic 
demands and is associated with increased whole body 
substrate availability, including circulating lipids [84]. 
The hypothesis that increases in hepatic glucagon action 
stimulate AMP-activated protein kinase (AMPK) signal- 
ing and peroxisome proliferator-activated receptor-α 
(PPARα) and fibroblast growth factor 21 (FGF21) ex- 
pression in a manner modulated by fatty acids was tested 
in vivo. These findings demonstrate that glucagon exerts 
a critical regulatory role in liver to stimulate pathways 
linked to lipid metabolism in vivo and shows for the first 
time that effects of glucagon on PPARα and FGF21 ex- 
pression are amplified by a physiological increase in 
circulating lipids [84]. Moreover, accumulating evidence 
indicates a role for metabolic dysfunction in the patho- 
genesis of AD, with the evidence of insulin resistance in 
the AD brain [85]. Thus, insulin-based therapies, espe- 
cially targeting insulin signaling, have emerged as poten- 
tial strategies to slow cognitive decline and to improve 
cognitive function in AD.  

PC-1/ENPP1 has been shown to inhibit insulin signal- 
ing by inhibition of insulin-stimulated ISR tyrosine 
phosphorylation in cultured HEK293 cells in vitro and in 
transgenic mice in vivo when overexpressed [86]. More- 
over, knockdown of ENPP1 with siRNA significantly 
increases insulin-stimulated AKT phosphorylation in 
HuH7 human hepatoma cells, supporting the proposition 
that ENPP1 inhibition is a potential therapeutic approach 
for the treatment of type 2 diabetes [79]. It is reported 
that disruption of Angiopoietin-1 (Ang-1)/Tie-2 signal- 
ing pathway by PTP contributes to the diabetes-associ-  
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Figure 9. Potential signal pathway between glucose and BAD. 
 
ated impairment of angiogenesis [78]. Chen JX et al have 
found that protein tyrosine phosphatase-1 (SHP-1) bond 
to Tie-2 receptor and stimulation with Ang-1 led to SHP- 
1 dissociation from Tie-2 in mouse heart microvascular 
endothelial cell (MHMEC). Exposure of MHMEC to 
high glucose blunted Ang-1-mediated SHP-1/Tie-2 dis- 
sociation while treatment with PTP inhibitors restored 
Ang-1-induced AKT/eNOS phosphorylation and angio- 
genesis. Upregulation of Ang-1/Tie-2 signaling by tar- 
geting SHP-1 should be considered as a new therapeutic 
strategy for the treatment of diabetes-associated impair- 
ment of angiogenesis [78]. Similarly, microvessels iso- 
lated from the brains of AD patients express a large 
number of angiogenic proteins, such as hypoxia induc- 
ible factor 1-alpha (HIF-1α), angiogenic proteins, an- 
giopoietin-2 (Ang-2), and matrix metalloproteinase 2 
(MMP2), and survival/apoptotic proteins (Bcl-xL, cas- 
pase 3), accompanied by Ang-2, MMP2 and caspase 3 
elevated and the anti-apoptotic protein Bcl-xL decreased 
[87]. Hypoxia is thought to contribute to AD pathogene- 

sis and the cerebro-microvasculature is an important tar- 
get for the effects of hypoxia in the AD brain. 

The prevalence of type 2 diabetes increases rapidly 
due to the obesity epidemic. Obesity is the primary risk 
factor for insulin resistance, a hallmark and a driving 
factor for NIDDM progression [82]. The best-established 
connection between obesity and insulin resistance is the 
elevated and/or dysregulated levels of circulating free 
fatty acids that cause and aggravate insulin resistance, 
type 2 diabetes, cardiovascular disease and other haz- 
ardous metabolic conditions. Karki S and co-worker 
have indicated that palmitate, a major dietary saturated 
fatty acid, not only decreases adiponectin expression at 
the level of transcription by PPARγ and C/EBPα signal 
pathway and its intracellular metabolism via the acyl- 
CoA synthetase 1-mediated pathway, but may also sti- 
mulate lysosomal degradation of newly synthesized adi- 
ponectin by the intracellular sorting receptor sortilin [80]. 
INT131 is a potent non-thiazolidinedione (TZD)-selec- 
tive PPARγ modulator being developed for the treatment 
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of type 2 diabetes [77]. In preclinical studies and a phase 
II clinical trial, INT131 has been shown to lower glucose 
levels and ameliorate insulin resistance without typical 
TZD side effects. Lee DH and co-worker have suggested 
that a newly developed insulin-sensitizing agent, INT131, 
normalizes obesity-related defects in insulin action on 
PI3K signaling in insulin target tissues by a mechanism 
involved in glycemic control. If these data are confirmed 
in humans, INT131 could be used for treating type 2 
diabetes without loss in bone mass [77]. Moreover, nsu- 
lin-sensitive neurons in the brain, especially hypothala- 
mus, also play a key role in the maintenance of normal 
body weight and glucose homeostasis. Morris DL et al. 
recently demonstrated that SH2B1, an SH2 and PH do- 
main-containing adaptor molecule, links to human obe- 
sity and type 2 diabetes [82]. Genetic deletion of SH2B1 
results in severe leptin resistance, insulin resistance, hy- 
perphagia, obesity, and type 2 diabetes in mice. Neuronal 
SH2B1 serves as an endogenous leptin sensitizer and 
directly enhances leptin signaling in hypothalamic neu- 
rons via a JAK2-dependent mechanism, whereas periph- 
eral SH2B1 directly regulates glucose metabolism by 
enhancing insulin sensitivity. Furthermore, adipose SH 
2B1 mediates insulin stimulation of GLUT4 trafficking 
and glucose uptake in adipocytes by a novel mechanism. 
SH2B1 appears to be evolutionally conserved to regulate 
body weight and glucose metabolism via the brain-adi- 
pose tissue axis [82]. Nuclear receptors are attractive 
targets for the treatment of AD due to their ability to fa- 
cilitate degradation of Aβ, affect microglial activation 
and suppress the inflammatory milieu of the brain [88]. 
Countering neurovascular impairment with PPARγ ago- 
nists and acetylcholinesterase inhibitors (AChEi) may 
improve clinical outcome and delay progression to 
severe dementia [89]. PPARγ agonists that act by en- 
hancing insulin sensitivity are believed to derive from 
their ability as nuclear receptor ligands to regulate tran- 
scription of a wide variety of oxidative, inflammatory, 
fibrotic, and neuronal survival genes, although transcrip- 
tion independent effects may also be involved. PPARγ 
agonists thus have the ability to improve neuronal, glial, 
and cerebrovascular networks in AD, and consequently 
to rescue brain hemodynamics [89].  

Obviously, more than 60 percent of the glucose 
streaming through our blood is consumed by the brain. 
Uncontrolled diabetes can also be indirectly linked to 
numerous maladies by interfering with cerebral glucose 
metabolism to ultimately affect brain functioning. Im- 
pairment and damage of brain in lack of enough glucose 
supply will induce Alzheimer's disease (AD), considered 
as the “brain-type diabetes” or a third form of diabetes 
[90]. In fact, brain insulin has been shown to regulate 
both peripheral and central glucose metabolism, neuro- 
transmission, learning, and memory and to be neuropro- 

tective. Insulin signaling in central nervous system (CNS) 
has emerged as a novel field of research since decreased 
brain insulin levels and/or signaling were associated to 
impaired learning, memory, and age-related neurodegen- 
erative diseases [90]. The formation of misfolded pro- 
teins, AGEs (advanced glycation end products), mito- 
chondrial disorders, generation of oxidative stress, insu- 
lin resistance and abnormal glucose metabolism are main 
hallmarks of diabetes and AD [1]. Insulin may constitute 
a promising therapy against diabetes- and age-related 
neurodegenerative disorders, as the potential missing link 
between diabetes and aging in CNS. By integration of 
the metabolic, neuromodulatory, and neuroprotective 
roles of insulin in two age-related pathologies: diabetes 
and AD, Duarte AI and co-worker have revealed that the 
two age prevalent diseases, AD and type 2 diabetes, 
share many common features including the deposition of 
amyloidogenic proteins, amyloid β protein (Aβ) and 
amylin (human islet amyloid polypeptide, hIAPP), re- 
spectively [90]. Recent evidence suggests that both Aβ 
and amylin may express their effects through the amylin 
receptor although the precise mechanisms for this inter- 
action at a cellular level are unknown [91]. Aβ (1-42) 
and human amylin increase cytosolic cAMP and Ca2+, 
trigger multiple pathways involving the signal transduc- 
tion mediators PKA, MAPK, Akt, and cFos. In the pres- 
ence of human amylin, Aβ(1-42) effects on HEK293- 
AMY3 expressing cells are occluded suggesting a shared 
mechanism of action between the two peptides. Amylin 
receptor antagonist AC253 blocks increases in intracel- 
lular Ca(2+), activation of PKA, MAPK, Akt, cFos and 
cell death that occur upon amylin receptor-3 (AMY3) 
activation with human amylin, Aβ(1-42), or their co- 
application. Fu W et al suggested that AMY3 plays an 
important role by serving as a receptor target for actions 
Aβ and thus may represent a novel therapeutic target for 
development of compounds to treat neurodegenerative 
conditions such as AD [91]. Additionally, hIAPP as an- 
other hallmark of diabetes leads to pancreatic β-cells 
dysfunction. Neprilysin, a metallopeptidase known to 
degrade amyloid in AD, decreases islet amyloid deposi- 
tion by inhibiting hIAPP fibril formation, rather than 
degrading hIAPP [92]. Targeting the role of neprilysin in 
IAPP fibril assembly, in addition to IAPP cleavage by 
other peptidases, may provide a novel approach to reduce 
and/or prevent islet amyloid deposition in type 2 diabetes. 
The fact that some drugs developed to treat diabetes also 
have a positive effect on Alzheimer’s patients, such as 
metformin, supports the view that there is a common 
metabolic basis for both disorders [1].   

Furthermore, mitochondrial abnormalities like over 
oxidative stress and impaired calcium homeostasis are 
reported in AD and diabetes [1]. Although mitochondria 
are capable of generating ROS/RNS in AD and diabetes 
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by themselves, other sources/mechanisms like misfolded 
proteins (Aβ and hIAPP), accumulated NFTs (tau 
plaques), hyperglycemia and AGEs also promote ROS 
generation [93]. Abundant evidence indicates that direct 
neurotoxic effects of Aβ involve activation of apoptosis 
pathways [94]. Apoptosis is regulated by the B cell leu- 
kemia-2 gene product (Bcl-2) family (Bcl-2, Bcl-x, Bax, 
Bak and Bad) and the caspase family (ICH-1 and CPP32), 
with apoptosis being prevented by Bcl-2 and Bcl-x, and 
promoted by Bax, Bak, Bad, ICH-1 and CPP32 [95]. 
Members of the Bcl-2 family are pivotal regulators of the 
apoptotic process and include both proteins that promote 
cell survival (e.g., Bcl-2, Bcl-xL, and Bcl-w) and others 
that antagonize it (e.g., Bax, Bad, Bak, Bik, Bid, BNIP3, 
and Bim). Previous work suggests that Aβ-induced 
apoptosis is characterized by decreased expression of the 
antiapoptotic Bcl-2, Bcl-xL, and/or increased expression 
of the proapoptotic Bax, Bim. Furthermore, overexpres- 
sion of antiapoptotic Bcl-2 and Bcl-xL or suppression of 
Bim can attenuate Aβ toxicity [94]. Kitamura Y et al. 
have indicated that Bak and Bad but not Bax may con- 
tribute to neuronal death in AD [95]. The mechanism of 
Aβ-induced neuronal apoptosis sequentially involves 
JNK (c-Jun N-terminal kinase) activation, Bcl-w down- 
regulation, and release of mitochondrial Smac (second 
mitochondrion-derived activator of caspase, an important 
precursor event to cell death), followed by cell death [94]. 
Especially, the mitochondrial BAD complex composed 
of GK, PP1, PKA, WAVE-1 and BAD in integrating 
pathways of glucose metabolism and apoptosis [25]. GK 
activation in the liver results in reduction of glucose 
concentrations by increasing glycogen synthesis [84]. 
Dual role of BAD in insulin secretion and beta-cell sur- 
vival is represented by the BH3 domain, which endows 
BAD with bifunctional activities to differentially control 
insulin secretion and apoptosis [86]. Phosphorylation of 
serine 155 in the BH3 domain instructs BAD to assume a 
metabolic role by activating GK. The metabolic function 
of BAD controls insulin secretion, hepatic glucose sens- 
ing and overall glucose tolerance. When dephosphory- 
lated, BAD BH3 targets BCL-XL to induce apoptosis. 
Apoptosis, together with other negative and positive 
regulators of beta-cell growth, proliferation and survival, 
contributes to the physiological control of beta-cell mass 
homeostasis. In addition, exposure to perfluorononanoic 
acid (PFNA), an increasingly persistent organic pollutant, 
has been demonstrated to cause hepatotoxicity in animals 
because PFNA exposure changed the expression levels 
of several genes related to hepatic glucose metabolism 
[96]. The protein expression levels of GK, PI3Kca 
(phosphoinositide-3-kinase, catalytic, alpha polypeptide), 
phospho-insulin receptor substrate 1 (p-IRS1), p-PI3K, 
p-AKT and p-PDK1 (phosphoinositide-dependent kinase 
1) were decreased in the livers of rats that received 

5mg/kg/d PFNA, while that of glucose-6-phosphatase, 
GLUT2 and p-GSK3β (glycogen synthase kinase-3 beta) 
were increased, which explains the augment of hepatic 
glycogen [96]. Hyperoside can activate the PI3K/Akt 
signaling pathway, resulting in inhibition of the interac- 
tion between Bad and Bcl(XL), without effects on the 
interaction between Bad and Bcl-2, and further inhibited 
mitochondria-dependent downstream caspase-mediated 
apoptotic pathway, such as that involving caspase-9, 
caspase-3, and poly ADP-ribose polymerase (PARP) 
[24]. Hyperoside could be developed into a clinically 
valuable treatment for AD and other neuronal degenera- 
tive diseases associated with mitochondrial dysfunction. 

The constructed model of BAD complex with GK, 
PKAc, PP1c and WAVE-1 integrating glycolysis and 
apoptosis using homology modeling method revealed 
that human BAD is phosphorylated and inactivated on 
Ser 75 in a BAD-Bcl-xL complex by PKA (targeted to 
mitochondria through association with WAVE1), result- 
ing in the dissociation of BAD and its binding to GK 
[45]. Moreover, GK can interact with PP1c and also dis- 
tinguish WAVE1. On the other hand, BAD is dephos- 
phorylated and activated on Ser75 by PP1c, leading to 
the separation of PKAc and its binding to the regulatory 
(R) subunit of PKA which by the dimerization domain of 
its R subunit connects with WAVE1 linked with GK of 
the complex. This may be the reason of the complex ex- 
isting in liver mitochondria, regardless of phosphorylated 
and dephosphorylated BAD. Additionally, GK like PKA 
may also prevent Bcl-xL from rebinding to BAD by 
phosphorylating BAD at Ser 118. The BAD complex 
model reveals that BAD and GK play key roles because 
of BAD as a substrate for the PKA-PP1 pair and by BH3 
domain directly interacting with GK. This is helpful for 
our development and research of the molecular mecha- 
nism of BAD. Our previously results have shown that 
PKA, targeted to mitochondria through association with 
AKAPs, phosphorylated and inactivated human BAD on 
Ser75 in a BAD–Bcl-xL complex resulting in the disso- 
ciation of BAD and its binding to 14-3-3, whereas PKA 
may also prevent Bcl-xL from rebinding to BAD by 
phosphorylating BAD at Ser118 of BH3 domain in a 
BAD-14-3-3E complex [97]. The 14-3-3 family consists 
of homo- and heterodimeric proteins representing a novel 
type of “adaptor proteins” modulating the interaction 
between components of signal transduction pathways, 
especially 14-3-3 isoforms gamma and epsilon (14-3-3E) 
increased in several brain regions of AD patients [98]. 
14-3-3E may reflect impaired signaling and/or apoptosis 
in the brain as several kinases (such as protein kinase C, 
Ras, mitogen-activated kinase MEK) involved in signal- 
ing and apoptotic factors due to BAD and BAG-1 bind- 
ing to 14-3-3 motifs [98].  

The activation of Wnt signaling and Akt is the main- 
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tenance of mitochondrial membrane potential and the 
regulation of Bcl-xL, mitochondrial energy metabolism, 
and cytochrome c release [99]. Loss of Wnt signaling 
also appears to play a role in more widespread neurode- 
generative disorders, such as AD. Neurotoxicity of *β- 
amyloid deposition in hippocampal neurons has been 
linked to increased levels of GSK-3β*

 and loss of 
*β-catenin [99]. Decreased production of Aβ* can occur 
during the enhancement of protein kinase C (PKC) activ- 
ity which may be controlled by the Wnt pathway. In ad- 
dition, PS1 has been shown to downregulate Wnt signal- 
ing and interact with β-catenin to promote its turnover 
[99]. Disheveled (a downstream transducer of Wnt sig- 
naling) can promote non-amyloidogenic alpha-secretase 
cleavage of APP to yield secreted APP (sAPP) and in- 
hibit GSK-3β to reduce the phosphorylation of tau. Thus, 
disheveled may increase neuronal protection during 
neurodegenerative disorders through sAPP production 
and reduction in tau phosphorylation [99]. Wnt and Akt 
act upon downstream substrates, such as GSK-3β, Bad, 
and WISP-1 to block the induction of apoptotic cellular 
injury [99]. EPO decreases the toxic effect of Aβ on mi- 
crogliain through up-regulation of Wnt1 and activation 
of the PI3-K/Akt1/mTOR/p70S6K pathway-integration 
of the PI3-K/Akt1 pathways, mTOR, and mitochondrial 
related signaling of Bad, Bax, and Bcl-xL. EPO may in 
turn increases phosphorylation and cytosol trafficking of 
Bad, reduces the Bad/Bcl-xL complex and increases the 
Bcl-xL/Bax complex, thus preventing caspase 1 and 
caspase 3 activation and apoptosis. This may foster de-
velopment of novel strategies to use cytoprotectants such 
as EPO for AD and other degenerative disorders [100]. 

On the other hand, studies of synonymous codon us-
age in human genes can reveal some of human genome 
features, and the knowledge of codon usage pattern in 
diabetes or glucose metabolism related genes may assist 
mechanism researches of diabetes. Although the causes 
of codon usage bias are still under discussion, a lot of 
factors that influence the codon usage patterns are dis- 
covered in many researches: the GC content of the ge- 
nome, especially the GC content at the third position of 
codons [101]; concentrations of corresponding acceptor 
tRNA molecules [102]; the functions or hydrophilicity of 
proteins expressed by a gene [103]; gene expression lev- 
els [104]; the amino acids composition of a protein [105]; 
the structure of proteins [106]; the mutational frequency 
and the method of mutation [107], etc. All these factors 
can be summarized as the influence of mutational pres- 
sure and translational selection (natural selection). Our 
results revealed that the bias of the codon usage in these 
proteins is primarily determined by the GC content and 
the third codons of the highly expressed genes are all 
G/C bases except part of mouse GMRPs. The synony- 
mous codon usage biases in DRPs’ genes and human 

GMRPs’genes are relatively strong, using G or C ended 
codons, which is consistent with that of human genes 
(table 2). 12 amino acids prefer codons ended with C, 
including Asn (AAC), Asp (GAC), His (CAC), Tyr 
(UAC), Ala (GCC), Pro (CCC), Thr (ACC), Ser (AGC), 
Cys (UGC), Gly (GGC), Ile (AUC), and Phe (UUC), as 
well as Arg (CGC) for human genes. Besides Met (AUG) 
and Trp (UGG), 5 amino acids prefer codons ended with 
G, such as Gln (CAG), Glu (GAG), Lys (AAG), Leu 
(CUG), and Val (GUG), as well as Arg (CGG) for 
DRPs’gene. The compositional constraints (or muta- 
tional bias) and gene functions are the cause of the bias 
and the effect of natural selection is slight. All these 
analysis rendered some clue in discovering the mystery 
and curing the human diabetes disease. As analyzed in 
this study, CpG containing codons are markedly sup- 
pressed while UpG containing codons are over-repre- 
sented. These results can be explained by mutational 
pressure. The frequencies of occurrence for dinucleotides 
were not randomly distributed and no dinucleotides were 
present at the expected frequencies. The codon usage in 
human diabetes related can be strongly influenced by 
underlying biases in dinucleotide frequencies. The global 
methylation pattern is a key feature of the methylation 
landscape of the human genome. Most of the gene bodies 
and intergenic sequences are globally methylated with 
the exception of regions called CpG islands (CGIs). 
CGIs are often unmethylated, but there are increasing 
number of CGIs being reported to be methylated in nor- 
mal tissues [108]. In mammals, the methylated form of 
cytosine (5-methylcytosine) is hypermutable. 5-methyl- 
cytosine is formed by the enzyme DNA methyltrans- 
ferase operating on a cytosine occurring immediately 5' 
of a guanine. One effect of methylation is to increase the 
rate of spontaneous deamination of 5-methylcytosine to 
form thymine. It has been estimated that transitions in 
the methylated CpG dinucleotide occur 8 - 16 times 
faster than non-CpG transitions [109]. The deficit of 
CpG dinucleotides in human diabetes related gene cod- 
ing sequences is largely attributed to the hypermutability 
of methylated CpGs to UpGs (or CpAs in the comple- 
mentary strand). Since, CpGs in CGIs are often unme- 
thylated and their mutations are rare, the deficiency of 
CpG can be considered an influence of mutation, which 
is in accordance with the conclusion that the codon usage 
of these diabetes related genes are influenced by the 
cause mutational pressure. Our results also displayed that 
the synonymous codon usage biases in mouse GMRPs’ 
genes are ordered by the third codon position as follows: 
C > G > U > A, which is in accord with Zeeberg’s results 
[110]. 5 amino acids prefer codons ended with U, in- 
cluding Ala (GCU), Pro (CCU), Ser (UCU), Asp (GAU), 
and Cys (UGU). 3 amino acids prefer codons ended with 
A, such as Gly (GGA), Arg (AGA), and Thr (ACA). 
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This appears to be a manifestation of an evolutionary 
strategy for placement of genes in regions of the genome 
with a GC content that relates synonymous codon bias 
and protein folding. Similarly, codon usage biases in AD 
and other neurodegenerative diseases indicated that GC- 
rich codons are mainly in charge of forming contracted 
conformation, especially the first nucleotide of codons 
plays a dominant role in translating the genomic GC 
signature into protein sequences and structures [11]. Our 
previous research has revealed that conformation biases 
of amino acids are present in natural proteins and the 
corresponding biases of codons show an evident ten- 
dency in protein folding [26].   

Meanwhile, accumulative evidences suggest that hu- 
man virus infections can induce diabetes, including dia- 
betes Type 1 and Type 2. The former is caused by pro- 
gressive destruction of pancreatic β-cells, leading to in- 
sulin deficiency. There is extensive epidemiological evi- 
dence that viral infections, among other environmental 
agents, may contribute to the pathogenesis of Type 1 and 
several enteroviruses can infect human β-cells, resulting 
in functional impairment or cell death [111]. Likewise, 
insulin resistance, caused by HCV infection, evolves to 
type 2 diabetes when superimposed on a high-fat diet and 
obesity. That means there exists a correlation exists be- 
tween HCV infection and diabetes [112]. For the virus 
infections that can induce diabetes, Coxsackievirus sero- 
type B (CVB) and hepatitis C virus (HCV) will be dis- 
cussed [113]. CVB belongs to the species Human en- 
terovirus-B (HEV-B), a member of the family Picor- 
naviridae. There are six serotypes of CVB and a large 
number of substrains of these small non-enveloped, sin- 
gle-stranded positive-sense RNA viruses. Up to now, the 
codon usage research of CVB is lacked.  

5. CONCLUSION 

Blood glucose concentration is very important, disorder 
of glucose metabolism will lead to a series of serious 
diseases, especially diabetes. DRPs represent Lys as the 
most abundant amino acid while GMRPs show Leu-rich 
and Trp-poor character. Especially, the percentage of Trp 
can distinguish between type 1and type 2 diabetes melli- 
tus. Amongst the aromatic entities, Tryp- tophan was 
found to possess the most amyloidogenic potential. There- 
fore, targeting aromatic recognition interfaces by trypto- 
phan could be a useful approach for inhibiting the forma- 
tion of amyloids and a treatment strategy for several hu- 
man diseases associated with amyloid formation, includ-
ing Alzheimer’s disease, Park- inson’s disease, diabetes, 
etc. Moreover, the usage biases of codons in DRPs’genes 
depend on GC contents to a great extent, in concord with 
all codons of the highly expressed genes with the termi- 
nal of C/G. The deficit of CpG dinucleotides in diabetes 
related gene coding sequences is largely attributed to the 

hypermutability of methylated CpGs to UpGs by the 
mutational pressure. This helps to treat and control dia- 
betes at gene level by site mutant. Additionally, besides a 
common node insulin receptor, there are some similar 
node proteins in DRP interaction network (DRPIN) and 
GMRP interaction network (GMRPIN), such as glucose 
transporter members GLUT4 and GLUT1, protein tyro- 
sine phosphatases PTPRN and PTP1B, and adipose me- 
tabolism signal proteins LIPL and APOA2. Moreover, 
GMRPIN’s node protein PPARγ could regulate expres- 
sion of the following genes: ACSL1, adiponectin, ATGL, 
and DGAT1, as well as the expression of DRPIN’s node 
proteins GPDM and LIPL. The sharing proteins involve 
the following signal pathway, such as glucagon receptor, 
amylin receptor, insulin, PPARγ, angiopoietin, PC-1/ 
ENPP1, and adiponectin mediated signal pathway. More- 
over, most of gene sequences of 15 node proteins in 
DRPs’ interaction network involved the binding sites of 
37 transcription factors divide into four kinds of super- 
classes, such as basic domain (such as C/EBP), beta- 
Scaffold factors (i.e. NF-κB), helix-turn-helix (i.e. HNF), 
and zinc-coordinating DNA-binding domains (i.g. GATA- 
1). The leucine zipper factor family C/EBP distinguishes 
a nine-nucleotide motif of T-[1]-C-[1]-G/C-[1]-A-Pu-T, 
while Cys4 zinc finger family GATA-1 binding site dis- 
plays two reverse symmetry motifs, such as PyTATC- 
A/T and A/T-GATA-Pu. Especially, BAD complex can 
integrate pathways of glucose metabolism and apoptosis 
by BH3 domain of BAD directly interacting with GK 
because of BAD as a substrate for the PKA-PP1 pair, 
regardless of phosphorylated and dephosphorylated BAD. 
In conclusion, we try to systematically analyze the basic 
parameters, interactions, pathways, and networks of pro- 
teins related to diabetes and glucose metabolism on mu- 
til-scale and mutil-level, including the amino acid com- 
positions, codon biases, protein-protein interaction net- 
work, transcription factor binding sites, and BAD com- 
plex structure. This facilitates the discovery of treatment 
for diabetes mellitus and is helpful for the prediction and 
evaluation of potential diabetes targets. They are also 
conducive to the treatment of Alzheimer’s disease.  
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