
J. Biomedical Science and Engineering, 2012, 5, 120-132                                                     JBiSE 
http://dx.doi.org/10.4236/jbise.2012.53016 Published Online March 2012 (http://www.SciRP.org/journal/jbise/) 

FPGA implementation of fractal patterns classifier for 
multiple cardiac arrhythmias detection 

Chia-Hung Lin, Guo-Wei Lin 
 

Department of Electrical Engineering, Kao-Yuan University, Kaohsiung City, Taiwan 
Email: eechl53@cc.kyu.edu.tw 
 
Received 2 December 2011; revised 30 December 2011; accepted 29 January 2012 

ABSTRACT 

This paper proposes the fractal patterns classifier for 
multiple cardiac arrhythmias on field-programmable 
gate array (FPGA) device. Fractal dimension transfor- 
mation (FDT) is employed to adjoin the fractal fea- 
tures of QRS-complex, including the supraventricular 
ectopic beat, bundle branch ectopic beat, and ventricu- 
lar ectopic beat. FDT with fractal dimension (FD) is 
addressed for constructing various symptomatic pat- 
terns, which can produce family functions and enhance 
features, making clear differences between normal and 
unhealthy subjects. The probabilistic neural network 
(PNN) is proposed for recognizing multiple cardiac 
arrhythmias. Numerical experiments verify the effi- 
ciency and higher accuracy with the software simula- 
tion in order to formulate the mathematical model 
logical circuits. FDT results in data self-similarity for 
the same arrhythmia category, the number of dataset 
requirement and PNN architecture can be reduced. 
Its simplified model can be easily embedded in the 
FPGA chip. The prototype classifier is tested using the 
MIT-BIH arrhythmia database, and the tests reveal 
its practicality for monitoring ECG signals. 
 
Keywords: Field-Programmable Gate Array (FPGA); 
Fractal Dimension Transformation (FDT); Fractal 
Dimension (FD); Probabilistic Neural Network (PNN) 

1. INTRODUCTION 

The electrocardiogram (ECG) signal can be measured 
non-invasively by placing electrodes on the body surface 
that provides information of myocardium electric activity 
and heart physiological function. An ECG signal shows 
as an almost periodic signal, and can reveal symptomatic 
information in the dysfunction duration. Currently, port- 
able and stationary monitoring devices have been used 
on healthcare systems. Holter recorder is a well-known 
portable device and used to record the electrical activity 
with surface electrodes placed on the chest. However, its 
diagnostics is off-line analysis from the recorded data, 

and uses a cardiogram to identify arrhythmic types of the 
patients. Stationary monitors, such as dedicated or PC- 
based devices, have also been used on healthcare systems, 
which results in expensive solutions and limiting the port- 
ability [1,2]. Since telemedicine has also been used to 
acquire patient’s information, and has portable configu- 
ration for patient monitoring in remote non-clinical en- 
vironments, it can be used in home healthcare, elder com- 
munities, and public place to acquire patient’s information. 
It has become a commonly used technology due to its 
low-cost, compactness, and short design-cycle. This re- 
mote device is an embedded hardware with FPGA, Blue- 
tooth, RFID, and Zigbee. Via wireless transmission be-
tween the biosensor and supervision device, FPGA makes 
the ECG signal processing and sends digital signal to a 
remote monitor [3]. For a portable monitor design, 
FPGA device provides a promising solution to hardware 
implements. 

FPGA device provides the flexibility and potential al- 
ternative to design hardware, including built-in DSP, analog 
and digital I/O, signal generation, communication, and spe- 
cific functions for signal processing and controllers. It has 
been applied for digital filters design [4,5], signal analy- 
sis and classification [6,7], fault detection [8], and Fuzzy 
logic controller [9]. For signal analysis, transform meth- 
ods have been used to extract features in the transform 
domain, such as fast Fourier transform (FFT) and wave- 
let transform (WT). However, the FFT technique is lim- 
ited by the processing time, computational complexity, and 
the number of samples. The more samples, the more ac- 
curate parameters will be estimated. It will increase the 
memory requirement. WT can be chosen with a very desir- 
able frequency and time characteristics, allowing the visu- 
alization with the short/broad window at the high/low 
frequencies. It is a dilated or constricted function by chang- 
ing dilation and translation coefficients for feature ex- 
traction. WT process uses a several-structured filter bank 
to generalize several frequency bands containing decom- 
posed signals [6,7]. Significant features are obtained at 
specific wavelet coefficients with a trial procedure of wave- 
let decomposition and experiences. 
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To overcome the drawbacks, an iterated function sys- 
tem (IFS) is proposed for modeling the non-linear inter-
polation function [10-14]. Its modification, the so-called 
FDT function, is simple in form and consists of sinusoid- 
dal terms to the affine maps, making the model more flexi- 
ble for processing irregular signals. FDT functions with 
FD are used to construct the fractal patterns from ECG 
signals in the time-domain, including the “Q-R Segment” 
and “R-S Segment”. The transform method results in data 
self-similarity and enhances the features for the same cate- 
gory. The PNN-based classifier is developed to perform 
the classification tasks. The performance of this method 
is presented and promising results are given for classifi- 
cation applications, such as the straightforward mathe- 
matical operation, flexible pattern mechanism, and high 
tolerance capability [15-17]. These algorithms can be 
easily programmed into the FPGA chip. The FPGA de- 
vice has an inherent parallel architecture allowing de- 
signers to execute the multiple inputs and control loops 
simultaneously without slowing down the execution time 
and applications. From the test results, they appear to be 
computationally efficient and accurately recognize for 
patterns classification. 

2. MATHEMATICAL BACKGROUND 

2.1. Fractal Dimension Transformation (FDT) 

An IFS has been proposed for image compression and 
signal modeling, and is capable of producing family func- 
tions with different fractal dimensions (FDs). It is a finite 
set for contraction mappings, and has been used to create 
images, various waveforms and patterns for medical im- 
age classification and biomedical signal analysis [10,11]. 
IFS is implemented with similarity maps, and the result- 
ing data are self-similar. The significant removal of re- 
dundancy is related to the self-similarity of natural pat- 
terns. In modeling the pattern of a function or data se- 
quence x[t], t = 1, 2, 3, , N, the pth interpolation map 
Wp, p = 1, 2, 3, , P, can be presented as 
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For each map, Wp maps the data sequence xp[t] onto 
the subsequences with Np sampling data in the interval 
[Np1, Np2], and the maps can be constructed side by side. 
The remaining map parameters cp, dp, and fp can be 
solved by minimizing the sum of squared errors between 
the transformed data and the original data in the range of 
the pth map, and can be justified by the Collage Theorem 
[12,13]: 
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, Np = Np2 – Np1 + 1, 

and N = N1 + N2 + N3 + ⋯ + Np + ⋯ + NP. To improve the 
constraint, non-linear interpolation is used to adjoin the 
data among the interpolation points, which makes the model 
more flexible for processing non-linear and irregular 
signals. Non-linear terms as sinusoidal functions can be 
added to Wp. The non-linear interpolation function can be 
represented as 
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A fractal pattern of ECG signal can be adjoined with 
several segments such as P-R interval, P-R segment, 
Q-R-S complex, S-T segment, or Q-T interval. The non- 
linear function with fractal dimension (FD) will change 
the ECG signals into fractal patterns at different scale pa- 
rameters. FD must be a parameter between 1 and 2 for 
processing one-dimensional signals. The non-linear in- 
terpolation function, FDT with FD, can be modified as 
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where D is a FD parameter (1 < D < 2). The remaining 
map parameters cp, dp, fp, and gp can be solved by 
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Apply sequence data xp [t] are the sampling data from 
the ECG signals. The fractal patterns can be reconstructed 
as [14] 
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Equations (5) and (6) are used to extract the features 
from the ECG signals, and Equation (9) is utilized to con- 
struct the fractal patterns of cardiac arrhythmias. 

2.2. Artificial Neural Network (ANN) 

The PNN consists of four layers, including the input 
layer, hidden layer, summation layer, and output layer, that 
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has the parallelism distributed process, learning, and pattern 
recognition ability. In this study, we have considered the 
sequence data xp[t], t=1, 2, 3, , Np, with P segments 
from the ECG signal, and a fractal pattern  can be rep- 
resented as 
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The vector  can be also combined as  = [11, 12, 
13, , 1N1|21, 22, 23, , 2N2|…|P1, P2, P3, , 
PNP] = [1, 2, 3, , i, , N], i = 1, 2, 3, , N, N 
= N1 + N2 + N3 +  + NP, and each feature i is con- 
nected to the input nodes of input layer. The number of 
input nodes is equal to the number N. The number of hidden 
nodes Hk (k = 1, 2, 3, , K) is equal to the number of 
training data, while the number of summation nodes Sj and 
output nodes Oj (j = 1, 2, 3, , m) equals to the types of 
cardiac arrhythmias. Therefore, its architecture can be easily 
to determined without any trial-and-error procedure. The 
weights 
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concept can be used for analyzing pattern relations. The 
output Oj can be computed by 

 2
2
d

2
1

exp exp
2

IH
N i ki

k
i k

w E
H


22 k 

            
   (11) 

1

1

      1,2,3, ,

K
HS
jk k

k
j K

k
k

w H
O j

H





 



 m         (12) 

where the weights IH
kiw


 are created by training data (k) 
= [1(k), 2(k), 3(k), , N(k)], k=1, 2, 3, , k, , K;  
the weights HS

jkw  are the desired outputs associated with 

each stored pattern IH
kiw . The value of HS

jkw  will be equal 
to “1” or “0”. The value will be set to be “1” when the 
kth training data belonged to the jth class; k is the smooth-
ing parameter. Finally, the maximum output Omax = [O1, 
O2, O3, , Oj, , Om] indicates the type of cardiac 
arrhythmias. 

 

In Equation (11), the smoothing parameter 1 = 2 = 
3 =  = K =  (  0) would refine the classification 
accuracy. The non-linear optimization method, such as gra- 
dient descent method, steepest descent method or New- 

ton-Raphson method [15-17], is employed to adjust the 
parameter  and minimize the error with iteration pro- 
cedures. It is intended to minimize the predicted squared 


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using pattern learning as 
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where Tj is the desired output for training pattern  k , 
 is the learning rate, and q is the iteration number. The 
PNN based classifier has a dynamic and fast adaptation 
ability with continuity add-in or delete-off training data 
by automatically tuning the desired outputs and parame- 
ters  of hidden nodes. 

3. FPGA IMPLEMENTATION 

3.1. FPGA Development Environment 

The field-programmable gate array (FPGA) is a semi- 
conductor device that can be configured by the customer 
or the designer after manufacturing. It has the array ar- 
chitecture of logical elements, which can be used to de- 
sign any logical functions to implement the given appli- 
cations, such as an application-specific integrated circuit 
(ASIC). FPGA is also a programmability device, like pro- 
grammable ROMs, and its programming techniques in- 
clude antifuse-based device (Programmed Once) and sta- 
tic-memory-based device (Reprogrammed an Unlimited 
Number of Times). A typical FPGA consists of con- 
figurable logic blocks (CLB), input/output blocks (IOB), 
and programmable interconnects [4-9]. Each CLB can 
design the logical functions and latching data with com- 
binational logic and sequential logic (AND, OR, Flip- 
flops, and Registers). IOBs provide the interface between 
external pins and internal logics. Programmable intercom- 
nects link the CLBs, I/O pins, and other resources on-chip 
memory through the routing paths, where interconnection 
among these blocks can be programmed by using hardware 
description language (HDL). Then, the designs can trans- 
ferred the descriptions to gate-level netlists and dataflow- 
flow on a chip. The prototype device can be implemented, 
tested, debugged, and modified as needed in a short de- 
sign cycle. 

Custom-design platforms have been provided to the 
FPGA implementation, such as Verilog, ModelSim, and 
Quartus II, and its development environment can simu- 
late and verify the logic designs before initiating the compi- 
lation process [18-20]. However, HDL is a low level text- 
based programming language used for FPGA hardware 
design. Currently, LabVIEW extends the graphical pro-
gramming tools to FPGA-based hardware. It has parallel 
execution, data acquisition, and floating-point arithmetic 
(Data Word Length: 8, 16, and 32 bit) functions to proc- 
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ess signals on FPGA, and embeds specific functions for 
math, signal analysis/generation, comparison logic, linear/ 
non-linear control, analog and digital I/O, and timing. In 
this workspace, designers can quickly develop specific 
and reliable embedded systems containing FPGA-chips, 
real-time processor, and human machine interface (HMI). 
Graphical user interface for windows application has shorter 
design cycle, reprogrammability, and flexibility, which is 
much better than text-based languages. Under this deve- 
lopment environment, we use saturation arithmetic func-
tions to configure the combinational logics without prior 
complex digital design or electronic design automation 
(EDA) tools, and then to embed intelligent algorithms on 
the compact chip. 

3.2. FDT Implementation with FPGA 

An ECG signal is measured with the modified limb lead 
II (ML II), and its typical waveform consists of the P- 
wave, QRS-complex, and T-wave. The QRS-complex pro- 
vides distinct information in monitoring heartbeats, which 
can be used to discriminate the arrhythmic types. Cen- 
tered on the R-wave peak, the QRS-complex can be di- 
vided into the Q-R segment and R-S segment (P = 2). 
For 50 sampling points (25 points before R-peak and 25 
points after R-peak, N = N1 + N2 = 50), the remaining 
map parameters can be solved by Equations (7) and (8) 
in the Matlab workspace. By using FD between 1 and 2, 
the fractal patterns are constructed with Equations (5), 
(6), and (9). The FDTs with fractal dimension D = 1.6 is 
chosen in this study. For a QRS-complex of normal beat 
(Patient Number: MIT-103), related parameters cp, dp, fp, 
and gp, p = 1, 2, are computed as shown in Table 1. The 
coefficients of four terms are assigned to construct FDT 
functions with 4 remaining map parameters for Q-R seg- 
ment and R-S segment, respectively. Following the mul- 
tiplication and addition of the FDT, the fractal fractures 
can be computed. However, the logical blocks only sup- 
port the four fundamental operations of arithmetic. In 

Equation (5), special function 
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constant coefficients; R, r = 0, 1, 2, , R, is the number 
of series term (R = 10 in this study); zr, r = 0, 1, 2, , R, 
represent the series coefficients and are also constant 
values. These coefficients can be computed and com- 
pleted to verify the expanded function accuracy in the 
Matlab workspace, as shown in Table 1. 



Figure 1 shows the structure of FDT logical block, in 
which 13 adders, 26 multipliers, and 17 constant coefficients 
are required to implement each FDT. Its CLB can design 
the function of feature extraction with combinational logical 
elements, and constant coefficients are stored in the mem- 
ory elements. When each sampling data is applied to the 
FDT, each fractal feature is computed with multiplica- 
tion and addition. This parallelism process completes the 
fractal pattern, and then each feature is applied to the 
PNN logical block. 

 
Table 1. Related data for FDTs. 

Function The Number of FDT Remaining Map Parameter 

c1 0.8811360429 

d1 0.8485988992 

f1 0.3445652340 
W1x 25 

g1 0.3857726869 

c2 –0.6759430538 

d2 0.9296483879 

f2 –0.2087852761 
W2x 25 

g2 0.5826642888 

Function
The Number of 
Expanded Term 

 Series Coefficient 

 1.9634954084 

'

tn  

n  are the 

0.0250000000 

Z0 1.0000000000 

Z1 –0.1666666666 

Z2 0.0083333333 

Z3 -0.0001984126 

Z4 0.0000027557 

Z5 –2.5052108385E–8 

Z6 1.6059043836E–10 

Z7 –7.6471637318E–13 

Z8 2.8114572543E–15 

Z9 –8.2206352466E–18 

sin() 11 

Z10 1.9572941063E–20 
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Figure 1. The structure of FDT logical block. 
 

3.3. PNN Implementation with FPGA data. The optimal parameter  = 0.10942 can be com- 
puted in the Matlab workspace. For the convergent con- 
dition (Squared Error  10–4), PNN converges to the 
nearest local minimum for less than five learning cycles. 
The related data of the PNN-based classifier are shown 
in Table 2. 

In this section, we focus on classifier design and collec- 
tion of the annotated ECG beats for PNN training data. 
The ECG signals are obtained from the MIT-BIH ar- 
rhythmia database, including patient numbers: 100, 103, 
107, 109, 111, 118, 119, 124, 200, 202, 207, 209, 212, 
213, 214, 217, 221, 231, 232, and 233 [21]. ECG signals 
have various morphological information and waveforms, 
which can be classified into seven categories, including 
normal beat (), premature ventricular contraction (V), 
atrial premature beat (A), right bundle branch block beat 
(R), left bundle branch block beat (L), paced beat (P), 
and fusion of paced and normal beat (F). Centered on the 
R-wave peak, the QRS-complex is divided into the Q-R 
segment and R-S segment. The FDTs with FD are utilized 
to construct various fractal patterns as shown in Figure 2. 
With data self-similarity, the preprocess resulting in the 
fractal patterns are similar for the same category, which 
can reduce the requirement of training data. The total num- 
ber of fractal patterns are selected to be 1-, 6-, 2-, 3-, 4-, 
4-, and 2-set data (K = 22) for the seven categories, re- 
spectively. These associated patterns could be expressed 
as weights IH

kiw , k = 1, 2, 3, , 22, i = 1, 2, 3, , 50, 
between the input and hidden layer. The weights 
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m = 1, 2, 3, , 7, between the hidden and summation 
layer are encoded as binary values with signal “1” de- 
noting the seven categories while the rest of the weights 
are zero. The smoothing parameter  was adjusted by 
using the gradient descent method with 22-set training 
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where div is dividend, div = 1 in this sudy, 
2

1

2



  

and ,  is the constant coefficient, and  2

d
1

N
IH

k i ki
i

E 


   w

R is the number of series term (R = 6 in this study); yr are 
the series coefficients. Related data can be computed and 
stored in the memory elements as shown in Table 2. The 
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Note: 1) No. 1: ; 2) No. 2~7: V; 3) No. 8~9: A; 4) No. 10~12: L; 5) 
No. 13~16: R; 6) No. 17~20: P; 7) No. 21~22: F. 

Figure 2. The the various fractal patterns for multiple cardiac 
arrhythmias. 

 
Table 2. Related data for PNN-based classifier. 

Network Topology 

Method 

I H S O 

Training 
Data 

Learning Rate 
Initial 

Smoothing
Parameter

PNN 50 22 8 7 22 0    1  (q = 0) = 1.0

Function 
The Number of 
Expanded Term 

Related Coefficient 

 41.7615475105 

div 1.0000000000 

y0 1.0000000000 

y1 1.0000000000 

y2 0.5000000000 

y3 0.1666666666 

y4 0.0416666666 

y5 0.0083333333 

exp() 8 

y6 0.0013888888 

 
term   can be computed with multiplication and ad- 

dition. Then input the results to Gaussian function Hk. 
Figure 3 shows that the structure of hidden-node CLB, 
106 adders, 63 multipliers, 1 divider, and 59 constant 
coefficients are required to implement each node Hk. 

dkE

3.3.2. Summation-Node and Output-Node CLBs 
For seven categories, the weighting factors HS

jkw , k = 1, 
2, 3, , 22, j = 1, 2, 3, , 7, are encoded as binary val- 
ues with signal “1” belonging to category j and the rest 
of the factors are zero. The weighting matrix [

 

HS
jkw ]722 is 

sparse with 22 nonzero elements. The numerator of 
Equation (12) is a matrix vector computation, where each 
output Sj is formed by multiplying each of 22 outputs of 
the hidden node by one of 22 weighting factors, and can 
be presented as 

1

1 2

2 3

3

4 1

5 1

6

7 2

22
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4
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1 0 0 0 0 0 0
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(16) 

The number of addition and multiplication operations 
can be reduced leading to an increased speed in the 
arithmetic process. In the summation layer, the outputs 
of summation node Hk are computed with 15 adders. For 
the same category, their outputs of hidden nodes are 
summed in the summation-node CLB. The implementa- 
tion of output node Oj would require 6 adders and 7 di- 
viders, and can be presented as 

1 1

2 2

3 3

4 4
1 2 3 4 5 6 7

5 5

6 6

7 7

1

O S
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S S S S S S S
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O SF

    
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  

 


  
  


        


   
   
   
   
   

 (17) 
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Figure 3. The structure of hidden-node logical block. 
 

as shown by the denominator of Equation (12), the num-
ber of the addition operations can also be reduced. The 

structure of summation-node and output-node CLBs are 
shown in Figure 4. 
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Figure 4. The structure of summation-node and output-node logical block. 

 
3.4. Overall Structure of the Proposed Classifier 

In Figure 5, the overall structure of the proposed classifier 
divides into three stages: 1) signal preprocessing; 2) fractal 
feature extraction; and 3) heartbeat recognition with PNN- 
based classifier. In the preprocessing stage, ECG signals 
are acquired by using the amplifier and filter. The band- 
pass filter is used to remove unwanted frequency compo- 
nents, which comprise supply line frequency interference 
(50 Hz/60 Hz), baseline wander, and muscle noises. Thus, 
these noises do not affect the performance of the proposed 
classifier. ECG records are composed by a modified limb 
lead II (ML II) sampled at 360 Hz. Then R-peak waves are 
detected by the Peak detection algorithm. It begins by 
scanning for local maxima in the absolute value of ECG 
data. For certain window, the search continues to look for 
next larger value. If this search finishes without finding a 
larger maximum, the current maximum is assigned as the 
R-peak wave. The averaging window was chosen to be 

roughly the width of a typical QRS-complex. This window 
is at least 150 ms wide to allow for the wide QRS-com- 
plexes produced by V-heartbeats [22-24]. Centered on the 
detected R-peak, 25 sampling data are acquired including 
both Q-R segment (140 ms) and R-S segment (140 ms), 
respectively. In the second stage, these sampling data are 
converted to digital form (Signed 8-bit, 16-bit, or 32-bit 
Length Data) and then sent directly to the FDTs. The FDT 
CLBs with parallelism process are used to extract features 
and construct the fractal pattern. Finally, the classifier mo- 
dule integrates hidden-node, summation-node, and output- 
node CLBs for cardiac arrhythmias recognition. 

4. EXPERIMENTAL RESULTS AND  
DISCUSSIONS 

The FPGA implementation of the proposed classifier is 
applied to examine multiple cardiac arrhythmias. With 
MIT-BIH arrhythmias database, the records of patient 
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Figure 5. The overall structure of proposed fractal patterns classifier. 
 

numbers 107, 118, 119, 200, 209, 211, 214, 217, and 231 
are selected for testing. Tested ECG signals were gener- 
ated using LabVIEW and Matlab software on a PC Pen- 
tium-IV, 3.0 GHz, 480 MB RAM. The design platform 
of SOPC-NIOS II EDA/SOPC series (NIOS II-EP2C35 
Chip, 700 K system gates, EEPROM) was used in this 
study. The ECG signals have been digitized and band- 
pass filtered, thus low- and high-frequency noises appears 
smaller in amplitude [21]. Signal preprocesses, such as 
R-peak detection and QRS-complex extraction, can be 
performed in LabVIEW and Matlab software. It is im- 
portant that the signals delivered to the FPGA must be 
digital type. As they are intrinsically digital formats (8-bit 
Format), they can be directly sent to FPGA design plat- 
form. For recorded (Training Data) and unrecorded data, 
the proposed classifier was tested with accuracy and com- 
putational efficiency, and compares with the results in 
FPGA module and Matlab workspace. 

4.1. Comparison with the Fractal Patterns in 
FDT CLB and in Matlab Workspace 

The proposed classifier is tested with the software simu- 
lation, in order to examine the implementation of FPGA 
modules. After the designated modules, the designated 
circuit can be programmed into the FPGA chip through 
the download cable. In feature extraction, fractal features 
are extracted by using 50 FDTs. Then 50 features are 
reconstructed into one fractal pattern. Since the FDT mo- 
dule is a simplified module, it is worth noting that each 
FDT function must be first examined before programming 

them into the FPGA chip. The average fractal patterns from 
the same category are obtained from the selected patients. 
For training data, fractal patterns are computed by FDT 
module and high-level programming language (HLPL) in 
the Matlab workspace, respectively. Figure 6 shows the 
comparison fractal patterns in FDT module and Matlab 
workspace. The asterisk-line stands for the computed data 
with HLPL, and plus-sign-line is the computed data with 
FDT module Through cursory observation, nice inoscu- 
lations can be seen between them, such as the fractal pat- 
terns of normal heartbeat, V-heartbeat, and F-heartbeat (Pa- 
tient Numbers: 100, 107, 119, and 200). The differences 
are less than 0.2 as shown by the circle-line in Figure 6. 
This confirms that the proposed FDT module has high 
confidence of computation performance for reconstruct- 
ing fractal patterns. 

4.2. Classification Tests 

The learning performance of the proposed classifier was 
tested with 22-set training data. In the learning stage, the 
optimal parameter  can be computed in the Matlab work- 
space. The proposed method has a fast learning process 
with slight iteration for adjusting parameter . It takes 
0.195 seconds to classify the 22-set training data into 7 
categories. Then this optimal value was used to deter- 
mine the parameter  of 22 hidden-node modules and 
was obtain to minimize the misclassification errors. Under 
the optimal parameter, decision boundaries can become 
increasingly non-linear, the network approaches a nearest 
neighboring classifier. In the recalling stage, all outputs 
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Figure 6. Compare with the fractal patterns in FDT module and in Matlab workspace. 
 

approach the desired targets for 7 categories. The output 
values of the proposed classifier are shown in Figure 7. 

This confirms that the proposed classifier has nice learn- 
ing performance. 
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Note: 1) No. 1: ; 2) No. 2-7: V; 3) No. 8-9: A; 4) No. 10-12: L; 5) No. 
13-16: R; 6) No. 17-20: P; 7) No. 21-22: F. 

Figure 7. Output target value of the proposed classifier. 
 

Clinical diagnostic subjects have multiple cardiac ar-
rhythmias such as supraventricular ectopic beat, ventricular 
ectopic beat, bundle branch ectopic beat, fusion, and paced 
beats. For example, patient number 200 has normal heart- 
beats and V-heartbeats with annotation labels in 1.5 mi- 
nute segment. Test results reveal that the accuracy is 
94% as shown in Table 3. The processes recognized 38 
V-heartbeats with 6 failures, and the expected sensitivity 
as the fraction of category V correctly classified is 84.2%, 
and the specificity for normal heartbeats is 100%. The 
results confirm that the major category is the premature 
ventricular contraction. Patient number 217 has V-heart- 
beats, P-heartbeats, and fusion heartbeats (F). As shown 
in Table 3, test results confirm that the major category is 
P. The processes recognized 94 P-heartbeats with 5 fail-
ures, the sensitivities for ectopic beats is 94.7%, and the 
accuracy is 95%. Through the experimental tests, the pro- 
posed classifier can also recognize multiple cardiac ar- 
rhythmias with good accuracy in the FPGA module. 

4.3. Discussion 

In this study, the parameters of FDT functions have been 
directly computed by Collage theorem. Each FDT CLB 
has the same structure; it only assigns the segmented re- 
maining map parameters and series coefficients. Most of 
them are repeatable uses. Owing to the enhancement in 
features by the FDT functions, the number of training 
data, data storage, and processing needs can be reduced. 
For classification applications, artificial neural network 
(ANN) has been presented for this study. However, it has 
some limitations including very slow learning process, 
need iteration for updating weights, and need to determine 
the network architecture such as the number of hidden 
layers and hidden nodes. The weights, input-layer to hid- 
den-layer and hidden-layer to output-layer, are always non- 
zero values. This will increase the requirement of the addi- 
tion and multiplication operations and memory storage. 
In addition, sigmoid activation functions of hidden and 
output nodes [25] are difficult to implement the CLB mod- 

Table 3. The results of multiple cardiac arrhythmias. 

Number of Arrhythmias 
       Method 

  
Record   
  V A L R P F

Accuracy
(%) 

Actual 0 0 0 0 0 100 0 - 

Test 1 0 3 0 0 0 96 1 96% 107

Test 2 0 3 0 0 0 96 1 96% 

Actual 0 1 0 0 99 0 0 - 

Test 1 0 2 0 0 98 0 0 99% 118

Test 2 0 2 0 2 98 0 0 99% 

Actual 75 25 0 0 0 0 0 - 

Test 1 75 25 0 0 0 0 0 100% 119

Test 2 75 25 0 0 0 0 0 100% 

Actual 62 38 0 0 0 0 0 - 

Test 1 62 32 0 0 6 0 0 94% 200

Test 2 62 32 0 0 6 0 0 94% 

Actual 99 0 1 0 0 0 0 - 

Test 1 99 0 1 0 0 0 0 100% 209

Test 2 99 0 1 0 0 0 0 100% 

Actual 0 0 0 100 0 0 0 - 

Test 1 0 0 3 97 0 0 0 97% 211

Test 2 0 0 3 97 0 0 0 97% 

Actual 0 5 0 95 0 0 0 - 

Test 1 1 4 1 92 2 0 0 96% 214

Test 2 1 4 1 92 2 0 0 96% 

Actual 0 3 0 0 0 94 3 - 

Test 1 0 3 0 2 0 89 6 95% 217

Test 2 0 3 0 2 0 89 6 95% 

Actual 0 0 0 0 100 0 0 - 

Test 1 3 0 0 0 97 0 0 97% 231

Test 2 3 0 0 0 97 0 0 97% 

Note: 1) Accuracy(%) = (Nr/Nt)  100%, the overall accuracy is the fraction 
of the total heartbeats correctly classified; Nr: the number of correctly 
discriminated beats; Nt: total number of heartbeats; 2) Test 1 is the result in 
the Matlab workspace; 3) Test 2 is the result in FPGA module. 

 
ules, including the arithmetic process and memory stor- 
age. The proposed classifier provides a promising way 
for implementing the portable bio-monitor and telemedi- 
cine. 

5. CONCLUSION 

A fractal-pattern classifier using FPGA for the realize- 
tion of FDTs and PNN to recognize multiple cardiac ar- 
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rhythmias was proposed. The FDT modules are employed 
to construct various fractal patterns, and make the difference 
between normal and unhealthy subjects. The PNN mod- 
ule is proposed for recognizing multiple cardiac arrhythmias. 
Numerical experiments have been conducted with MIT- 
BIH arrhythmia database. The proposed classifier has ex-
cellent computational efficiency, high accuracy, and flexi-
bility for patterns recognition. Then programs were down- 
loaded to the FPGA chip to integrate all the modules, 
real-time processing, compression, transmission and in- 
put/output. This prototype can be further integrated in 
telemedicine and portable non-invasive devices. 
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