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ABSTRACT 

A Mathemataical model for a modified micro- 
cylinder electrode in which polyphenol oxidase ( PPO) 
occurs for all values of the concentration of catechol 
and o-quinone is analysed. This model is based on 
system of reaction-diffusion equations containing a 
non-linear term related to Michaelis Menten kinetics 
of the enzymatic reaction. Here a new analytical 
technique Homotopy Perturbation Method is used to 
solve the system of non-linear differential equations. 
that describe the diffusion coupled with a Michaelis- 
Menten kinetics law. Here we report an analytical 
expressions pretaining to the concentration of 
catechol and o-quinone and corresponding current in 
terms of dimensionless reaction-diffusion parame- 
ters in closed form. An excellent agreement with 
available limiting case is noticed. 

Keywords: Non-Linear Reaction/Diffusion Equation; 
Biosensors; Polymer-Modified Micro-Cylinder  
Electrode; Polyphenol Oxidase; Homotopy Perturbation 
Method 

1. INTRODUCTION 

Microelectrodes are increasingly being used in biosen-
sors [1-3]. This is due to factors such as fast response 
times, high signal: noise ratios and the ability to operate 
in low conductivity media, sub-micro volume and in 
vivo [4]. The most commonly used microelectrode in 
bio-sensor is microcylinder such as carbon fibres. This is 
because they are cheap, readily available, their form is 
suited to implantation [5] and because much is known 
about their surface characteristics [6]. 

Immobilization of enzymes is used in biosensors to 
detect the concentration of a specific analyte as a result 
of the biological recognition between the analyte and the 
immobilized enzyme. Enzymes have been immobilized 

at carbon fibres by many methods. Among all the meth-
ods, layer-by-layer (LbL) self assembly process is a 
simple technique which may be applied to a wide range 
of enzymes and that it is one of the few immobilization 
procedures which allows control over the amount and 
spatial distribution of the enzyme [7]. This property is 
important both for constructing and modeling studies of 
biosensors. The layer-by-layer process was first intro-
duced by Decher and Hong [7]. This method has been 
applied to planar electrodes of Au [8,9], carbon elec-
trodes [10] and polystyrene latex [11-15].  

To analyse the performance of biosensors of any kind, 
it would be useful to have a mathematical model of the 
electrode response. Theoretical models of enzyme elec-
trodes give information about the mechanism and kinet-
ics operating in the biosensor. Unlike experimental in-
vestigations of biosensors, where changing one parame-
ter inevitably alters others, the influence of individual 
variables can be assessed in an idealized way. Thus, the 
information gained from modeling can be useful in sen-
sor design, optimization and prediction of the electrodes 
response.  

Recently Rijiravanich et al. [16] obtained the steady 
state concentration profile of o-quinone and dimen-
sionless sensor response j for the limiting cases of low 
substrate concentrations. To the best of our knowledge, 
no rigorous analytical solutions for the steady state con-
centrations for micro-cylinder biosensors for all values 
of the parameters have been published. In this commu-
nication, we have derived the new and simple analytical 
solutions of the concentration and the current for all 
values of parameters using the Homotopy Perturbation 
Method 

2. MATHEMATICAL FORMULATION OF 
THE PROBLEM AND ANALYSIS 

The system presented here is a cylindrical electrode 
which is uniformly coated by an enzyme immobilized in 
non-conducting material which is porous to substrate. 
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The electrode is used in a stirred solution containing an 
excess of supporting electrolyte. The enzyme and elec-
trode reaction are [16]: 

2 2O 2catechol 2 quinone 2H Oo          (1) 
+quinone 2H 2e catecholo             (2) 

Hence the catechol/quinone conversion forms an am- 
 

plification cycle within the enzyme film. While it is pos-
sible in principle to solve for either phenol or catechol as 
substrate, solving for catechol is simpler, since it in-
volves only one enzymic conversion. The actual mecha-
nism of that conversion is complex, and involves three 
different states, oxy, met, deoxy [17] i.e. (where Ca is 
catechol, Q is quinone).  

       1
2 2 2 2deoxy oxy

Cu I Cu I +O 2H O H O Cu II O O Cu II H Ok                            (3) 

       2
2 2 2oxy met

H O Cu II O O Cu II H O Cu II Ca Cu II 2H O 2Hk                             (4) 

       3

met deoxy
Cu II Ca Cu II Cu I Cu I +k Q                                 (5) 

It is assumed that the enzyme concentration is uniform 
and that the enzyme reaction follows Michaelis-Menten 
kinetics, in which case the reaction in the film is [18] 

1

2
1 1 2 [ ] cat

k
k

k
S E E S P E             (6) 

where  

21cat Ok k c  and 21 2 3

2 3

( ) O
M

k k k c
K

k k


       (7) 

are the rate constant and Michaelis-Menten constant. 
The model of a cylindrical electrode modified with both 
an enzyme and conducting sites/particles (circles) is 
shown in Figure 1. The mass balance for catechol Cc  
can be written in cylindrical coordinates as follows: 

dd
0       

d d
C C cat E C

C M

D c k c c
r

r r r c K
      

     (8) 

where Cc  is the concentration profile of catechol, Ec  
is the concentration profile of enzyme, CD  and QD

 
are its diffusion coefficients, and MK  is the Michaelis 
constant and Qc  is the concentration profile of quinone. 
Then the equation of continuum for quinone is generally 
expressed in the steady-state by [16] 

dd
0  

d d
Q Q cat E C

C M

D c k c c
r

r r r c K

 
    

       (9) 

At the electrode surface ( 0r ) and at the film surface 
( 1r ) the boundary conditions are given by [16] 

*
0

*
1

:    ,    0 

:    ,     0    

C C Q

C C Q

r r c c c

r r c c c

  

  
       (10) 

where *
Cc  is the bulk concentration of catechol scaled 

by the partition coefficient of the enzyme film. Adding 
the Eqs.8 and 9 and integrating with boundary condition 
(10), yields 

* *

( )( )
1Q QC

C C C

D c rc r

c D c
              (11) 

The steady-state current can be given as [16]: 

 
0

02π d dQ Q r r

I
Lr D c r

nF 
          (12) 

We introduce the following set of dimensionless vari-
ables: 

*
C

C

c
C

c
 , 

*

Q

C

c
Q

c
 , 

0

r
R

r
 , 

*
C

M

c

K
  , 

2
0cat E

E
C M

k c r

D K
  , 

 
2

0cat E
S

Q M

k c r

D K
  , Q E

C S

D

D




            (13) 

where C  and Q  are the dimensionless concentration 

of the catechol and o-quinone. R  is the dimensionless 
distance parameter. ,E S   and   are the dimen-

sionless reaction-diffusion parameters and saturation 
parameter [16]. 

2

2

d 1 d
0

d 1d
ECC C

R R CR




  


          (14) 

2

2

d 1 d
0

d 1d
SCQ Q

R R CR




  


          (15) 

The boundary conditions are represented as follows: 

1 ,  0   when 1C Q R              (16) 

1 0 1 ,  0      when C Q R r r           (17) 
The dimensionless current at the micro-cylinder elec-

trode can be given as follows: 

 *

1
2π d dQ C R

I nFL D c Q R


          (18) 

3. ANALYTICAL SOLUTIONS OF THE  
CONCENTRATIONS AND THE  
CURRENT USING THE HOMOTOPY 
PERTURBATION METHOD 

Nonlinear phenomena play a crucial role in applied 
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Figure 1. Illustration of the model of a cylindrical electrode 
modified with both an enzyme and conducting sites/particles 
(circles). 
 
mathematics and chemistry. Construction of particular 
exact solutions for these equations remains an important 
problem. Finding exact solutions that have a physical, 
chemical or biological interpretation is of fundamental 
importance. This model is based on steady-state system 
of diffusion equations containing a non-linear reaction 
term related to Michaelis-Menten kinetics of the enzy-
matic reactions. It is not possible to solve these equa-
tions using standard analytical technique. In the past, 
many authors mainly had paid attention to study solution 
of nonlinear equations by using various methods, such as 
Backlund transformation [19], Darboux transformation 
[20], Inverse scattering method [21], Bilinear method 
[22], The tanh method [23], Variational iteration method 
[24] and Homotopy Perturbation Method [25-28] etc. 
The Homotopy Perturbation Method [25-28] has been 
extensively worked out over a number of years by nu-
merous authors. The Homotopy Perturbation Method 
was first proposed by He [24-26] and was successfully 
applied to autonomous ordinary differential equations to 
nonlinear polycrystalline solids and other fields.  

Recently Meena and Rajendran [29], Anitha et al. [30] 
and Manimozhi et al. [31] implemented Homotopy per-
turbation method to give approximate and analytical 
solutions of nonlinear reaction-diffusion equations con- 

taining a nonlinear term related to Michaelis-Menten 
kinetic of the enzymatic reaction. Eswari et al. in series 
[32,33] solved the coupled non linear diffusion equations 
analytically for the microdisk and micro-cylinder en-
zyme electrode when a product from an immobilized 
enzyme reacts with the electrode. Using Homotopy Per-
turbation Method (see Appendix B), we can obtain the 
following solutions to the Eqs.14 to 15. 

   2
1 0 1 01

( ) 1
2(1 )

E E ER r r R r r
C R

  


   
   

  
  (19) 

   2
1 0 1 01

( )
2(1 )

S S SR r r R r r
Q R

  


    
  

  
   (20) 

The Eqs.19-20 satisfies the boundary conditions (16) 
to (17). These equations represent the new and simple 
analytical expression of the concentration of catechol 
and o-quinone for all possible values of the parame-
ters E , S ,   and 1 0r r . The Eqs.19 and 20 also 
satisfy the relation 

( ) ( ) ( ) 1E SC R Q R   . From Eqs.19 and 20, we can 
obtain the dimensionless current, which is as follows: 

 1 0* 1 2
2

2(1 )
S S

Q C

r r
I nFL D c

 
 


  

    
   (21) 

Eq. (21) represents the new and closed form of an 
analytical expression for the current for all possible val-
ues of parameters. 

3.1. Limiting Cases for Unsaturated (First  
Order) Catalytic Kinetics 

In this case, the catechol concentration Cc  is less than 
Michaelis constant MK . Now the Eqs.8 and 9 reduce to 
the following forms: 

dd
0 

d d
C C cat E C

M

D c k c c
r

r r r K
    
 

        (22) 

dd
0  

d d
Q Q cat E C

M

D c k c c
r

r r r K

 
  

 
        (23) 

By solving the Eq.22 using the boundary condition 
(Eq.10), the concentration of catechol Cc  can be ob-
tained in the form of modified Bessel functions of zeroth 
order 0 ( )I r

 
and 0 ( )K r . 

* 0 0 0 0 1 0 0 1 0 0

0 0 0 1 0 1 0 0

( ) [ ( ) ( )] ( ) [ ( ) ( )]
( )

( ) ( ) ( ) ( )C C

I r K r K r K r I r I r
c r c

K r I r K r I r

     
   

   
   

                   (24) 
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where
  

2
cat E C Mk c D K 

 
          (25) 

 

Inserting Eqs.24 into Eqs.11, we can obtain the con-
centration Qc   

0 0 0 0 1 0 0 1 0 0
*

0 0 0 1 0 1 0 0

( ) ( ) [ ( ) ( )] ( ) [ ( ) ( )]
1

( ) ( ) ( ) ( )
Q Q

C C

D c r I r K r K r K r I r I r

K r I r K r I rD c

     
   

   
    

                (26) 

 
The sensor response j  in terms of modified Bessel function of zeroth order can be obtained as follows: 

 

      

*

0
1 0 0 1 0 0 1 0 0 0 0 1

0 0 0 1 0 1 0 0

2π
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

C C

I
j

nFLD c

r
K r I r I r I r K r K r

K r I r K r I r


     

   



   


      (27) 

 
4. COMPARISON WITH LIMITING CASE 

WORK OF RIJIRAVANICH ET AL. [16]  

Recently, they [16] have derived the analytical expres-

sion of the steady- state concentration Qc  (Eq.28 and 
sensor response j  (Eqs.28 and 29) in integral form for 
the limiting case C Mc K . 

 

1 1

0 0 0 0

0
1 1 1 1*

1 0

( ) ln( )
( )d ( )d ( )d ( )d

ln( )

r r r rQ Q

r r r r
C C

D c r r r
g f I r r K r r f I r r K r r

r rD c
    
          

                (28) 

  1 1

0 0
0 1 0 1 0 1 1*

1 0

1
2π   ( ) ( ) ( )d ( )d

ln( )

r r

r r
C C

I
j g r fI r K r f I r r K r r

r rnFLD c
    

            
          (29) 

where 

0 0 0 0 0 0 0 1 0 1 0 01 [ ( ) ( )],    [ ( ) ( )] [ ( ) ( )].g fI r K r f K r K r I r I r           

 
Rijiravanich et al. [16] obtained the empirical expres-

sion of the current 

12π tanh[( / 2)( 1)]q pj x x          (30) 

where p  and q are empirical constants and 1 1 0 .r r   
The value of p  and q are given for various values of 

0  ( )x r in the Tables 1-3. This empirical expression is 
compared our simple closed analytical expression Eq.27, 
in Tables 2-3. The average relative difference between 
our Eq.27 and the empirical expression Eq.30 is 0.71% 
when 1 1.5   and 0.59% when 1 5  . 

6. DISCUSSION 

Figures 2 and 3 shows the dimensionless concentration 
profile of catechol ( )C R using Eq.19 for all 
 

Table 1. Values of p  and q which fit Eq.30 to Eq.29 
with < 5% error [16]. 

x  p  q  

9.0-7.0 1.00 1.01 

6.0-4.0 1.03 1.05 

3.0 1.04 1.10 

2.0 1.02 1.14a/1.25b 

a Valid for 1 2.0  ; b Valid for 1 2.0   

various values of the parameters 1 0,  ,    and  S E r r   . 
Thus it is concluded that there is a simultaneous increase 
in the values of the concentration of catechol as well as 
in saturated parameter   for small values of E . Also 
the value of catechol concentration C  is approximately 
equal to 1 when 1  andR   1 0R r r for all values of 

E  and     .  
Figures 4 and 5 show the concentration profile of 

o  quinone ( )Q R  in R  space for various values of 
  and  S  calculated using Eq.20. The plot was con-

structed for 1 0 1.5 and 5r r  . From these figures, it is 
confirmed that the value of the concentration of o- 
quinone increases when 0.1S   for small values of 
 . From the Figures 2-5, we can observed that the di-
mensionless concentration of catechol should vary be-
tween 0 and 1. Because catechol is converted to o   
quinone, the o- quinone concentration should be the in-
verse of catechol. The substrate catechol C  is mini-
mum and product o-quinone Q  is maximum when 

 1 00.5 2R r r   for all values of    and  S  . The 
minimum value of concentration profile of catechol is  

2
1 1

min

8 8 2

8(1 )
E E EC

     


   



      (31) 
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Table 2. Comparison of dimensionless sensor response j  for various values of 0r  using Eqs.27 and 30 when 

thickness of the film ( 1 1 0r r  =5). 

0( )x r  1 1 0r r  p  q  Eq. (30) [16] Eq. (27) This work Error % 

9 5 1 1.01 57.78 57.78 0.00 
8 5 1 1.01 51.30 51.30 0.00 
7 5 1 1.01 44.82 44.78 0.09 
5 5 1.03 1.05 34.03 34.01 0.06 
4 5 1.03 1.05 26.92 25.95 3.77 
3 5 1.04 1.10 21.03 20.99 0.19 
2 5 1.02 1.25 14.93 14.93 0.01 

Average % deviation                                                  0.59

 
Table 3. Comparison of dimensionless sensor response j  for various values of 0r  using Eqs.27 and 30 when 

thickness of the film ( 1 1 0r r  =1.5). 

0( )x r  1 1 0r r   p  q  Eq. (30) [16] Eq. (27) This work Error % 

9 1.5 1 1.01 56.51 56.51 0.00 
8 1.5 1 1.01 49.45 49.45 0.01 
7 1.5 1 1.01 42.20 42.19 0.02 
5 1.5 1.03 1.05 28.62 27.60 3.67 
4 1.5 1.03 1.05 20.27 20.43 0.80 
3 1.5 1.04 1.10 13.09 13.15 0.45 
2 1.5 1.02 1.14 6.32 6.32 0.01 

Average % deviation                                                  0.71

 

 
(a)                                                    (b) 

 
(c)                                                     (d) 

Figure 2. Typical normalized steady-state concentration profile of catechol ( )C R  plotted from Eq.19 for different val-

ues of parameters E  and   when 1 0 1.5r r  . 
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(a)                                                       (b) 

 

 
(c)                                                      (d) 

Figure 3. Typical normalized steady-state concentration profile of ( )C R  plotted from Eq.19 for different values of pa-
rameters E  and   when 1 0 2.5r r  . 

 

 

(a)                                                    (b) 
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(c)                                                     (d) 

Figure 4. Typical normalized steady-state concentration profile of ( )Q R  plotted from Eq.20 for different values of parame-
ters E  and   when 1 0 1.5r r  . 

 

 
(a)                                                    (b) 

 

 
(c)                                                     (d) 

Figure 5. Typical normalized steady-state concentration profile of ( )Q R  plotted from Eq.20 for different values of pa-
rameters E  and   when 1 0 2.5r r  . 
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(a)                                                    (b) 

Figure 6. Plot of dimensionless current   versus 1 0.r r  Current is calculated in the Eq.21. 
 
and the maximum value of concentration profile of 
quinone is  

2
1 1

max

(1 2 )

8(1 )
SQ
  


 




        (32) 

where 1 0 1r r  . The dimensionless current   versus 

1 0r r  using Eq.21 is plotted in Figure 6. The value of 
current   increases when thickness of the film 1 0r r  
and dimensionless reaction-diffusion parameter S  is 
increases or decreases.  

7. CONCLUSIONS 

A non-linear time independent ordinary differential 
equation has been formulated and solved analytically. 
Analytical expression for the concentration of catechol 
and o-quinone and steady state current are derived by 
contains significant non-linear contributions using the 
Homotopy Perturbation Method. The primary result of 
this work is simple approximate calculation of concen-
tration of catechol, o-quinone and current for all values 
of E , S ,   and 1 0r r  and 0r . Formerly in 
polyphenol oxidase micro-cylinder biosensor models are 
[16] have only considered the first order kinetics of the 
enzyme and therefore could only be applied to the sen-
sor’s linear range. However, in this paper, calibration 
curves of many of the catechol/phenol biosensors con-
tain most important non-linear contributions are reported. 
Also, the length of the linear range is an important ana-
lytical parameter. In developing a sensor, experimental 
scientists would like this range to cover all concentra-
tions expected in actual samples, as this makes calibra-
tion of the sensor in the field much easier. In Tables 2-3, 
our analytical results are compared with limiting case of 
first order catalytic kinetics [16] results, which yield a 
good agreement with the previous limiting case results. 
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APPENDIX A 
SYMBOLS USED 

Symbol Definitions Units 

CD  Diffusion coefficient of catechol cm2/s 

Cc   Concentration profile of catechol mole/cm3 

Ec  Concentration profile of enzyme mole/cm3 

MK  Michaelis Menten constant mole/cm3 

catK   Catalytic rate constant sec–1 

Qc   Concentration profile of quinone mole/cm3 

QD   Diffusion coefficient of quinone cm2/s 

*
Cc  Bulk concentration of C mole/cm3 

r  Radius of the cylinder cm 

I  Current ampere 

0r  Electrode radius cm 

1r  Film radius cm 

1 0r r  Dimensionless parameter for film thickness none 

0r  Dimensionless parameter for enzyme kinetic none 

j  Dimensionless sensor response none 

    Dimensionless current none 

C  Dimensionless concentration of catechol   none 

Q   Dimensionless concentration of quinone none 

R   Dimensionless distance  none 

E   Dimensionless reaction diffusion parameter none 

S  Dimensionless reaction diffusion parameter none 

   Dimensionless saturation parameter none 

L  Length of the electrode cm 

F   Faraday constant c·mole–1 

n   Number of electrons none 

 
APPENDIX B 

Solution of the Eqs.14 and 15 using Homotopy perturbation method. In this appendix, we indicate how Eqs.19 and 20 
in this paper are derived. Furthermore, a Homotopy was constructed to determine the solution of Eqs.14 and 15.  
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and the initial approximations are as follows: 
0,  1,   0  R C Q                                      (B3)

           
1

0

, 1,   0
r

R C Q
r

  
 

                                  (B4) 



K. Venugopal et al. / J. Biomedical Science and Engineering 4 (2011) 631-641 

Copyright © 2011 SciRes.                                                                             JBiSE 

641

The approximate solutions of (B1) and (B2) are  
2 3

0 1 2 3C C pC p C p C                                (B5) 

and 
2 3

0 1 2 3Q Q pQ p Q p Q                               (B6) 

Substituting Eqs.B5 and B6 into Eqs.B1 and B2 and comparing the coefficients of like powers of p  
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Solving the Eqs.B7 to B10, and using the boundary conditions (B3) and (B4), we can find the following results 
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and 

0 ( ) 0Q R                                           (B13) 
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According to the HPM, we can conclude that 
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Using Eqs.B11 and (B12) in Eq.B15 and Eqs.B13 and B14 in Eq.B16, we obtain the final results as described in 
Eqs.19 and 20. 
 
 


