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ABSTRACT 

This paper develops a generalized dynamical model 

to describe the interactive dynamics between normal 

cells, tumor cells, immune cells, drug therapy, elec-

tromagnetic field of the human cells, extracellular 

heat and fluid transfer, and intercellular fractional 

mass of Oxygen, cell acidity and Pancreatin enzyme. 

The overall dynamics stability, controllability and 

observability have been investigated. Moreover, Ce-

sium therapy is considered as a control input to the 

11-dimensional dynamics using state-feedback con-

trolled system and pole placement technique. This 

approach is found to be effective in driving the de-

sired rate of tumor cell kill and converging the sys-

tem to healthy equilibrium state. Furthermore, the 

ranges of the system dynamics parameters which 

lead to instability and growth of tumor cells have 

been identified. Finally, simulation results are 

demonstrated to verify the effectiveness of the ap-

plied approach which can be implemented success-

fully to cancer patients. 

Keywords: Cancer; Tumor Growth; Tumor Dynamics 

and Modeling; Immune System; Cesium Therapy; 

State-Feedback Control; Pole Placement 

1. INTRODUCTION 

There are over 200 different types of cancer that affect 

virtually every organ in the body. They can seem bewil-

deringly different but all cancers share certain features as 

outlined by Douglas Hanahan and Robert Weinberg [1]. 

Six essential alterations in cell physiology that collec-

tively dictate malignant growth: self-sufficiency in 

growth signals, insensitivity to antigrowth signals, eva-

sion of programmed cell death (apoptosis), limitless rep-

licative potential, sustained angiogenesis, and tissue in-

vasion and metastasi. 

The technical report [2] presents what is known today 

concerning non-ionizing electromagnetic field interac-

tion with the human body. Many significant and inter-

esting effects are identified. As an example, both theo-

ries and observations link non-ionizing electromagnetic 

field to cancer in humans, in at least three different ways: 

as a cause, as a means of detection and as an effective 

treatment.  

A phase-space analysis of a mathematical model of 

tumor growth with an immune response and chemother-

apy is introduced in [3]. It is proved that all orbits and 

trajectories are bounded and converge to one of several 

possible equilibrium points. The addition of a drug to the 

system can move the solution trajectory into a desirable 

basin of attraction.  

State Dependent Riccati Equation (SDRE) based op-

timal control technique to a nonlinear tumor growth 

model is applied in [4]. The model consists of three bio-

logical cells which are normal tissue, tumor and immune 

cells. The effect of chemotherapy treatment is also in-

cluded in the model. Chemotherapy administration is 

considered as a control input to the nonlinear cancer 

dynamics and the amount of administered drug is deter-

mined by using SDRE optimal control. The optimal con-

trol is applied to the model in order not only to drive the 

tumor cells to the healthy equilibrium state but also to 

minimize the amount of the drug used.  

A basic mathematical model of the immune response 

when cancer cells are recognized is proposed. The model 

consists of six ordinary differential equations [5]. It is 

extended by taking into account two types of immuno-

therapy: active immunotherapy and adoptive immuno-

therapy. An analysis of the corresponding models is 

made to answer the question which of the presented 

methods of immunotherapy is better. 

Review [6] explains why mathematics is a powerful 

tool for interpreting such data by presenting case studies 

that illustrate the types of insight that realistic theoretical 
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models of solid tumour growth may yield. These range 

from discriminating between competing hypotheses for 

the formation of collagenous capsules associated with 

benign tumours to predicting the most likely stimulus for 

protease production in early breast cancer. 

Understanding the dynamics of human hosts and tu-

mors is of critical importance [7]. A mathematical model 

was developed that explored the immune response to 

tumors that was used to study a special type of treatment. 

This treatment approach uses elements of the host to 

boost its immune response in the hopes that the host can 

clear the tumor. 

Two models of optimizing tumor growth are presented 

in [8] In the first model optimal controls minimize the 

tumor volume for a given amount of angiogenic inhibi-

tors to be administered while the second formulation 

tries to achieve a balance between tumor reduction and 

total amount of angiogenic inhibitors given. For both 

models a full synthesis of optimal solutions determined 

by portions of bang and singular controls with rest peri-

ods is presented. The differences in the two solutions are 

discussed. 

A new mathematical model is developed for the dy-

namics between tumor cells, normal cells, immune cells, 

chemotherapy drug concentration and drug toxicity [9]. 

Then, the theorem of Lyapunov stability is applied to 

design treatment strategies for drug protocols that ensure 

a desired rate of tumor cell kill and push the system to 

the area with smaller tumor cells.  

Cells, whether cancerous or normal can only live and 

reproduce (undergo mitosis) in a pH range of between 

6.5 and 7.5. A healthy cell has a pH of 7.35 while a can-

cer cell is more acidic. When the pH of a cancer cell 

goes above 7.5 it dies and if it goes above 8.0 it will die 

in a matter of hours. 

Every cell in the body works as milli-volt battery. To 

successfully bring nourishment in, and take poisons out, 

it has to be fully charged. In a cancerous cell, the cell 

voltage drops from 90 millivolts to less than 40 milli-

volts. When the cell voltage gets to the very bottom, 

only 5 substances can pass in or out of the cell. They are 

water, sugar, potassium, cesium and rubidium. Oxygen 

cannot enter into a cancer cell. Even if there is a lot of 

oxygen in the blood, it won’t get into the cell. 

Potassium ions are responsible for the ability of glu-

cose to enter the cell. Potassium enters cancer cells in a 

normal manner so glucose still enters the cancer cell. 

Cancer cells have only 1% of the calcium content found 

in normal healthy cells. The calcium, magnesium and 

sodium ions, which are responsible for the intake of ox-

ygen into the cell, cannot enter the cancer cell but the 

potassium ion still enters these cells. Thus we have can-

cer cells containing glucose but no oxygen.  

A healthy individual has a blood oxygen level of be-

tween 98 and 100 as measured by a pulse oximeter. No-

bel Prize Laureate, Dr. Otto Warburg, discovered that 

when he lowered the oxygen levels of tissues by 35 % 

for 48 hours normal cells were converted into irreversi-

ble cancer cells [10]. Cancer patients have low levels of 

oxygen in their blood usually around 60 compared to 

normal values of about 100 by pulse oximetry. The 

common therapies used to treat cancer (chemotherapy 

and radiation) both cause drastic falls in the body's oxy-

gen levels. Tissues that are acidotic contain low levels of 

oxygen whereas tissues that are alkalotic have high lev-

els of oxygen.  

When oxygen fails to enter the cell the cell's ability to 

control, its pH is lost and the cell becomes quite acidic. 

This is caused by the appearance of abnormal metabo-

lism (anerobic glycolysis) in which glucose is converted 

(fermentation) into two particles of lactic acid. This 

production of lactic acid promptly lowers the ph within 

the cell to 6.5 or lower. The lactic acid damages the tem-

plate for proper DNA formation. Messenger RNA is also 

changed so the ability of the cell to control its growth is 

lacking. Rapid and uncontrolled cancer cell growth and 

division occurs. Vitamin C and zinc are able to enhance 

the uptake of cesium, rubidium, and potassium into can-

cer cells.  

Cancer cells develop a protein coating 13 times thick-

er than normal cells. This makes it difficult for the im-

mune system to attack them. By ingesting high doses 

of  pancreatin, you can actually dissolve cancer cells 

inside the body [11]. In the natural course of one’s life-

time, millions of cancer cells develop, and are harmless-

ly digested by the immune system. The body uses pan-

creatin, a secretion from the pancreas to dissolve the 

cancer cells. As we age, the pancreas is less and less able 

to make this important substance. By taking pancreatin 

orally, it is possible to increase the levels of its active 

ingredients in the blood, thereby helping the body break 

down the cancer cells and remove them from circulation. 

The active ingredients in pancreatin which have shown 

to have tumor dissolving abilities are trypsin and chy-

motrypsin. These ingredients were taken out of virtually 

all the pancreatin supplements available to consumers 

years ago. These active ingredients are being bought in 

massive quantities by the sewerage industries to digest 

the sewerage into less noxious forms. 

Although many improvements and mathematical 

modeling have been introduced in the treatment of can-

cer, but majority has been limited to of modeling of 

normal cells, tumor cells, immune cells and cancer ther-

apy and toxicity effects. Moreover, development of 

treatment strategies requires many clinical experiments 

first on animals and then on humans in order to figure 
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out a convenient way for the administration of the ther-

apy. These experiments, in general, take a long time and 

most importantly may result in many deaths during the 

development period. Clinical experiments also reveal the 

fact that there is a strong relationship between the cancer 

state (the number and/or volume of tumor cells, tumor 

type), the immune system of the patient and the treat-

ment strategy. Hence, understanding the dynamical be-

havior of cancer has received a great interest.  

This paper develops a generalized dynamical model to 

describe the interactive dynamics between normal cells, 

tumor cells, immune cells, drug therapy, electromagnetic 

field of the human cell, extracellular heat and fluid 

transfer, and intercellular fractional mass of oxygen, cell 

acidity and pancreatin. The overall dynamics stability 

and controllability has been investigated. Moreover, Ce-

sium therapy is considered as a control input to the 

11-dimensional dynamics using state-feedback con-

trolled system and pole placement technique. This ap-

proach is found to be effective in driving the desired rate 

of tumor cell kill and converging the system to healthy 

equilibrium state. Furthermore, the ranges of the system 

dynamics parameters which lead to instability and 

growth of tumor cells have been identified. Finally, sim-

ulation results are demonstrated to verify the effective-

ness of the applied approach which can be implemented 

for each individual case. 

This paper is organized as follows. Section 2 intro-

duces modeling of the electromagnetic field of a live cell, 

cellular heat and fluid transfer are presented in Sections 

3 and 4, respectively. Cellular factional composition is 

outlined in Section 5, generalized cellular-tumor dy-

namics is detailed in Section 6. Controllability and 

state-feedback control design of tumor dynamics are 

presented in Section 7. Section 8 demonstrates simula-

tion which followed finally conclusions. 

2. ELECTROMAGNETIC CELLULAR 
MODELING 

A great variety of theories have been developed to de-

scribe the electro-magnetic field of the human body. 

Some theories regarded the human body as a whole as 

single prolate spheroid with a single set of electromag-

netic constants: permittivity, permeability, and conduc-

tivity [2]. 

In that sense, the body is a simple antenna or probe 

capable o f intercepting a certain amount of electromag-

netic energy, which is converted entirely in to heat. At 

the other extreme, the body may be regarded as a collec-

tion of countless electronic microcircuits, each one cor-

responding to an individual cell or partially. Electro-

magnetic energy somehow finds its way to individual 

microcircuits and influences the electronic functions 

there. These functions include various communication 

and control processes essential to life and its activities. 

Efforts to understand these have focused attention on the 

microscopic components of the tissues such cells, mem-

branes, fluids, molecules in solution rather than the tis-

sue taken as a whole. Some theories have been devel-

oped concerning individual cells. An equivalent circuit 

has been developed as shown below. Given an incident 

current or current density actually passing across the cell 

membrane through and through the cell can be calculat-

ed. If the current is sufficiently enough, different re-

sponses are possible. For example a current density of 1 

mA/cm
2
 is about the amount associated with the action 

potential of nerve and muscle cells. Perhaps a pulsed 

electromagnetic filed could simulate these action poten-

tials and confuse the body by generating false signals. 

Of the cells part, the membrane probably has attracted 

most attention at least with respect top electromagnetic 

effects. Many membrane properties have been quantified. 

Typical thickness 45 Ang, typical capacitance 1 micro-

farad/cm
2
, typical leakage conductance 1 - 10 mhos/cm

2
,  

typical resting potential 100 millivolts, dielectric con-

stant 5, Electric field 22 Million V/m, Surface charge 

density 9.7 × e–8
 C/cm

2
 = 6.1 × e

11
 charge/cm

2
. Of these 

perhaps the electric filed is the most remarkable one 

since it is almost greater than any other found in nature. 

For example the electric field of the Earth at its surface 

is only about 100 V/m. 

So far the membrane has been treated as a homoge-

nous substance and characterized by a capacitance and 

nonlinear conductance. In fact the membrane is not ho-

mogenous. The basic structure is a double layer of mol-

ecules called lipids. Lipids are hydrophobic, that is, they 

repel water. It is the repulsion that holds the membrane 

together. Proteins are chains of mino-acids. Proteins are 

so important because they can conduct charges while 

lipids are good insulators. Thus proteins are the con-

ductance in the electronic circuit of the membrane.  

Electromagnetic field can interact with proteins over a 

wide range of frequencies between 1 - 10 MHz. It de-

pends on its size and mass protein can be modeled as 

single dipole which rotates in response to an oscillating 

field.  

Proteins figure predominantly in at least one of the 

theories of cancer advanced by Nobel Laureate Albert 

Szent-Gyorgyi which currently being researched [2,10]. 

According to this theory, proteins conduct electron out 

of the cell interior. Oxygen molecules at the cell exterior 

accept the electrons and carry them away. These free 

electrons are the products of some chemical process in-

side the cell that inhibits reproduction. If the electrons 

are not conducted away, then the process stops, and the 

cell divides at uncontrollable rate. Eventually, there are 
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enough cells to form a tumor which characterized by 

poorly circulated system. So, little or no oxygen-carrying 

blood reaches the cells.  

The equivalent impedance (resistance) eqZ  of the 

equivalent electric circuit of the human cell can now be 

expressed in the Laplace domain as: 

 2

2

2 2

i e w e
eq

i e w i w e w e e

R R C s R
Z

R R C s R C R C R C s




   
   (1) 

where iR  is the intracellular medium resistance, eR  is 

the extracellular medium resistance, wC  is the capaci-

tance of the cell wall, eC  is the capacitance of extra-

cellular medium.  

Now it is possible to express the voltage across the 

cell ( )V s  using Ohm’s law such that 

( )

( )
eq

V s
Z

I s
                  (2) 

where the ( )I s  is the passing cellular current. 

The voltage-current time change can be formulated by 

taking the Laplace inverse of the former equation as fol-

lows (assuming zero initial conditions) 

 ( ) 2 ( ) 2 ( )

( ) 2 ( )

i e w i w e w e e

i e w e

R R C V t R C R C R C V t V t

R R C I t R I t

   

 
  (3) 

The right hand side of the last Eq.3 represents the in-

put source to the cell. Since eR  represents the extra-

cellular resistance then the term ( ) ( )e eR I t V t  is the 

external voltage source to the cell and the term 

( ) ( )e exR I t V t the rate of change of the external voltage 

source. The equation now can be modified to  

 ( ) 2 ( ) 2 ( )

( ) 2 ( ) ( )

i e w i w e w e e

i w ex ex e

R R C V t R C R C R C V t V t

R C V t V t u t

   

  
 (4) 

 

 

Figure 1. Passage of electric current I in the human cell and its 

/equivalent electric circuit. eR  is the extracellular resistance, 

iR  is the intracellular resistance, wC  is the capacitance of 

the wall of the cell and eC  is the extracellular capacitance. 

Eq.4 It represents an input-output relationship of the 

electric behavior of the cell in a second order ordinary 

linear differential equation form. Next section will in-

troduce the dynamics of extracellular heat transfer as it 

is so important to maintain steady-state heat from and 

into the human cells. 

3. EXTRACELLULAR HEAT TRANSFER 

Thermal system involves transfer of heat from one cell 

to another. It may be analyzed I terms of thermal re-

sistance and capacitance. To simplify the analysis it is 

assumed that the cellular thermal system can be repre-

sented by a lumped-parameter model, that substances 

that are characterized by resistance to heat flow have 

negligible heat capacitance, and that substances that are 

characterized by heat capacitance have negligible re-

sistance to heat flow. Conduction and convection heat 

flow is only considered. 

For conduction or convection heat transfer, 

q K                     (5) 

where q  is the heat flow rate (kcal/sec),   is the 

temperature difference (˚C) and K  is the heat coeffi-

cient (kcal/sec.˚C). The coefficient K  is given by 

/K kA x   for conduction and K HA  for convec-

tion, where k  is thermal conductivity kcal/m.sec.˚C, 

A  is the area normal to heat flow m
2
, x  is the 

thickness of the conductor (m) and H  is the convec-

tion coefficient ( 2kcal/m .sec. ˚C). 

Thermal resistance for heat transfer between two cells 

may be defined as  

Change in Tepmerature Difference C

Change in Heat Flow Rate kcal / sec

 
  

 
hR  

The thermal resistance for conduction or convection 

heat transfer is given by 

( ) 1
h

d
R

dq K


               (6) 

The thermal capacitance  

Change in Heat Stored

Change in Temperature C

 
  

 
h h

kcal
C m c  

where m  is mass of the cell considered (kg), and c  is 

the specific heat of the cell kcal / kg. C . 

It is desired now to conisder the tmprature change of a 

human cell such that fluid inside the cell is perfectly 

mixed such that the cell temprature is homogenoues. A 

single temprature is considred the intracellular tem- 

prature and the outflowing fluid.  

The diffrential equation for the system is now 

h in out

d
C q q

dt


                (7) 

where 
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1
( )out outq

R
                 (8) 

Combing the last two Eqs.7-8 yields 

h h h in outR C R q                (9) 

It now possible now to express the generated cellular  

entropy S  by 
q

S


 . Eq.9 shows that the temperature 

of the cell is changing as first order diffrentail dynamics 

given a heat input source and heat losses to the sur-

rounding. Next section will consider how water flow in 

the cell changes. 

3. INTRACELLULAR FLUID MODELING 

Consider now the flow between two adjacent cells 

through their walls. The flow resistance for liquid flow 

through the cellular walls is defined as the change in the 

level difference necessary to cause a unit change in flow 

rate, that is   

3

Change in Level Difference m

Change in Flow Rate m / sec

 
  

 
fR  

It is assumed that the flow is laminar. The relationship 

between the steady-state flow and steady-state head is 

defined as 

Q K h                  (10) 

where Q  is the steady-state flow rate( 3m / sec ), K  is 

flow coefficient ( 2m / sec ), and h  is the steady-state 

head ( m ). 

The capacitance C  of a tank is defined to be the 

change in quantity of stored fluid necessary to cause a 

unit change in the potential head. 

3Change in Lquid Stored m

Change in Head m

 
  

 
fC  

Since the inflow minus the outflow during a small 

time interval dt  is equal to the additional amount 

stored in the cell, then  

( )f in outC dh Q Q dt              (11) 

From the definition of the flow resistance, the rela-

tionship between outQ  and h  is given by  

/out hQ h R                 (12) 

The differential equation for the fluidic system now 

becomes 

f f f inR C h h R Q               (13) 

The former equation is a first order differential dy-

namical system show how the water content level is 

changing inside the cell given a regular water inflow. 

Such a dynamics can be useful in modeling the fraction-

al mass of substances inside the human cell. Oxygen, 

and hydrogen ions and Pancreatin are considered in this 

paper for their major role in keeping healthy cells and 

killing the tumor cells or at least stopping their growth.   

4. CELLULAR COMPOSITION  
DYNAMICS 

To determine the properties of a mixture, we need to 

know the composition of the mixture as well as the 

properties of the individual components. There are two 

ways to describe the composition of a mixture: either by 

specifying the number of moles of each component, 

called molar analysis, or by specifying the mass of each 

component, called gravimetric analysis.  

Consider a fluid mixture composed of n  compo-

nents. The mass of the mixture Tm  is the sum of the 

masses of the individual components, and the mole 

number of the mixture TN  is the sum of the mole 

numbers of the individual components 

1

n

T im m  and 
1

n

T iN N        (14) 

The ratio of the mass of a component to the mass of 

the mixture is called the mass fraction ix , and the ratio 

of the mole number of a component to the mole number 

of the mixture is called the mole fraction iy : 

i
i

T

m
x

m
  and i

i

T

m
y

m
           (15) 

We can easily show that the sum of the mass fractions 

or mole fractions for a mixture is equal to 1 

1

1
n

ix   and 
1

1
n

iy          (16) 

It is assumed that the intercellular mixture is homog-

enous such that it is possible to express the he ratio of 

the mass of each substance with respect to the water 

volume as follows (substance-water ratio): 

i

m m
v

V Ah
                (17) 

where iv  is the substance mass ration in a unit volume 

of water exists in the cell, mass m of a substance, V  is 

the water volume, A  is the average cross sectional area 

of the cell, and h  is the water head indicator. The mass 

m  of a substance is related to the number of moles N  

through the relation m NM , where M  is the molar 

mass. 

The former Eq.17 can now be modified to 

im v Ah                   (18) 

The rate of change of each individual substance mass 

in the cellular fluid can be expressed as  
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i i im v Ah v Ah v Ah              (19) 

Next section will outline how this equation can be 

used to represent the contents of oxygen, hydrogen ions 

(as a measure of PH) and Pancreatin enzyme as a killer 

for the tumor cells. 

5. GENERALIZED  
ELECTRO-BIO-THERMAL TUMOR 
DYNAMICS 

Mathematical models for cancer dynamics have been 

studied by many scientists using different mathematical 

methods. Some of these models consider the growth of 

tumor cells as population dynamics problems which in-

clude the interaction of tumor cells with other cells (e.g. 

normal cells and immune cells). In order to develop 

treatment strategies, the effects of therapy are also in-

cluded in the models as control inputs. In this study, we 

analyze the model originally discussed in [4]. The model 

does not aim to concentrate on a specific kind of cancer 

and uses normalized parameters. It includes three dif-

ferent cell populations and chemotherapy drug concen-

tration. Interaction of the tumor cells with normal and 

immune cell population in the absence of any treatment 

is given by the system 

1 1 1 1 1 1 1 2(1 )x r x b x c x x                  (20) 

2 2 2 2 2 2 1 2 3 2 3(1 )x r x b x c x x c x x           (21) 

2 3
3 0 4 2 3 1 3

2

x x
x s c x x d x

x



   


         (22) 

where 1( )x t , 2 ( )x t and 3 ( )x t denote the number of 

normal cells, the number of tumor cells and the number 

of immune cells at time t , respectively. The first term in 

the normal cell population is the logistic growth of nor-

mal cell population with growth rate 1r  and maximum 

carrying capacity 1(1/ )b . The second term is the loss of 

normal cells due to competition among tumor-normal 

cells for local resources. In a tumor cell population, the 

first term denotes the logistic growth of tumor cells in 

the absence of immune surveillance with the growth rate 

2r  and maximum tumor carrying capacity 2(1/ )b .  

The second and the third terms in (24) are death terms 

for tumor cells due to the interaction between immune 

and normal cells, respectively. Immune cells have a con-

stant source 0s  which can be supplied from bone mar-

row or lymph nodes. In the presence of tumor cells, im-

mune cells are stimulated by tumor cells with a Michae-

lis-Menten type saturation function with the positive 

parameters   and  . Immune cells are deactivated 

by tumor cells at the rate 4c  and they also die at the 

natural death rate 1d .  

There are different ways to include the effect of 

chemotherapy in the tumor growth model. We assume 

that chemotherapy kills all cell populations with differ-

ent ratios using mass action term. The effect of drug 

therapy in the model is shown with an additional state 

4 ( )x t  and control input ( )u t  which denote drug con-

centration in the blood stream, and external drug injec-

tion respectively. The nonlinear system (20)-(22) with 

the effect of drug therapy is: 

1 1 1 1 1 1 1 2 1 1 4(1 )x r x b x c x x a x x                (23) 

2 2 2 2 2 2 1 2 3 2 3 2 2 4(1 )x r x b x c x x c x x a x x         (24) 

2 3
3 0 4 2 3 1 3 2 3 4

2

x x
x s c x x d x a x x

x



    


     (25) 

4 2 4 ( )x d x u t                           (26) 

Here, 1a , 2a , and 3a  are the different killing ef-

fects of chemotherapy on the cell populations. Chemo-

therapy drug decay rate in the blood stream is denoted 

by 2d . The system parameters which are normalized to 

the maximum carrying capacity of the normal cells are 

given in Table 1. Analysis of the model for possible 

equilibrium points in the absence of therapy is given in 

the next sub-section. 

In order now to generalize the dynamics of the cell in 

terms of electromagnetic model, heat transfer model, 

fluid transfer model, fractional mass model, cellular 

growth, let us introduce the state space dynamic vari- 

ables as follows. 

Define the electric charge passing from or into the call 

( )V t   as 5x . Since the electric current flow is the rate 

of change of charge passing through an inductor I q  

then  

5 6 ( )x x V t                 (27) 

6 ( )x V t                   (28) 

Then the equivalent electric circuit Eq.4 can be re- 

expressed as  

 6 6 5( ) 2 ( ) 2 ( )

( ) 2 ( ) ( )

i e w i w e w e e

i w ex ex e

R R C x t R C R C R C x t x t

R C V t V t u t

   

  
 

                     (29) 

The electric dynamics (29) can be modified as 

 
6 6

5

2

2
( )

i w e w e e

i e w

e

i e w

R C R C R C
x x

R R C

x u t
R R C

 
 

 

        (30) 

Furthermore, representing the heat model (9) in the 

state space form assuming 7x   yields  

7 7

1
h in out

h h

x x R q
R C

             (31) 
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Table 1. Overall dynamics parameters. 

Parameter Value 

1r  1 

2r  1.5 

1b  1 

2b  1 

1c  1 

2c  0.5 

3c  1 

4c  1 

1a  1 

2a  0.15 

3a  0.05 

1d  0.2 

2d  1 

0s  0.33 

  0.1 
  0.3 

iR  512 10  

eR  51 10  

WC  61 10  

eC  61 10  

hR  1/ 0.026  

hC  1700 

fR  61 10  

fC  1600 

A  1 

2O  0.75 

H
   0.02 

Pn  0.05 

A  1.9 

2O  0.21 

H
   0.01 

Pn  0.003 

 

Similarly, for the cellular fluid transfer (13) assuming 

8x h  will lead to 

8 8

1
in

f f

x x Q
R C

               (32) 

For the significant of the oxygen, pH and Pancreatin 

enzyme for the survival of the normal cell, their frac-

tional mass ratio will be considered. Denote their corre-

sponding masses, respectively, as  

9 oxygenex m , 10 H
x m   and 11 Pancreatinx m    (33) 

Referring to (18) and (19), last Eq.33 can be reformu-

lated as 

 
i

i
i i i i v A i i

i

v A
m m m v Ah m v Ah

v A
         (34) 

By the virtue of the fluid dynamics equation the for-

mer equation the fractional mass of the oxygen, pH and 

Pancreatin enzyme can be described, respectively, by   

 2

2 29 8 9

O

O A O in

f f

v A
x x x v AQ

R C
         (35) 

 10 8 10
H

A inH H
f f

v A
x x x v AQ

R C
 



        (36) 

 11 8 11
Pn

Pn A Pn in

f f

v A
x x x v AQ

R C
         (37) 

where 
2Ov , 

H
v   and Pnv  are the fractional ratios of 

oxygen, hydrogen as a measure of PH and Pancreatin, 

respectively. Fractional rate of change of the three sub-

stances with respect to their initial values are defined,  

respectively, as 2

2

2

O

O

O

v

v
  , H

H

H

v

v








 and 
pn

Pn

Pn

v

v
   

along with the rate of change of the cell surface area 

with respect to its initial value as A

A

A
 . Selection of 

such substances are based on their significant role in the 

survival of human cell and killing or at least slowing 

down the tumor cells.  

Now the overall generalized model is 

1 1 1 1 1 1 1 2 1 1 4(1 )x r x b x c x x a x x           (38) 

2 2 2 2 2 2 1 2 3 2 3 2 2 4(1 )x r x b x c x x c x x a x x         (39) 

2 3
3 0 4 2 3 1 3 2 3 4

2

x x
x s c x x d x a x x

x



    


     (40) 

4 2 4 ( )x d x u t                  (41) 

5 6x x                    (42) 

 
6 6

5

2

2
( )

i w e w e e

i e w

e

i e w

R C R C R C
x x

R R C

x u t
R R C

 
 

 

         (43) 

7 7

1
h in out

h h

x x R q
R C

              (44) 

8 8

1
in

f f

x x Q
R C

                (45) 

 2

2 29 8 9

O

O A O in

f f

v A
x x x v AQ

R C
          (46) 
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 10 8 10,

H
A inv H H

f f

v A
x x x v AQ

R C
 



         (47)  

 11 8 , 11
Pn

v Pn A Pn in

f f

v A
x x x v AQ

R C
         (48) 

The overall generalized dynamics represents the bio- 

thermal electro-fluidic dynamics with 11 dimension. 

Next section will investigate the stability of the entire 

dynamical system at equilibrium points.  

5.1. Equilibrium State 

It is necessary to investigate the equilibrium state of the 

cell since it indicates its stability and the non-growth of 

the tumor cells. As a start, let us assume a free therapy 

and find out the corresponding equilibrium points for the 

dynamics (38)-(41).  

As for the normal cells, equilibrium is governed by 

1 1 1 1 1 1 1 2(1 ) 0x r x b x c x x     indicates that 

1 2 1 1 1 1 2 1 10, (1 ) / , and  when 1/x x r b x c x x b     

Tumor cells equilibrium exists when   

2 2 2 2 2 2 1 2 3 2 3(1 ) 0x r x b x c x x c x x          (49) 

at points satisfy 

2 2 2 2 2 2 1 3 2 2 30 and (1/ ) ( / ) ( / )x x b c r b x c r b x      

     (50) 

On the other hand, the immune system will experience 

equilibrium when 

2 3
3 0 4 2 3 1 3

2

0
x x

x s c x x d x
x




    


      (51) 

at state  

0 2
3

1 2 4 2 2 2

( )

( ) ( )

s x
x

d x c x x x



  




   
      (52) 

Provided that 1 2 4 2 2 2( ) ( )d x c x x x       

Finally with free therapy 4 40 at 0 x x   with zero 

control input ( )u t .  

It can be seen easily that the system has three different 

types of equilibria: Tumor-free (no tumor cells), Dead 

(no normal tissue cells), and Coexisting (both normal 

and tumor cells exist) equilibrium points [4]. In the con-

text of developing therapy strategy, Tumor-free or Coex-

isting type equilibrium points should be reached, since in 

these types of states, the normal cell population is close 

to its healthy state. In this study, our aim is to determine 

the therapy dosage to bring the system to the tumor-free 

equilibrium point. The tumor-free equilibrium point of 

the system is obtained as 2 0 1(1/ ,0, / ,0)b s d  which 

gives us a healthy normal cell population of 2(1/ )b and 

immune cell population of 0 1( / )s d with zero tumor 

level and free drug injection. Considering now the elec-

tromagnetic equilibrium given that 5 6 0x x  , along 

with  

 
6 6 5

2 2
( ) 0

i w e w e e

e

i e w i e w

R C R C R C
x x x u t

R R C R R C

 
      

     (53) 

when states 6 5 ( ) 0ex x u t    which is not feasible 

since the live cell should keep a cellular voltage in the 

range of 80 - 100 millivolts. With other equilibrium state 

6 5

2
( )

2 2

i e w

i w e w e e i w e w e e

R R C
x x u t

R C R C R C R C R C R C
  

   
 

    (54) 

The human cell will have a steady-state heat transfer 

when  

7 7

1
0h in out

h h

x x R q
R C

             (55) 

at 
2

7 h h in h h outx R C q R C              (56) 

A steady-state cellular fluid flow occurs when 

8 8

1
0in

f f

x x Q
R C

               (57) 

8 f f inx R C Q .              (58) 

Thus, the fluid steady-state occurs when  

8 f f inx R C Q . Fractional mass balance exist in the hu-

man cell when the oxygen flow, PH and Pancreatin sat-

isfy, respectively,  

 2

2 29 8 9 0
O

O A O in

f f

v A
x x x v AQ

R C
         (59) 

 10 8 10,
0H

A inv H H
f f

v A
x x x v AQ

R C
 



        (60) 

 11 8 , 11 0Pn
v Pn A Pn in

f f

v A
x x x v AQ

R C
         (61) 

with oxygen equilibrium state given by 

   
2 2

2 2

9 8

O O

in

f f O A O A

v A v
x x AQ

R C    
 

 
  (62) 

and PH equilibrium state defined by 

   
10 8

, ,

H H
in

f f A Av H v H

v A v
x x AQ

R C    

 

 

 
 

  (63) 

Finally Pancreatin stability when  

   11 8

, ,

Pn Pn
in

f f v Pn A v Pn A

v A v
x x AQ

R C    
 

 
 

Since the normal cell-tumor-immune dynamics is 

nonlinear, it is interesting to linearized the system at 
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equlibruim points for the purposed of control design.  

5.2. Authors and Affiliations 

It is desired at the moment to seek a linearized model of 

the cells growth at the equilibrium points with zero con-

trol input in the given form 

x Ax                  (64) 

where A is the Jacobian Matrix. To fulfill this goal, let 

1 1 1 2 3 4( , , , )x f x x x x            (65) 

2 1 1 2 3 4( , , , )x f x x x x            (66) 

3 1 1 2 3 4( , , , )x f x x x x            (67) 

4 1 1 2 3 4( , , , )x f x x x x            (68) 

The Jacobian matrix for the dynamics (38)-(41) can be 

verified as  

1 1 1 1 1 2 1 1 1 1

2 2 2 2 2 2 2 1 3 3 2 4 3 2 2 2

3 2 2 3 2
4 2 2 4 1 3 32

22

1

2 0

2

( )
0

( )

0 0 0

r r b x c x c x a x

c x r r b x c x c x a x c x a x

A x x x x x
c x a x d a x

xx

d


 



    
 

       
   
    

 
 

 

      (69) 

Substituting now the equilibrium point 2 0 1(1/ ,0, / ,0)b s d  yields to the following linearized Jacobia Matrix 

1 1 1 2 1 2 1 2

2 2 2 3 0 1

0
1 3 0 1

1

1

2 / / 0 /

0 / / 0 0

0 /

0 0 0

r r b b c b a b

r c b c s d

A s
d a s d

d

d





   
 

 
 
 

  
 
  

                         (70) 

 

The following tables show the generalized system pa-

rameters values used in the modeling and linearized 

state-feedback control. 

This linearized overall dynamical model will be the 

interest of next section to investigate controllability, ob-

servability and designing a state-feedback controller 

using pole placement approach. Later analysis will show  

these parameters are so important in determining the 

stability of the human cell, its survival and in the growth 

of the tumor cells and decreasing the immune system. 

Some parameters affect the normal cells growth, tumor 

growth and immune system strength, cellular voltage, 

heat and fluid flow, oxygen rate, acidity and pancreatin 

enzyme. 

 

2

2

1 1 1 2 1 2 1 2

2 2 2 3 0 1

0
1 3 0 1

1

1

2 / / 0 / 0 0 0 0 0 0 0

0 / / 0 0 0 0 0 0 0 0 0

0 / 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

22
0 0 0 0 0 0 0 0 0

1
0 0 0 0 0 0 0 0 0 0

1
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

i w e w e e

i e w i e w

h h

f f

O

O

f f

r r b b c b a b

r c b c s d

s
d a s d

d

d

R C R C R C

R R C R R C

A R C

R C

v A

R C





 

  

 

 



 
 





  

 

 

,

,

0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

A

H
Av H

f f

Pn
v Pn A

f f

v A

R C

v A

R C

 

 





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

  
 

 

(71) 

The input vector is given by 

2
1 1 1 ( ) 1 ( )T

e h in out in O in in Pn inH
B u t u t R q Q v AQ v AQ v AQ 

                (72) 



M. Al-Shibli / J. Biomedical Science and Engineering 4 (2011) 569-582 

Copyright © 2011 SciRes.                                                                             JBiSE 

578 

6. CONTROLABILITY AND OF TUMOR 
DYNAMICS AND CONTROLLER 
DESIGN 

A system is said to be controllable at time 0t  if it is 

possible by means of unconstrained control vector to 

transfer the system from an initial state 0( )x t  to any 

other state in a finite interval time. The concepts of con-

trollability and observability were introduced by Kalman. 

They play an important role in the design of control sys-

tems in state space. In fact, the conditions of controlla-

bility and observability may govern the existence of a 

complete solution to the control system design. Although 

most physical systems are controllable and observable, 

corresponding mathematical models may not possess the 

property of controllability and observability. In what 

follows, we shall derive the condition for complete state 

controllability. Figures 2 and 3 show the open-loop 

cancer controlled systems and closed-loop cancer con-

trolled system, respectively. 

Consider the continuous-time system 

w x Ax B                (73) 

w y Cx D                (74) 

where, 

x  is a state vector 

y  is m -output vector  

w  is a control signal 

A  is n n  matrix  

B  is 1n  matrix 

C  is n m  matrix 

The system described in Eq.73 is said to be state con-

trollable at 0t t  if it is possible to construct an uncon-

strained control signal that will transfer an initial state to 

any final state in a finite time interval 0 1t t t  . If 

every state is controllable, then the system is said to be 

completely state controllable [12]. The system is said to 

be controllable if and only if the following n n  matrix 

is full rank n  

 
 

2 n 1
B AB A B A B        (75) 

This matrix is called the controllability matrix.  

A system is said to be observable at time 0t , if with 

the system in state 0( )x t , it is possible to determine its 

state from the observation of the output over a finite time 

interval.  

The concept of observability is very important be-

cause , in practice, the difficulty is encountered with 

state feedback control is that some of the state variables 

are not accessible for direct measurement , with the re-

sult that it becomes necessary to estimate the unmeasur-

able state variables in order to construct the control  

signals. The system is said to be observable if and only if 

the following n nm  matrix is of full rank n   

   T T T T T T T
 

  

2 n 1

C A C A C A C   (76) 

Matrix (76) is commonly called observability matrix. 

This following analysis presents a design method 

commonly called the pole-placement technique. We as-

sume that all state variables are measureable and are 

available for feedback. It is shown that if the system 

considered is completely state controllable, then poles of 

the closed-loop system may be placed at any desired 

locations by means of state feedback through an appro-

priate state feedback gain matrix. Let us assume the de-

sired closed-poles are to be at 1 1s  , 2 2s  ,…, 

n ns  .  

We shall choose the control signal to be 

w  Kx                  (77) 

This means that the control signal is determined by an 

instantaneous state. Such a scheme is called state feed-

back. The 1 n  matrix K  is called the state feedback 

gain matrix. Substituting (77) into Eq.73 gives 

 ( ) ( )t t x A BK x            (78) 

The solution of this equation is give by 

 
( ) (0)

t
t e




A BK
x x             (79) 

where is the initial state caused by external disturbances. 

The stability and transient response characteristics are 

determined by the egienvalues of matrix A BK . If 

matrix K  is chosen properly, the matrix A BK  can 

be made asymptotically stable matrix.  

Define a transformation matrix T  by  

T MW                 (80) 

 

 

Figure 2. Open-loop cancer controlled system. 

 

 

Figure 3. Closed-loop cancer controlled system. 

  

  
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where M  is the controllability matrix 

 
 

2 n 1
B AB A B A B            (81) 

and 

1 2

2 3

1

1

1 0

1 0 0

1 0 0 0

n n

n n

a a a

a a

a

 

 

 
 
 
 
 
 
 
 

W            (82) 

where the 
ia s  are the coefficients of the characteristic 

polynomial  

1

1 1

n n

n ns s a s a s a

     I A        (83) 

Let us choose a set desired egienvalues as 1 1s  , 

2 2s  ,···, n ns  . Then the desired characteristic 

equation becomes  

1

1 2 1 1( )( ) ( ) n n

n n ns s s s s s     

         

                           (84) 

The sufficient condition that the system to be com-

pletely controllable with all egienvalues arbitrarily 

placed by choosing the gain matrix 

        1

1 1 2 2 1 1n n n na a a a    

       K T  

                          (85) 

The former outlined control design will be validated 

in the following section by demonstrating the simulation 

results.  

Simulation Results  
Every cell in the human body functions as a micro bat-

tery. To successfully bring nourishment in and take poi-

sons out, it has to be fully charged. In a cancerous cell, 

the cell voltage drops from 90 millivolts to less than 40 

millivolts. When the cell voltage gets to the very bottom, 

only 5 substances can pass in or out of the cell. They are 

water, sugar, potassium, cesium and rubidium [12]. Ox-

ygen cannot enter into a cancer cell. Even if there is a lot 

of oxygen in the blood, it cannot get into the cell. Ce-

sium, because of its electrical properties can still enter 

the cancerous cell. When it does so, because of its ex-

treme alkalinity, the cell dies. Luckily, healthy cells are 

not affected by cesium because their cell voltage allows 

them to balance themselves. This uptake can be en-

hanced by Vitamins A and C as well as salts of zinc and 

selenium. The quantity of cesium taken up was sufficient 

to raise the cell to the 8 pH range. Where cell mitosis 

ceases and the life of the cell is short. 

The objective of the Cesium therapy is to kill the tu-

mor cells, minimize the amount of drug application and 

to keep cellular voltage, thermo-fluid transfer and cellu-

lar ingredients at fixed rates. In the simulated general-

ized cancer model, the healthy equilibrium point with 

the parameter set given in Table 1 is (1, 0, 1.65, 0, 0.1, 0, 

7.4488 × 610 , 1.6 × 610 , 0, 0, 0) is locally stable. It 

means that the growth of cancer is controllable if suffi-

cient drug surveillance is guaranteed.  

In the absence of sufficient immunee control, the tu-

mor cells grow in number and kill the healthy tissue cells 

and reach the limit capacity, which is referred to as dead 

equilibrium point. The initial states, i.e., the conditions 

when the chemotherapy treatment is started, are assumed 

to be: N(0) = 1, T(0) = 0.20, I(0) = 1, M(0) = 1). The 

response of treatment-free cancer growth with respect to 

normalized time scale is given in Figures 4-6. Simula-

tion analysis shows the following sensitivity of parame-

ters that affect the cell stability. 

The egienvalues of matrix A have some positive val-

ues, zero, and imaginary with negative real values. Thus 

the original system is unstable. These egienvalues are 

listed as follows: 

–0.0002 + 0.1291i,  

–0.0002 – 0.1291i 

–1.0000,    

–0.2000  

–0.6500  

–0.2000 

–0.0000           

2.0050           

2.2100           

2.0100           

–0.0000 

Since the original dynamics is unstable, it is now de-

sired to design a state-feedback controller with the fol-

lowing desired egienvalues: –0.1, –0.1, –0.2, –0.2, –0.3, 

–0.3, –0.4, –0.4, –0.5, –0.1, –0.1. As it can be seen, all 

desired eigenvalues are negative and close to the origin 

to guarantee a stable and fast response.  

Before proceeding in the controller design, the con-

trollability condition defined by Eq.75 must be satisfied. 

Considering coefficient matrix A defined (71), the input 

vector given by (72), and parameters values listed in 

Table 1, it is found out that the controllability matrix is 

of full rank 11.  

Simulation results in Figures 4-6 shows that the ce-

sium therapy is so effective in brining the normal and 

immune system to its equilibrium state and forcing the 

tumor cell kill. As it can be seen from the earlier analayis, 

having no closed-loop controlled tumor therapy, the 

overall bio-thermo-fluidic-dynamical system was un- 

stable. Enforcing a state-feedback pole placement   

cloride-cesium tumor therapy, a complete therapy of 

disease is achieved as shown in Figure 4. Normal and 

immune cells have been brought to an equilibrium state  
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Figure 4. Normal cells, tumor cells, immune cells and therapy input response. 

 

 

Figure 5. Cellular voltage and its rate of change, cellular heat-fluid transfer. 
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Figure 6. Fractional mass of oxygen, hydrogen ion and Pancreatin Enzyme. 

 

by enforcing free kill cells.  

Similarly, the cellular voltage is regulated at the re-

quired value. Transfer of heat and fluid from and into the 

cell is maintained fixed as well. Since oxygen is so sig-

nificant to maintain a healthy cell and reduce or kill the 

tumor cells its control was so efficient to keep the normal 

and immune cells as desired. Acidity is controlled by the 

amount of hydrogen ions in the cell as well. Finally, Pan-

creatin ratio (which has an important role in killing tumor 

cells) is kept within the normal range as well. 

 If 
910iR    or 

910eR    (Independently), the 

system is unstable. 

 If both 
710i eR R   , the system is unstable.  

 Increasing iR , immunity increases. 

 Decreasing eR , immunity increases significantly (20 

times manifold). 

 Decreasing wall capacitance WC  increases the nor- 

mal cells, tumor cells and immune cells and all oth-

ers. 

 Increasing of area ratio A  to 2.8, oscillations oc-

curs; and at 2.9 it results in unstable cells. 

 Increasing oxygen ratio
2O  to 3 will generate oscil-

lations; and to 3.8 produces unstable cells. 

 Decreasing hydrogen ratio 
H

   to 0.01 and oxygen 

rate 
2O  at 0.021 , generates unstable cells. 

Increasing Pancreatin ratio Pn  to 6 produces unsta-

ble cells. 

7. CONCLUSIONS 

This paper presents a more generalized dynamical model 

describing the normal-tumor-immune growth consider-

ing the electro-thermo-fluidic-chemical characteristics of 

a human cell. Equilibrium and stability of such a model 

is validated via state-feedback controller design. Cesium 

therapy is found to be so effective in controlling the 

whole system. The sensitivity and the range of the dy-

namic parameters that influence the normality and im-

munity of the live cell have been identified. It is figured 

out that the cellular voltage is so important to regulate 

the cell normal operation. Three cellular components 

have been investigated: oxygen (to keep the cell alive 

and prevent cancer growth, hydrogen (acidity: PH value) 

and Pancreatin enzyme (to kill the tumor cells). Simula-

tion of the controlled therapy shows how is approach is 

so efficient and can be implemented clinically. 
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