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ABSTRACT 

This paper studies benefits of using simplified re-
gime-switching adaptive control strategies in im-
proving performance of insulin control for Type I 
diabetic patients. Typical dynamic models of glu-
cose levels in diabetic patients are nonlinear. Using 
a linear time invariant controller based on an oper-
ating condition is a common method to simplify 
control design. On the other hand, adaptive control 
can potentially improve system performance, but it 
increases control complexity and may create fur-
ther stability issues. This paper investigates patient 
models and presents a simplified switching control 
scheme using PID controllers. By comparing dif-
ferent switching schemes, it shows that switched 
PID controllers can improve performance, but fre-
quent switching of controllers is unnecessary. These 
findings lead to a control strategy that utilizes only 
a small number of PID controllers in this scheduled 
adaptation strategy. 
 
Keywords: Insulin Control; Diabetes; Switching Control; 
Modeling; Adaptation 
 

1. INTRODUCTION 

Insulin is a hormone that is necessary for converting the 
blood sugar, or glucose, into usable energy. The human 
body maintains an appropriate level of insulin. Diabetes 
are caused by lack of insulin in the body. There are two 
major types of diabetes, called type ‘I’ and type ‘II’ dia-
betes. Type ‘I’ diabetes are called Insulin Dependent 
Diabetes Mellitus (IDDM), or juvenile onset diabetes 
mellitus. Type ‘II’ diabetes are known as Non-Insulin 
Dependent Diabetes Mellitus (NIDDM) or Adult-Onset 
Diabetes (AOD) [1-7]. This paper is focused on type ‘I’ 
diabetes. Type ‘I’ diabetes develop when the pancreas 
stop producing insulin. Consequently, insulin must be 

provided through injection or continuous infusion to 
control glucose levels.  

The insulin infusion rate to a diabetic patient can be 
administrated based on the glucose (sugar) level inside 
the body. Over the years many mathematical models 
have been developed to describe the dynamic behavior 
of human glucose/insulin systems. The most commonly 
used model is the minimal model introduced by Berg-
man, et al. [6,8-13]. The minimal model consists of a set 
of three differential equations with unknown parameters. 
Since diabetic patients differ dramatically due to varia-
tions of their physiology and pathology characteristics, 
the parameters of the minimal model are significantly 
different among patients. Based on such models, a vari-
ety of control technologies have been applied to glucose/ 
insulin control problems [14-17].  

This paper studies benefits of using simplified adapta-
tion control strategies in improving performance of insu-
lin control for Type I diabetic patients. Typical dynamic 
models of glucose levels in diabetic patients are nonlin-
ear. Using a linear time-invariant controller based on an 
operating condition is a common method to simplify 
control design. On the other hand, adaptive control can 
potentially improve system performance, but it increases 
control complexity and may create further stability is-
sues. This paper investigates patient model identification 
and presents a simplified switching control scheme using 
PID controllers. By comparing different switching sche- 
mes, it shows that switched PID controllers can improve 
performance, but frequent switching is unnecessary. These 
findings lead to a control strategy that utilizes only a 
small number of PID controllers in this scheduled adap-
tation strategy. 

Many methods and techniques have been investigated, 
tested, and studied for controlling the glucose level in 
type ‘I’ diabetes patients. Lynch and Bequette [14] tested 
the glucose minimal model of Bergman [10] to design a 
Model Predictive Control (MPC) to control the glucose 
level in diabetes patients. Also in that study the nonlinear 
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mathematical model was linearized about the steady- 
state values of time variant variables. Fisher [15] used 
the glucose insulin minimal model to design a semi 
closed-loop insulin infusion algorithm based on three 
hourly plasma glucose samplings. The study concen-
trated on the glucose level, and did not take in consid-
eration of some important factors such as the free plasma 
insulin concentration and the rate at which insulin is 
produced as the level of glucose rises. Furler [16,18] 
modified the glucose insulin minimal model by remov-
ing the insulin secretion and adding insulin antibodies to 
the model. The algorithm calculates the insulin infusion 
rate as a function of the measured plasma glucose con-
centration. The linear interpolation was used to find the 
insulin rate. The algorithm neglected some important 
variations in insulin concentration and other model 
variables. Ibbini, Masadeh and Amer [17] tested the glu- 
cose minimal model to design a semi closed-loop opti-
mal control system to control the glucose level in diabe-
tes patients.  

The rest of this paper is organized as follows. Section 
2 discusses basic model structures, experimental data, 
and model simulations. Section 3 is focused on model 
parameter identification. The Levenberg-Marquardt al-
gorithm is employed to obtain model parameters itera-
tively. Control design and switching strategies are pre-
sented in Section 4. By comparing fixed PID controllers 
with switching strategies, we first show that adaptation 
can be beneficial. Further studies show that using a small 
set of PID controllers in switching control is a feasible 
and desirable approach, which simplifies switching sche- 
me without performance degeneration. 

2. MODELS 

Since the level of the glucose inside the human being 
body changes significantly in response to food intake 
and other physiological and environment conditions, for 
control design it is necessary to derive mathematics 
models to capture such dynamics [8-10,19-21]. Many 
mathematical models have been developed to describe 
the human glucose/insulin system. Such models are highly 
nonlinear and usually very complex. The most com-
monly used and simplified model is the Minimal Model 
introduced by Bergman, et al. [8-10], which is still non- 
linear. To further simplify the model for control design, a 
common practice is to locally linearize the Minimal 
Model under a given operating condition. 

2.1. Model Structures 

The minimal model of the glucose and insulin is perhaps 
the simplest model that is physiologically based and 
represents well for the observed glucose/insulin dynam-
ics of a diabetic patient. The insulin enters or exits the 

interstitial insulin compartment at a rate that is propor-
tional to the difference  I t Ib  of plasma insulin 
 I t  and the basal insulin level Ib [22,23]. If the level 

of insulin in the plasma is below the insulin basal level, 
insulin exits the interstitial insulin compartment; and if 
the level of insulin in the plasma is above the insulin 
basal level, insulin enters the interstitial insulin com-
partment. Insulin also can flee the interstitial insulin 
compartment through another route at a rate that is pro-
portional to the insulin amount inside the interstitial in-
sulin compartment. On the other hand, glucose enters or 
exits the plasma compartment at a rate that is propor-
tional to the difference   bG t G  of the plasma glu-
cose level  G t  and the basal glucose level bG . If the 
level of glucose in the plasma is below the glucose basal 
level, the glucose exits the plasma compartment; and if 
the level of glucose in the plasma is above the glucose 
basal level, glucose enters the glucose compartment. 
Glucose also can flee the plasma compartment through 
another route at a rate that is proportional to the glucose 
amount inside the interstitial insulin compartment. 

Currently, the most widely used model in physiologi-
cal research on the metabolism of glucose is the Minimal 
Model. This model structure describes experimental data 
well with the smallest set of identifiable and meaningful 
parameters. The Minimal Model consists of two parts: 
the minimal model of glucose disappearance and the 
minimal model of insulin kinetics. 

     1 1

d

d b

G t
P x t G t PG

t
               (1) 

     2 3

d

d b

x t
P x t P I t I

t
               (2) 

     
d

  + 
d

I t
n I t G t h t

t
             (3) 

where  G t  (mg/dL) is the blood glucose level in 
plasma;  I t  (µU/mL) is the insulin concentration 
level in plasma;  x t  (min−1) is the variable which is 
proportional to insulin in the remote compartment, Gb 
(mg/dL) is the basal blood glucose level in plasma; Ib 
(µU/mL) is the basal insulin level in plasma; t (min) is 
the time interval from the glucose injection. Eqs.1 and 2 
represent the glucose disappearance and Eq.3 represents 
the insulin kinetics. The initial conditions of the above 
three differential equations are as the following: 
     0 00 , 0 0, 0G G x I I    
The model parameters carry some physiological 

meanings that can be summarized as follows. P1 (min−1) 
describes the “glucose effectiveness” which represents 
the ability of blood glucose to enhance its own disposal 
at the basal insulin level. P2 (min−1) describes the  
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decreasing level of insulin action with time. P3 (
2min   

  1
U mL

 ) describes the rate in which insulin action is 
increased as the level on insulin deviates from the corre-
sponding baseline.  ((µU/mL)  (mg/dL)−1  min−1) de-
notes the rate at which insulin is produced as the level of 
glucose rises above a “target glycemia” level. n (min−1) 
represents fractional insulin clearance. h (mg/dL) is the 
pancreatic “target glycemia” level. G0 (mg/dL) is the 
theoretical glucose concentration in plasma extrapolated 
to the time of glucose injection t = 0 [8-10,24]. I0 
(µU/mL) is the theoretical plasma insulin concentration 
at t = 0. µU/mL is the conventional unit to measure the 
insulin level and has the following conversion formula: 1 
micro-unit/ milliliter = 6 picomole/liter (1µU/mL = 6 
pmol/L) [25,26]. P1, P2, P3, n, , h, G0 and I0 are the pa-
rameters to be estimated.  

A fourth differential equation will be added to the set 
of the Minimal Model equations to represent a first-order 
pump dynamics: 

      1
1

d 1
    

d

U t
U t u t

t a
           (4) 

where  1U t  is the infusion rate,  u t  is the input 
command, and a is the time constant of the pump. 

2.2. Experimental Data 

A new approach was developed by Bergman, et al. [8-10] 
to compute the pancreatic responsiveness and insulin 
sensitivity in the intact organism. This approach uses 
computer modeling to investigate the plasma glucose 
and insulin dynamics during a Frequently Sampled In-
travenous Glucose Tolerance (FSIGT). An amount of 
glucose was injected at t = 0 over a period of time equal 
to 60 seconds [8-10,27]. The blood samples were taken 
from a fasting subject at regular intervals of time, and 
then analyzed for glucose and insulin content. Glucose 
was measured in triplicate by the glucose oxidize tech-
nique on an automated analyzer. The coefficient of vari- 
ation of a single glucose determination was about ± 
1.5%. Insulin was measured in duplicate by radioimmu-
noassay, with dextrin-charcoal separation using a human 
insulin standard. Table 1 shows the FSIGT test data for a 
normal individual. 

2.3. Model Simulation 

Implementation of the minimal model can be achieved 
by using computer simulation tools. The two differential 
Eqs.1 and 2 of the minimal model that correspond to the 
glucose kinetics are modeled here by using the MAT-
LAB/Simulink software. In this model, the insulin  I t  
is considered as an input and the glucose  G t  as an 
output. The values of the input  I t  at a time interval 
are given in Table 1. The simulation diagram of the 
minimal model for the glucose kinetic is shown in Fig-
ure 1. The output of the system, glucose  G t , is 

Table 1. FSIGT test data for a normal individual. 

Sampling time
(minutes) 

Glucose level 
(mg/dL) 

Insulin level
(µU/mL) 

0 
2 
4 
6 
8 

10 
12 
14 
16 
19 
22 
27 
32 
42 
52 
62 
72 
82 
92 
102 
122 
142 
162 
182 

92 
350 
287 
251 
240 
216 
211 
205 
196 
192 
172 
163 
142 
124 
105 
92 
84 
77 
82 
81 
82 
82 
85 
90 

11 
26 
130 
85 
51 
49 
45 
41 
35 
30 
30 
27 
30 
22 
15 
15 
11 
10 
8 

11 
7 
8 
8 
7 

 
shown in Figure 2 for a normal individual with the fol-
lowing parameters: P1 = 3.082 × 10–2, P2= 2.093 × 10–2, 
P3 = 1.062 × 10–5, G0 = 350, Gb = 92, Ib = 11, [8-10]. 

3. PARAMTERS ESTIMATION 

3.1. Parameter Estimation 

Parameter estimation is to determine the values of model 
parameters that provide the best fit to measured data, based 
on some error criteria such as least-squares. The method of 
least squares assumes that the best-fit curve of a given set of 
data is the curve that has the minimal sum of the deviations 
squared from a given set of data [28-31]. Given a set of data 
(x1, y1), (x2, y2), (x3, y3),    , (xN, yN), where the independent 
variable is x and the dependent variable is y, under a se-
lected model function form  f x  the least squares (LS) 
estimation seeks to minimize 

  2

1

N

i i
i

y f x


                  (5) 

When the function is an m-th degree polynomial 

  2
0 1 2

m
mf x a a x a x a x               (6) 
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i
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y a a x a x a x




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        




   (7) 

The unknown coefficients 0 1 2, , , , ma a a a   , can be 
estimated to yield a least squares error.  
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Figure 1. Simulation diagram of the glucose kinetic model. 
 

 
Figure 2. The output of the minimal model for the glucose 

kinetics 

 
Model parameters can be obtained iteratively to re-

duce computational complexity. It starts with an initial 
guess of the unknown parameters. Each iteration updates 
the current estimate based on new observations. Suppose 
there are m base functions 1 2,  , , mf f f    of n parameters 

1 2,  , , np p p   . The functions and the parameters can be 
represented as follows: 

 
 

T
1 2

T
1 2

,  , ,

,  , ,

m

n

f f f

p p p

 

  

f

p
               (8) 

The least square method is to find the values of the 

unknown parameters 1 2,  , , np p p    for which the cost 
function is minimum, i.e. 

   T 2

1

1 1

2 2

m

i
i

S f


  P f f p          (9) 

The Levenberg-Marquardt algorithm is an iterative 
technique that seeks the minimum of a multivariate 
function that is expressed as the sum of squares of 
nonlinear real-valued functions [28]. It has become a 
standard technique for nonlinear least-squares problems. 
Levenberg-Marquardt can be thought of as a combina-
tion of steepest descent and the Gauss-Newton method. 
When the current solution is far from the correct one, the 
algorithm behaves like a steepest descent method which 
is guaranteed to converge. When the current solution is 
close to the correct solution, it becomes a Gauss-Newton 
method. 

The Levenberg-Marquardt algorithm is an iterative 
procedure. Let  ˆ fx p  be the parametrized model 
function. The minimization starts after an initial guess 
for the parameter vector p is provided. The algorithm is 
locally convergent, namely it converges when the initial 
guess is close to the true values. In each iteration step, 
the parameter vector p  is updated by a new esti- 
mate p , where   is a small correction term that can 
be determined by a Taylor Series expansion which leads 
to the following approximation: 

   p pf f   p p J            (10) 
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where, J  is the Jacobian of f  at p  

 f



p

J
p

                 (11) 

Levenberg-Marquardt iterative initiates at the starting 
point 0p , and produces a series of vectors 1 2 3,  ,p p p  
etc, that converge towards a local minimizer p  of f . 
At each step, it is required to find the   which mini-
mizes the value of 

   p pf f     x p x p J  

That gives the following: 

  ˆp p pf e        x p x x J J    (12) 

where p  is the solution to a linear least squares prob-
lem. The minimum is achieved when the term p eJ  
is orthogonal to column space J. Based on that, the fol-
lowing can be concluded 

 T 0p e J J               (13) 

Eq.13 can be rearranged as the following 

 T T
p e e J J J             (14) 

The Levenberg-Marquardt algorithm solves a slight 
variation of Eq.14, which is known as the augmented 
normal equation 

T
p eN J                    (15) 

where the diagonal elements of N are computed 
as T

ii ii
    N J J for 0  , while the rests of the 

matrix N are identical to those of the matrix T  J J .   
is called the damping parameter. If the updated parame-
ter vector, pp , where p  is computed from Eq.15, 
yields a reduction in the residual value or error e, then 
the update is valid and the process repeats with a de-
creased damping parameter  . Otherwise, the damping 
parameter is increased and the augmented normal Eq.15 
is solved again. Then the process iterates until a value of 

p  that reduces error is found. The MATLAB Software 
has the Optimization Toolbox which has a command 
called Lsqnonlin for this algorithm. 

This algorithm is applied to our problem here. The 
FSIGT data sample in Table 1 consists of 24 samples. 
The FSIGT samples were taken over a period of 182 
minutes. The unknown parameters of the minimal model 
Eq.1, Eq.2, Eq.3 were estimated by utilizing the Le- 
venberg-Marquadrt Algorithm. The parameters to be es- 
timated were given an initial guess, then the algorithm 
was used to update the parameters using the sequential 
data in Table 1. A MATLAB program was written to 
estimate the unknown parameters. The estimated values 
of those parameters are shown in Table 2. 

Table 2. Estimated Parametres. 

Parameters
Normal 

Individual #1 
Normal 

Individual #2
P1 
P2 
P3 
n 
γ 
h 

G0 
I0 

0.032299 
0.0092644 

5.3004e–006 
0.29858 

0.0068676 
90.3709 

295.6801 
401.7177 

0.049519 
41.5953 

1.8577e–004 
0.14653 

1.0113e–005 
196.0531 

318.84 
203.2434 

 
The values of the parameters shown in Table 2 were 

implemented in the simulation diagram of the minimal 
model shown on Figure 1. The values of the glucose 
levels of both individuals are shown in Table 3. 

The graphs of both experimental and simulated data 
for normal individual #1 and #2 are shown in Figure 3 
and Figure 4 respectively. 

These plots show that the two graphs (experimental 
and simulated) are close to each other, leading to the 
conclusion that the estimated values of parameters are 
close to the actual values. In general, the relative errors 
indicate how good an estimate is, relative to the true 
values. Although absolute errors are useful, they do no 
necessarily give an indication of the importance of an 
error. If the experimental value is denoted by G , and 
the estimated (or simulated) value is denoted by G , 
then the relative error is defined as 

Relative Error 
ˆG G

G


              (16) 

 
Table 3. Simulated data for normal individuals #1 and #2. 

Normal Individual 
#1 

Normal Individual 
#2 

Sampling time 
during the test 

(minutes) Glucose Level 
(mg/dL) 

Glucose Level 
(mg/dL) 

0 
2 
4 
6 
8 

10 
12 
14 
16 
19 
22 
27 
32 
42 
52 
62 
72 
82 
92 
102 
122 
142 
162 
182 

94 
295.6801 
282.1308 
268.2993 
254.8580 
242.1020 
230.1353 
218.9702 
208.5776 
198.9116 
185.6659 
173.7810 
156.6159 
142.2917 
120.5167 
105.8327 
96.35277 
90.67314 
87.73594 
86.65621 
86.77255 
89.03143 
92.55181 
95.65837 

94 
318.84 

297.2223 
277.7749 
260.2561 
244.4545 
230.1878 
217.2973 
205.6436 
195.1034 
181.1443 
169.1246 
152.6775 
139.8434 
122.0036 
111.1272 
104.4947 
100.4500 
97.98329 
96.47894 
95.56149 
94.66075 
94.32573 
94.20113 
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Figure 3. Plot of glucose level G(t) for normal individual #1. 
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Figure 4. Plot of glucose level G(t) for normal individual #2. 
 

And the Square Relative Error can be expressed as  

Square Relative Error 

2ˆG G

G

 
   
 

              (17) 

When the data is sampled over a certain period of time, 
the mean squared relative error (MSRE) can be used. 
The MSRE is defined as 

2

1

ˆ1
MSRE ,  for 1,  2, ,

n
i i

i i

G G
i n

n G

 
     

 
     (18) 

where 
i

G  is the experimental value at sample i. ˆ
i

G  is 
the estimated value at sample i. n is the number of sam-
ples of a data set. 

The Square Relative Error between the experimental 
data and the simulated data of the glucose level for indi-
vidual #1 and # 2 are calculated and shown in Table 4 
and Table 5 respectively. Normally the Mean Square 
Relative Error is expressed in percentage format. Below 
is the percentage error for both individuals: the percent- 

Table 4. Error data for normal individuals #1. 

Experimental
Data, G(t) 

Simulated 

Data, ˆ ( )G t  

Square Relative
Error 

94 
298 
284 
272 
253 
248 
235 
217 
208 
205 
191 
172 
164 
141 
132 
120 
116 
108 
106 
104 
105 
109 
107 
110 

94 
295.6801 
282.1308 
268.2993 
254.8580 
242.1020 
230.1353 
218.9702 
208.5776 
198.9116 
185.6659 
173.7810 
156.6159 
142.2917 
120.5167 
105.8327 
96.35277 
90.67314 
87.73594 
86.65621 
86.77255 
89.03143 
92.55181 
95.65837 

0 
6.060466e–005 

4.3317e–005 
0.0001851148 
5.393524e–005 
0.0005656016 
0.0004285321 
8.243416e–005 
7.710311e–006 
0.0008820624 
0.0007799362 
0.0001072176 
0.002027272 

8.391868e–005 
0.007568141 
0.01393832 
0.0286871 
0.02573902 
0.02968814 
0.02781129 
0.03013514 
0.03356148 
0.01823304 
0.01699855 

 
Table 5. Error data for normal individuals #2. 

Experimental
Data, G(t) 

Simulated 

Data, ˆ ( )G t  

Square Relative
Error 

94 
320 
303 
289 
272 
258 
244 
223 
205 
194 
182 
169 
152 
139 
122 
112 
105 
100 
98 
97 
97 
95 
94 
93 

94 
318.84 

297.2223 
277.7749 
260.2561 
244.4545 
230.1878 
217.2973 
205.6436 
195.1034 
181.1443 
169.1246 
152.6775 
139.8434 
122.0036 
111.1272 
104.4947 
100.4500 
97.98329 
96.47894 
95.56149 
94.66075 
94.32573 
94.20113 

0 
1.314063e–005 
0.0003635986 
0.001508629 
0.001864179 
0.002756472 
0.003204405 
0.0006539557 
9.857924e–006 
3.235126e–005 
2.210359e–005 
5.439401e–007 
1.986409e–005 
3.681781e–005 
8.715616e–010 
6.073247e–005 
2.315634e–005 
2.024906e–005 
2.909034e–008 
2.88559e–005 
0.0002199282 
1.275242e–005 
1.200794e–005 
0.0001668063 

 
age MSRE for individual # 1 = 0.99028%; the percent-
age MSRE for individual # 2 = 0.04596%. 

3.2. Model Linearization 

Now let us recall the four differential Eqs.1-4 that define 
the proposed mathematical model and denote them as 
 1f G ,  2f x ,  3f I , and  4 1f U . The result is 
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       1 1 1

d

d b

G t
f G P x t G t PG

t
              (19) 

       2 2 3

d

d b

x t
f x P x t P I t I

t
                (20) 

         3 1

d

d

I t
f I nI t G t h t U t

t
           (21) 

        1
4 1 1

d 1

d

U t
f U U t U t

t a
               (22) 

The above equations can be written and arranged as 
follows. 

The above equations can be further simplified as 

       1 1 1 bf G PG t x t G t PG              (23) 

     2 2 3 3 bf x P x t P I t P I                 (24) 

       3 1f I nI t tG t ht U t              (25) 

     4 1 1

1 1
f U U t U t

a a
                  (26) 

The above system is a nonlinear system due to the 
presence of the nonlinear term that appears in Eq.23. 
The nonlinear term is    x t G t . Now let us make the 
following definitions 

               1 2 3 4 1, , ,x t G t x t x t x t I t x t u t     

Then Eqs.23 to 26 become 

       1
1 1 1 2 1

d

d b

x t
P x t x t x t PG

t
             (27) 

     2
2 2 3 3 3

d

d b

x t
P x t P x t P I

t
              (28) 

       3
1 3 4

d

d

x t
tx t nx t x t ht

t
            (29) 

     4
4

d 1 1

d

x t
x t u t

t a a
                   (30) 

The Jacobian matrices (  xJ  and  uJ ) of the model 
can be derived as 

1 2 1

2 3

0 0

               0        0

       0                         0
                     0             1

1
       0               0        0    

, 

x

P x x

P P

t n

a x x u u

   
  

  
 
     

J  

and 

0 0

0

0
 0

1

, 

u

a x x u u

 
 
 

  
 
 
    

J                         (31) 

where the point (x0, u0) is the equilibrium point. The 
equilibrium point can be calculated by setting the state 
equations to zero and solving 

1 10 10 20 1 0bP x x x PG                (32) 

2 20 3 30 3 0bP x P x P I                 (33) 

10 30 40 0tx nx x ht                (34) 

40 0

1 1
0x u

a a
                      (35) 

where x10, x20, x30, x40 and u0 are the values of the state 
variables and the input at the operating point (i.e. the 
equilibrium point). At the equilibrium point, u0 = 0,  

Eq.35 becomes 40

1
0x

a
  , that gives 

x40 = 0                    (36) 

Substituting the value of x40 in Eq.34 results in 

10 30 0tx nx ht     and 

 10
30

x h t
x

n


             (37) 

The value of x30 can be substituted in Eq.33 

 10
2 20 3 3 0b

x h t
P x P P I

n


     

to obtain 

3 10 3 3
20

2 2 2

bP tx P th P I
x

P n P n P

 
          (38) 

Now, by substituting the value of 20x in Eq.32 we have 

 23 3 3
10 1 10 1

2 2 2

0b
b

P t P th P I
x P x PG

P n P n P

  
       

 
 (39) 

The above equation is a 2nd order equation and can be 
solved by using the quadratic formula 

2

10

4

2

b b ac
x

a

  


            (40) 

where 3 3 3
1 1

2 2 2

, ,b
b

P t P th P I
a b P c PG

P n P n P

 
         

There are 2 possible values of x10. Since x20 and x30 are 
expressed in term of x10, there will be 2 possible values 
for each. Based on that, the controllability test will be 
studied to check which value of x10 is accepted. 

3.3. A Case Study 

The simulation diagram shown in Figure 1 was used to 
simulate the data of a diabetic patient. The value of the 
parameters for a diabetic patient is shown below. P1 = 0, 
P2 = 0.81/100, P3 = 4.01/1000000, I0 = 192, G0 = 337,  
= 2.4/1000, h = 93, n = 0.23, a = 2, Gb = 99, Ib = 8, [10]. 
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The output of the simulated system is shown in Figure 5. 
By examining Figure 5, it can be clearly seen that the 
glucose level does not come down to the basal level after 
injecting an amount of 337 mg/dL of glucose inside a 
diabetic patient. Figure 5 shows that the level of the 
glucose inside a diabetic patient decreases for the first 
100 minutes, starts increasing afterward, and reaches the 
value of around 310 mg/dL after 3 hours from the time 
the glucose was injected. The goal is to bring down the 
value of the glucose inside a diabetic patient to the nor-
mal level or at least into a small neighborhood of the 
basal level. The above goal can be achieved by design-
ing a PID feedback controller. The controller is to regu-
late the infusion rate and inject the required amount of 
the insulin inside the diabetic patient, and in turn the 
insulin will work inside the patient to bring down the 
level of glucose to the normal level or at least to the 
neighborhood of the normal level. 

4. CONTOL DESIGN 

We start with a linearized state space model for our sys-
tems. The general form of the state space is defined in 
the following equation: 

    

    

x x u

y x u

 
 

A B

C D


              (41) 

The proposed mathematical model at the equilibrium 
point (x0, u0) can be written in the state space form as 
shown below: 

1 20 10

2 3

            0        0 0

       0                           0 0
   0                      0             1

11
       0                0        0     

P x x

P P
x xt n

aa



     
      

    
   
       



 1      0        0       0  

u

y x






  (42) 

 

 
Figure 5. Output of the simulated system for diabetic. 

where u is the input and y is the output of the system. 
The data of a diabetic person shown in Section 3.3 was 
used and the equilibrium point (x0, u0) was calculated as 
time varies from t = 1 min to t = 182 min. The two val-
ues for x10 that were calculated before were substituted 
in Eq.42 and the controllability test was performed. It 
was found that only one value (the one obtained from the 
sign) makes the system to be controllable, hence only 
this value is used in the subsequent development. 

4.1. Design of PID Controllers for Diabetic  
Patient 

When designing a controller, the designer must define 
the specifications that need to be achieved by the con-
troller. Normally the maximum overshoot (Mp) of the 
system step response should be small. Commonly a 
range between 10% and 20% is acceptable. Also the set-
tling time (ts), is an important factor. The objective here 
is to design a PID controller, so that the closed-loop sys-
tem has the following specifications: small steady-state 
error for a step input; less than 10% overshoot; settling 
time less than 60 minutes. 

The patient dynamic system was expressed in the state 
space representation in (42). For an overshoot less than 
10%, a damping ratio must be greater than 0.59, and a 
settling time less than 60 minutes implies that  n  
must be greater than 0.067.  

The PID Controllers can be designed based on the 
models at different operating points. The following list 
contains the models at t = 1, 20, 40, 60, 90, 120, 150 and 
182 minutes, and the corresponding PID controllers. 
Since B and C do not change with time, they are fixed in 
all cases as: 

 

0

0
   and    1      0        0       0  

0

0.5

 
 
  
 
 
 

B C  

The control design is done by applying the root locus 
method and then evaluated by using the step response. 
For example, if the model at t = 1 min is used, after sub-
stituting the above numerical values (42), the root locus 
plot can be generated by the Matlab functions 

MATLAB Program  
Plotting the open loop system Root locus  
using MATLAB 
[num, den] = ss2tf(A,B,C,D]; 
rlocus(num, den) 
axis([–0.6  0.1  –0.5  0.5]) 
sgrid(0.59,0) 
sigrid(0.067) 
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The open loop poles are shown in Figure 6. These 
poles are located at –0.0040 + 0.0045j, –0.0040 – 
0.0045j, –0.2302, –0.5. The four poles are stable, but the 
first two poles are very close to the imaginary axis and 
hence represent the slowest dynamics. The controller 
takes the form  

    1 2K S z S z
Gc S

S

 
  

where K is the value of the gain where the root locus 
intersects with the line of the damping ratio. The z1 and 
z2 represent the value of the zeros to be added and may 
be selected to cancel the slowest poles of the dynamic 
system. Hence, select z1 = –0.004 + 0.0045j, z2 = –0.004 
– 0.0045j.  

The controller is * (please see the equation below) 
resulting in the system matrix A and the PID controller 
as 

1

0             859.6667         0                        0

0             0.0081           0.00000401          0
 

0.0024           0                 0.23                 1

0                    0     







A

 
 2

1

,

              0                  0.5

0.008 0.00003625
C

K S S
G S

S

 
 
 
 
 

 

 


 

The PID Parameters are:  
4 0.0444,   2.0094 10 ,  5.59p i dK K K     

The design specifications of the system require the 
maximum overshoot to be less than 10% and the settling 
time to be less than 60 minutes. After inserting the PID 
controller in series with the patient system and connect-
ing them in a unity feedback, we get the maximum 
overshoot 5.71% and the settling time 47.5 minutes (see 
Figure 7). 

t = 20 minutes: 

20

0             131.33            0                           0

0             0.0081         0.00000401              0
  

0.048             0                0.23                   1

0                







A

 
 2

20

,

     0                 0                     0.5

0.0076 0.0001
C

K S S
G S

S

 
 
 
 
  

 


 

The PID Parameters are: 

 = 0.2160,   0.0031,   = 28.4p i dK K K  

 

Figure 6. Output of the simulated system for Root Locus. 

 

 

Figure 7. Output of the unit step response, using the model at 
t= 1 minute with K = 5.5. 

 

t = 40 minutes: 

40

0             112.17             0                         0

0             0.0081        0.00000401            0
 

0.096             0            0.23                       1

0                    







A

 
 2

40

,

0                   0                  0.5

0.0072 0.0002
C

K S S
G S

S

 
 
 
 
 

 

 


 

The PID Parameters are:  

= 0.2374,   0.0061,  = 32.7p i dK K K  

*  
     0.0040 0.0045 0.0040 0.0045K S j S j

Gc S
S

     
  
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t = 60 minutes: 

60

0             105.78              0                        0

0             0.0081        0.00000401             0
 

0.1440             0            0.23                     1

0                     







A

 
 2

60

,

 0                 0                 0.5

0.007 0.0003
C

K S S
G S

S

 
 
 
 
 

 

 


 

The PID Parameters are: 

4 0.0444,   2.0094 10 ,  5.59p i dK K K     

t = 90 minutes: 

90

0             101.52              0                         0

0             0.0081         0.00000401             0
 

0.2160             0            0.23                      1

0                  







A

 
 2

90

,

    0                 0                 0.5

0.0064 0.0004
C

K S S
G S

S

 
 
 
 
 

 

 


 

The PID Parameters are: 

 = 0.2331,    0.0138,   = 36.4p i dK K K  

t = 120 minutes: 

120

0             99.39              0                        0

0             0.0081       0.00000401             0
 

0.288             0            0.23                      1

0                    0 







A

   2

120

,

                0                  0.5

0.0058 0.0005
C

K S S
G S

S

 
 
 
 
  

 


 

The PID Parameters are: 

 = 0.2234,   0.0187,   = 37.9p i dK K K  

t = 150 minute: 

150

0             98.11              0                        0

0             0.0081      0.00000401             0
 

0.36               0            0.23                     1

0                    0  







A

 
 2

150

,

                0                0.5

0.0054 0.0006
C

K S S
G S

S

 
 
 
 
 

 

 


 

The PID Parameters are: 

= 0.2032,  0.0229,   = 37.7p i dK K K  

t = 182 minute: 

182

0              97.21              0                       0

0              0.0081      0.00000401            0
 

0.4368           0            0.23                      1

0                    0  







A

 
 2

182

,

               0                 0.5

0.0048 0.0007
C

K S S
G S

S

 
 
 
 
 

 

 


 

The PID Parameters are: 

= 0.1870,    0.0281,   = 38.5p i dK K K  

4.2. Individual PID Controllers 

Non-adaptive PID controllers use a fixed PID controller 
for the entire control period and rely on its robustness to 
maintain control performance. For each individual PID 
controller (with its transfer function found in the previ-
ous subsection for t = 1, 20, 40, 60, 90, 120, 150 and 
182 min) the simulation results on  G t  and  u t  are 
shown below in Figures 8-15. 

Under the individual PID controllers, the output 
 G t , the glucose level, did not really meet the design 

specification, and the glucose level is not near or at least 
in a small neighborhood of the glucose basal level. The 
overshoot of the system was too high and beyond the 
acceptable level. Also the settling time was not even 
close to where it should be as per the design requirement. 
And the steady state error was not satisfactory. A new 
method should be developed and implemented to meet 
all the design specifications. This method is explained in 
detail in the following section. 

4.3. Switched PID Controllers 

The individual PID controllers could not lower the glu-
cose level  G t  of the patient to the neighborhood of 
the glucose basal level. Consequently, we introduce a 
new control-switching scheme that adapts controllers to 
meet design specifications. The switching control con-
sists of the following items: One “time clock,” one 
“switch case” block, one “if action case” block, one 
“merge” block, and eight “off-on switches.” All these 
blocks are connected together to form the wiring dia-
gram of the Control-Switching Scheme. 

The functions of the control switching scheme is de-
tailed in Figure 16. The “Time Clock” is to provide the 
“Switch Case” block with time as a signal input to acti-
vate it. 

The “Switch Case” block receives a single input from 
the clock, which it uses to form case conditions that de-
termine which subsystem to execute. Each output port 
case condition is attached to a Switch Case Action sub- 
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Figure 8.  G t  and  u t  using 1
CG . 

 

 

Figure 9.  G t  and  u t  using 20
CG . 

 

 

Figure 10.  G t  and  u t  using 40
CG . 
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Figure 11.  G t  and  u t  using 60
CG . 

 

 

Figure 12.  G t  and  u t  using 90
CG . 

 

 

Figure 13.  G t  and  u t  using 120
CG . 
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Figure 14.  G t  and  u t  using 150

CG . 

 
Figure 15.  G t  and  u t  using 182

CG . 

 
Figure 16. Control-Switching Scheme Simulation Diagram. 
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system. The cases are evaluated top-down, starting with 
the top case. If a case value corresponds to the actual 
value of the input, its Switch Case Action subsystem is 
executed. The “Switch Case” model is divided into eight 
time interval zones as shown in Table 6. 

The “If Action Case” block consists of eight “If- Ac-
tion Subsystem.” The “If-Action Case” implements Ac-
tion Subsystems used in if-statement and switch control 
flow statements. Action Subsystems execute their pro-
gramming in response to the conditional outputs of an 
If-statement or Switch Case block. A schematic diagram 
of the “If Action Case” block is shown in Figure 17. The 
“Merge” block combines its inputs into a single output 
line whose value at any time is equal to the most re-
cently computed output of its driving blocks. The num-
ber of inputs can be specified by setting the block’s in-
puts parameter. The “Off-On Switches” are used to turn 
the PID controllers OFF or ON. 

In general when the time clock is running, it feeds the 
“Switch Case” block with an input signal which in turn 
switches on the “If-Action Case” block as per the time 
interval that was specified in Table 6. Based on the 
status of the “If-Action Case”, a specific PID controller 
will be turned on and executed to control the output of 
the system. 

For zone 1, the time interval is between 0 - 1 minute, 
during this period of time the “Switch Case” is enabling 
input “In9” of the “If-Action Case”. When input “In9” is 
enabled, it will only execute the input “In1” to the output 
“Out1”. The input “In1” is connected to the first PID  

Controller. That means only the first PID Controller, 
(PID Controller 1), is working. At the end of the first 
minute, the “Switch Case” will switch to zone 2 which 
runs from the beginning of the minute number 2 and will 
last until the end of the minute number 20. During this 
period of time, the “Switch Case” is enabling input 
“In10” of the “If-Action Case”. When input “In10” is 
enabled, it will only execute the input “In2” to the output 
“Out2”. The input “In2” is connected to the second PID 
Controller. That means only the second PID Controller, 
(PID Controller 20), is working. The same procedure 
will be followed until the “Switch Case” switches be-
tween the eight time zones that were specified in Table 6. 
In turn the PID Controllers will be executed based on the 
status of the “If-Action Case”. 

The Control-Switching Scheme Diagram shown in 
Figure 16 was simulated with all the PID controllers 
executed (connected to the circuit). The output  G t  of 
the system is shown in Figure 18. It can be clearly seen 
that the PID controllers are able to bring the glucose 
level from 337 mg/dL to the basal level (99 mg/dL) 
within 40 minutes. But in about 70 minutes the value of 
the glucose starts going below the basal level, and it  

Table 6. Swithing Time Interval. 

Zone 
number

Time Interval 
(minutes) 

1 0 - 1 
2 2 - 20 
3 21 - 40 
4 41 - 60 
5 61 - 90 
6 91 - 120 
7 121 - 150 
8 150 - 182 

 
went further below the minimum value that the glucose 
can be at. In this case the person will be classified as a 
patient with the hypoglycemia (low sugar), and that is 
not acceptable. 

The Control-Switching Scheme Diagram was then 
simulated in which all the PID controllers are executed 
except the eighth PID Controller 182

CG . The graph of the 
output,  G t  of the system is shown in Figure 19. It 
can be seen the same problem still exists. Again in this 
case the person will be classified as a patient with the 
hypoglycemia.  

The same procedure was repeated but with all the PID 
controllers executed except the PID Controllers 150

CG  
and 182

CG  with the graph of the output shown in Figure 
20; and excluding 120

CG , 150
CG , and 182

CG  with the 
simulation result shown Figure 21. Again in both cases 
the person will be classified as a patient with the hypo-
glycemia. 

When we exclude 90
CG , 120

CG , 150
CG , and 182

CG , the 
output  G t  of the system, shown in Figure 22,. 
reaches the glucose basal level (99 mg/d/L) within 40 
minutes,  and it stays in that neighborhood. The input 
of the PID Controller system is shown in Figure 23. 

For verification, the same control strategy is evaluated 
on patient #2. Following the same modeling procedure 
that was performed for the diabetic patient #1, the model 
parameters are identified as P1 = 0, P2 = 0.42/100, P3 = 
2.56/1000000, I0 = 209, G0 = 297,  = 3.72/1000, h = 
154, n = 0.22, a = 2, Gb = 100, Ib = 8, [10]. 

Without control, the above data was implemented in 
model simulation. The output of the simulation diagram 
is shown in Figure 24, which shows that without proper 
control the glucose level does not come down to the 
basal level after injecting an amount of 297 mg/dL of 
glucose inside a diabetic patient. The level of the glucose 
inside a diabetic patient decreases for the first 120 min-
utes and starts increasing afterward and reaches the 
value of about 270 mg/dL after 3 hours from the time the 
glucose was injected. 

The same control-switching scheme that was per-
formed for diabetic patient #1 is repeated for diabetic 
patient #2. The values of the parameters for the first four 
PID controllers (at t =1, 20, 40 and 60 minutes) are  
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Figure 17. “If Action Case” system and PID controller switching function module. 
 

summarized in Table 7. 
The control-switching scheme was simulated for dia-

betic patient #2 by using only the first four PID control-
lers. The output  G t  of the system is shown in Figure 
25. The output  G t  reaches the glucose basal level 

(100 mg/d/L) within 60 minutes and it stays in that 
neighborhood. The graph of the input of the PID Con-
troller system is shown in Figure 26. 
Based on the simulation results, although adaptive con-

trol can potentially improve control performance, it is  



A. Hariri et al. / J. Biomedical Science and Engineering 4 (2011) 297-314 

Copyright © 2011 SciRes.                                                                            JBiSE 

312 

 

Figure 18. Plot of G(t) when all PID Controllers are executed. 

 

 
Figure 19. Plot of G(t) when all PID Controllers except con-
troller 182

CG  are executed. 

 

 
Figure 20. Plot of G(t) when all PID Controllers except con-
troller 150

CG  and 182
CG  are executed. 

 
Figure 21. Plot of G(t) when all PID Controllers except 
controller 120

CG , 150
CG  and 182

CG  are executed. 

 

 
Figure 22. Plot of G(t) when all PID Controllers except 
controller 90

CG , 120
CG , 150

CG and 182
CG  are executed. 

 

 
Figure 23. Plot of u(t) when all PID Controllers except 
controller 90

CG , 120
CG , 150

CG and 182
CG  are executed. 
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Figure 24. Output of the Simulation Diagram for diabetic pa-
tient #2. 

 

 
Figure 25. Plot of G(t) when PID Controllers 1, 20, 40 and 60 
are executed. 
 

 
Figure 26. Plot of u(t) when PID Controllers 1, 20, 40 and 60 
are executed. 

Table 7. PID Controller for diabetic patient #2. 

PID Controllers Parameters 

 PID at 
t = 1 min 

PID at 
t = 20 min 

PID at 
t = 40 min 

PID at 
t = 60 min

Kp 0.0412 0.1069 0.0868 0.0768 
Ki 2.7402×10-4 0.0047 0.0086 0.014 
Kd 10.1 30.6 33.1 33.6 

 

sometimes unnecessary, or even harmful when swit- 
ching overly frequently. Our results show that when the 
switching scheme is limited to the first four PID con-
trollers, the performance is in fact enhanced. This may 
be related to the fact that some PID controllers are more 
robust with respect to the model variations. On the other 
hand, in comparison to individual controllers, the con-
trol-switching scheme achieves design specification 
while all individual controllers fail to deliver the re-
quired performance. 

5. CONCLUSIONS 

This study reveals that typical PID controllers may not be 
sufficient to deliver satisfactory control performance in 
glucose level control problems. This is mainly due to the 
nonlinear nature of patient dynamic models and limited 
robustness of the PID controllers. An adaptive control that 
switches controllers based on operating conditions can 
potential enhance control performance. However, the 
switching control scheme must be carefully designed to 
ensure that control specifications be met. Our results show 
that overly frequent switching of controllers may have 
detrimental effects on control performance. We show that 
by reducing the number of PID controllers in the switch-
ing scheme, not only control complexity is reduced, but 
performance is actually enhanced. 

 

REFERENCES 

[1] Karam, J.H., Grodsky, G.M. and Forsham, P.H. (1963) 
Excessive insulin response to glucose in obese subjects 
as measured by immunochemical assay. Diabetes, 12, 
196-204. 

[2] Ginsberg, H., Olefsky, J.M. and Reaven, G.M. (1974) 
Further evidence that insulin resistance exists in patients 
with chemical diabetes. Diabetes, 23, 674-678. 

[3] Reaven, G.M. and Olefsky, J.M. (1977) Relationship 
between heterogeneity of insulin responses and insulin 
resistance in normal subjects and patients with chemical 
diabetes. Diabetologia, 13, 201-206. 
doi:10.1007/BF01219700 

[4] Lerner, R.L. and Porte, D. (1972) Acute and steady state 
insulin responses to glucose in nonobese, diabetic sub-
jects. Journal of Clinical Investigation, 51, 1624-1631. 
doi:10.1172/JCI106963. 

[5] Reaven, G.M. (1980) Insulin-independent diabetes mellitus: 
Metabolic characteristics. Metabolism Clinical and Ex-



A. Hariri et al. / J. Biomedical Science and Engineering 4 (2011) 297-314 

Copyright © 2011 SciRes.                                                                            JBiSE 

314 

perimental, 29, 445-454. 
doi:10.1016/0026-0495(80)90170-5 

[6] Bergman, R.N. and Cobelli, C. (1980) Minimal modeling, 
partition analysis, and the estimation of insulin sensitivity. 
Federation Proceedings, 39, 110-115. 

[7] Shen, S-W., Reaven, G.M. and Farquhar, J.W. (1970) 
Comparison of impedance to insulin-mediated glucose 
uptake in normal and diabetic subjects. Journal of Clini-
cal Investigation, 49, 2151-2160. 
doi:10.1172/JCI106433. 

[8] Bergman, R.N., Ider, Y.Z., Bowden, C.R. and Cobelli, C. 
(1979) Quantitative estimation of insulin sensitivity. Ameri-
can Journal of Physiology, 236, E667-E677. 

[9] Pacini, G. and Bergman, R.N. (1986) MINMOD, A 
computer program to calculate insulin and pancreatic re-
sponsivity from the frequently sampled intravenous glu-
cose tolerance test. Computer Methods and Programs in 
Biomedicine, 23, 113-122 

[10] Bergman, R.N., Phillips, L.S. and Cobelli, C. (1981) 
Physiologic evaluation of factors controlling glucose tol-
erance in man, measurement of insulin sensitivity and 
-cell glucose sensitivity from the response to intrave-
nous glucose. Journal of Clinical Investigation, 68, 1456 
-1467. doi:10.1172/JCI110398 

[11] Bergman, R.N. and Urquhart, J. (1971) The pilot gland 
approach to the study of insulin secretory dynamics. Re-
cent Progress in Hormone Research, 27, 583-605. 

[12] Nomura, M., Shichiri, M., Kawamori, R., Yamasaki, Y., 
Iwama, N. and Abe, H. (1984) A mathematical insulin- 
secretion model and its validation in isolated rat pancre-
atic islets perifusion. Computers and Biomedical Re-
search, 17, 570-579. 
doi:10.1016/0010-4809(84)90021-1 

[13] Buchanan, T.A., Metzger, B.E., Freinkel, N. and Berg-
man, R.N. (1990) Insulin sensitivity and B-cell respon-
siveness to glucose during late pregnancy in lean and 
moderately obese women with normal glucose tolerance 
or mild gestational diabetes. American Journal of Ob-
stetrics and Gynecology, 162, 1008-1014. 

[14] Lynch, S.M. and Bequette, B.W. (2001) Estimation-based 
model predictive control of blood glucose in type i dia-
betics: A simulation study. IEEE Transations on Bio-
medical Engineering conferences, 79-80. 

[15] Fisher, M.E. (1991) A semi-closed loop algorithm for the 
control of blood glucose levels in diabetes. IEEE Transa-
tions on Biomedical Engineering conferences, 57-61. 

[16] Furler, S.M., Kraegen, E.W., Bell, D.J., Smallwood, R.H., 
and Chisolm, D.J. (1985) Blood glucose control by in-
termittent loop closure in the basal mode: Computer 
simulation studies with a diabetic model. Diabetes Care, 
8, 553-561. 

[17] Ibbini, M.S., Masadeh, M.A. and Amer, M.M.B. (2004) 
A semiclosed-loop optimal control system for blood glu-
cose level in diabetics. Journal of Medical Engineering 

& Technology, 28, 189-196. 
doi:10.1080/03091900410001662332. 

[18] Furler, S.M., Kraegen, E.W., Smallwood, R.H. and 
Chisholm, D.J. (1985) Blood glucose control by inter-
mittent loop closure in the basal mode: computer simula-
tion studies with a diabetic model. Diabetes Care, 8, 553- 
561. doi:10.2337/diacare.8.6.553 

[19] Insel, P.A., Liljenquist, J.E., Tobin, J.D., Sherwin, R.S., 
Watkins, P., Andres, R. and Berman, M. (1975) Insulin 
control of glucose metabolism in man. Journal of Clini-
cal Investigation, 55, 1057-1066. 
doi:10.1172/JCI108006 

[20] Grodsky, G.M. (1972) A threshold distribution hypothesis 
for packet storage of insulin and its mathematical mod-
eling. Journal of Clinical Investigation, 51, 2047-2059. 
doi:10.1172/JCI107011 

[21] Sherwin, R.S., Kramer, K.J., Tobin, J.D., Insel, P.A., 
Liljenquist, J.E., Berman, M. and Andres, R. (1974) A 
model of the kinetics of insulin in man. Journal of Clini-
cal Investigation, 53, 1481-1492. 

[22] Turner, R.C., Holman, R.R., Mathews, D., Hockaday, 
T.D.R. and Peto, J. (1979) Insulin deficiency and insulin 
resistance interaction in diabetes: Estimation of their 
relative contribution by feedback analysis from basal in-
sulin and glucose concentrations. Metabolism Clinical 
and Experimental, 28, 1086-1096. 
doi:10.1016/0026-0495(79)90146-X 

[23] Lerner, R.L. and Porte, D. (1971) Relationships between 
intravenous glucose loads, insulin responses and glucose 
disappearance rate. Journal of Clinical Endocrinology & 
Metabolism, 33, 409-417 

[24] Bolie, V.W. (1961) Coefficients of normal blood glucose 
regulation. Journal of Applied Physiology, 16, 783-788. 

[25] Guyton, A.C. and Hall, J.E. (1996) Text book of medical 
physiology, 9th Edition, Saunders. 

[26] The American Diabetes Association is a US leading non-
profit health organization providing diabetes research, 
information and advocacy since 1940. 

[27] Gaetano, A.D. and Arino, O. (2000) Mathematical mod-
eling of the intravenous glucose tolerance test. Journal of 
Mathematical Biology, 40, 136-168. 
doi:10.1007/s002850050007 

[28] Marquardt, D.W. (1963) An algorithm for least-squares 
estimation of non-linear parameters. Journal of the Soci-
ety for Industrial and Applied Mathematics, 11, 431-441. 
doi:10.1137/0111030 

[29] Goodwin, C. and Payne, R.L. (1977) Dynamic System 
Identification. Academic Press, Inc., New York. 

[30] Lourakis, M. (2005) A brief description of the leven-
berg-marquardt algorithm implemented by levmar. Insti-
tute of Computer Science, Foundation for Research and 
Technology. 

[31] De Groot, M.H. and Schervish, M.J. (2002) Probability 
and statistics. 3rd Edition, MA: Addison-Wesley, Boston. 

 


