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ABSTRACT 

In this work, we specify potential elements of the 
brain to sense and regulate the energy metabolism 
of the organism. Our numerical investigations base 
on neurochemical experiments demonstrating a 
biphasic association between brain glucose level 
and neuronal activity. The dynamics of high and 
low affine KATP channels are most likely to play a 
decisive role in neuronal activity. We develop a 
coupled Hodgkin-Huxley model describing the in-
teractive behavior of inhibitory GABAergic and 
excitatory dopaminergic neurons projecting into 
the caudate nucleus. The novelty in our approach is 
that we include the synaptic coupling of GABAergic 
and dopaminergic neurons as well as the interac-
tion of high and low affine KATP channels. Both 
are crucial mechanisms described by kinetic models. 
Simulations demonstrate that our new model is co-
herent with neurochemical in vitro experiments. 
Even experimental interventions with glibencla-
mide and glucosamine are reproduced by our new 
model. Our results show that the considered dy-
namics of high and low affine KATP channels may 
be a driving force in energy sensing and global reg-
ulation of the energy metabolism, which supports 
central aspects of the new Selfish Brain Theory. 
Moreover, our simulations suggest that firing fre-
quencies and patterns of GABAergic and dopa-
minergic neurons are correlated to their neuro-
chemical outflow. 

Keywords: Neuronal Model; Coupled Neurons; Dopa-
mine; GABA; K-ATP Channels; Biphasic; Glibencla-
mide; Glucosamine 

1. INTRODUCTION 

Neurochemical experiments show that extracellular glu-
cose level influences the neurochemical activity of neu-
rons. More precisely, Steinkamp and colleagues showed 
that decreasing glucose levels cause a neuronal biphasic 
response [1]. In their study, slices of the rat caudate nu-
cleus are examined in vitro in a superfusion chamber 
treated by artificial cerebrospinal fluid. The glucose lev-
el in the fluid varies from 0 to 10 mM while the dopa-
mine outflow is measured concomitantly. The effect of 
different glucose concentrations on dopamine and GA-
BA (γ-aminobutyric acid) outflow is investigated by 
means of high-performance liquid chromatography and 
electrochemical detection. We will focus on the neuro-
chemical mechanisms in Section 2.1. 

During glucose reduction from 10 to 0 mM, a biphasic 
effect on dopamine outflow can be observed, Figure 1(a). 
In the first phase (glucose concentration of 10 down to 7 
mM in the incubation medium), an increase in dopamine 
outflow is observed. This phase is followed by a decline 
of dopamine outflow at glucose concentrations from 6 
down to 0 mM. To investigate the modes of action, 
Steinkamp et al. repeated this experiment with three dif-
ferent interventions. 

First, they added glibenclamide in a concentration of 1 
µM to the cerebrospinal fluid changing the dopaminergic 
outflow, Figure 1(c). While dopamine outflow remains 
unchanged at high glucose levels, its outflow is reversed in 
the second phase (glucose levels lower than 4 mM). In a 
second intervention, Steinkamp and colleagues increased 
the glibenclamide concentration in the cerebrospinal fluid 
to 10 µM. Here, the effects of glucose variation on dopa-
mine is completely antagonized, both phases are annihi-
lated, Figure 1(d). The third intervention adds glucosa-
mine to the cerebrospinal fluid (5 mM). Here, biphasic 
dopamine outflow is completely abolished, Figure 1(b). 
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(a)                                                           (b) 

       
(c)                                                           (d) 

Figure 1. The effect of glucose reduction from 10 down to 0 mM on dopamine outflow in percent of basal level ± SD according to [1]. 
(a) Dopamine outflow under normal conditions. (b) Dopamine outflow in the absence (gray) and presence (black) of glucosamine (5 
mM). (c) Dopamine outflow in the absence (gray) and presence (black) of glibenclamide (1 µM). (d) Dopamine outflow in the absence 
(gray) and presence (black) of glibenclamide (10 µM). 
 

We present a new mathematical model to deepen the 
understanding of the experimental observations and the 
underlying neurochemical processes. Our model consists 
of a coupled Hodgkin-Huxley model focusing on the 
interaction between dopaminergic and GABAergic neu-
rons. Our model supports the plausibility of interacting 
KATP channels controlling the outflow of the neuro-
transmitters dopamine and GABA. Moreover, our model 
suggests that the firing frequencies and pattern of dopa-
minergic and GABAergic neurons are correlated to the 
actual outflow of dopamine and GABA. 

Before we present our model in Section 2.2, we ad-
dress the neurochemical basis in the following Section 
2.1. Section 3 shows our simulation results. We close our 
investigations with a discussion in Section 4. 

2. METHODS 

Before we develop our mathematical modeling, we in-
vestigate the underlying neurochemical mechanisms, 
describing the interaction and the signaling of dopa-
minergic and GABAergic neurons. 

2.1. Neurochemical Mechanisms 

Extracellular glucose passes cell membrane barriers of 
neurons via its specific glucose transporters, i.e., GLUT3 
located on neuronal membranes. GLUT3 is a passive glu-
cose transporter. Therefore, intra- and extracellular glucose 
concentrations are given by a diffusion process [2], and the 
transport is only driven by the concentration gradient. In 
the cytoplasm, glucose is instantly converted into glu-
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cose-6-phosphate and afterwards, decomposed to ATP 
(adenosine triphosphate) through glycolysis and respira-
tory chain. This mechanism provides ATP as the essential 
energy source for neurons, see Figure 2 (top left). 

KATP channels are divided into two classes. On the 
one hand, low affine KATP channels binding ATP only 
in high concentrations while, on the other hand, high 
affine KATP channels binding ATP even in low concen-
trations. These channels are heterogeneously distributed 
on various types of neurons. 

Open KATP channels are permeable for potassium 
ions (K+  ions) diffusing through the cell membrane 
along the electrochemical gradient. An increase in ex-

tracellular potassium leads to a hyperpolarization of the 
neuron, and action potentials cannot be generated. Intra-
cellular binding of ATP to nucleotide binding sites or 
extracellular binding of sulfonylurea to KATP channels 
cause these channels to close, and a depolarization of the 
neuron becomes likely. Thereby, ATP concentrations 
directly affect the neuronal activity via KATP channels. 

When an action potential occurs, the synapses of do-
paminergic neurons release dopamine as a neurotransmit-
ter whereas GABAergic neurons release GABA. It has 
been shown that low affine KATP channels are densely 
distributed on GABAergic neurons while high affine 
KATP channels are highly concentrated on dopaminergic  

 

 

Figure 2. Schematic representation of the neurophysiological model of interacting dopaminergic and GABAergic neurons (right) with 
magnification of the intra-neuronal pathways (top left) and of the interneuronal synapse (bottom left). 
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neurons [3,4]. Hence, dopaminergic neurons are more 
active at low ATP concentrations than GABAergic neu-
rons. 

The neurotransmitter GABA binds ionotropic GABAA 
receptors. Activated GABAA receptors lead to confor-
mation changes within the membrane, i.e., open pores 
allow chloride ions (Cl− ions) to pass along the electro-
chemical gradient. Typically, an influx of Cl− ions into 
the neuron occurs. Here, the neuron tends toward the 
resting potential. GABAA receptors are densely distrib-
uted on the post-synaptic membrane of dopaminergic 
neurons so that the GABAergic neurons modulate do-
pamine outflow by inhibition of dopaminergic activity. 
Evidence exists that systemic signal propagation from 
GABAergic onto dopaminergic neurons occurs in neu-
ronal networks, see Figure 2 (bottom left) [5]. 

In case of high extracellular glucose concentrations, 
low and high affine KATP channels bind ATP. Both 
neuron types fire and release their neurotransmitter. This 
implies a GABA mediated inhibition of dopamine out-
flow, which is regulated by extracellular glucose via 
high and low affine KATP channels. When extracellular 
glucose decreases, the ATP concentration in the cyto-
plasm drops and merely high affine KATP channels bind 
ATP causing these channels to close. The dopaminergic 
neurons release their neurotransmitter. Furthermore, the 
dopamine release is increased by reduced GABAergic 
activity. When the extracellular glucose concentration is 
further reduced, a decline of the neurotransmitter dopa-
mine can be observed. In this phase, neither high nor low 
affine KATP channels bind ATP, and the dopaminergic 
and GABAergic neurons aspire towards their resting 
potential. This interpretation leads to the biphasic ob-
servation shown in Figure 1(a). 

Glibenclamide extracellularly binds to sulfonylurea 
subunits of KATP channels resulting in a consecutive 
inhibition of the channels [6,7]. Hence, glibenclamide 
and intracellular ATP regulate the KATP channels in a 
similar manner. Adding a low concentration of gliben-
clamide to the cerebrospinal fluid now leads to an eleva-
tion of the dopaminergic outflow at low glucose concen-
trations, see Figure 1(c). Since this intervention corre-
sponds to a slightly elevated intraneuronal ATP concen-
tration, the effect is predominant at low extracellular 
glucose concentrations. Adding a high concentration of 
glibenclamide leads to a permanent inhibition of the 
KATP channels, and a constant dopaminergic outflow 
can be observed, see Figure 1(d). 

Glucosamine inhibits glucose phosphorylation by 
hexokinases and therefore blocks ATP production 
through glycolysis. Adding glucosamine leads to a re-
duction of the intracellular ATP concentration [8]. Hence, 
the biphasic dopamine outflow is completely abolished 
by adding glucosamine, see Figure 1(b). 

To systemically analyze the neurochemical interaction 
between GABAergic and dopaminergic neurons and to 
simulate the experiments, we now turn to a mathematical 
model of a coupled neuronal system. Various mathe-
matical models of single dopaminergic and GABAergic 
midbrain neurons have been investigated over the years. 
They range from single to multiple compartment models 
of single neurons, see [9,10,11,12]. A review on single 
dopaminergic neuron models by Kuznetsov et al. can be 
found online [13]. All of these detailed models base on a 
Hodgkin-Huxley type model and incorporate various 
currents and fluxes, such as T-, L-, and N-type calcium, 
potassium, hyperpolarization activated, and NMDA in-
duced currents. Despite their detailed modeling ap-
proaches most of these models fail to mirror realistic 
time series of synaptic stimulations [13,10]. These mod-
els aim to investigate electrophysiological behavior. We 
do not aim to model the precise neurochemical behavior 
and realistic time series of synaptic stimulations of mid-
brain dopaminergic and GABAergic neurons. Our focus 
is on the functional mechanism of glucose dependent 
neuronal activity and the synaptic coupling of GABAer-
gic and dopaminergic neurons rather than on a detailed 
electrophysiological description. These features are not 
covered and analyzed in previous dopaminergic and 
GABAergic neuronal models. Hence, previous models 
may not be considered to investigate functional mecha-
nism of glucose dependent neuronal activity. Here, we 
investigate a rather simple Hodgkin-Huxley type model 
to reduce ambiguity to massive number of parameters. 

2.2. Coupled Neuronal Model 

Based on the neurophysiologic mechanisms described in 
the last section, we present a mathematical model, which 
simulates the behavior of a neuronal network in the 
midbrain. More precisely, we investigate a Hodgkin- 
Huxley type model of synaptic coupled  GABAergic- 
dopaminergic neurons [14]. Hodgkin-Huxley type mod-
els describe how action potentials of a single neuron 
proceed in time. The model can be specified by the sys-
tem of differential equations 
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Here,  is the membrane potential and   is its de-
rivative in time,  is the capacitance, and 

V V
C NaI , KI  are 

the currents of sodium and potassium ion channels, re-
spectively. Furthermore, LI   is a leakage current while 

PI  is an externally applied current. The currents NaI , 

KI  and LI  can be described as a product of maximal 
conductance Nag , Kg  and Lg , voltage dependent gat-
ing variables m, n and h (with its derivatives ,   and 

) and deviation between actual membrane potential and 
its reversal potentials 

m n
h

NaV , KV  and LV . The gating 
variables , and  consist of functions mm n  h  , n , 

h  and m , n , h  reflecting the membrane potential 
dependent rate constants of channel opening and closing,
respectively. 

 

As for the constants, we choose typical values for 
GABAergic neurons given by literature [15]: 55NaV   

, mV 97 mVKV   , , 70mVLV   2mScm112Nag 
1μC

, 
, , 2224mScm

Kg  2g 0.1mScmL
 2Fcm  and 

P  representing the ion pumps and an ex-
ternally applied current (bias). The neuronal activity of a 
GABAergic neuron can be described by the Hodgkin- 
Huxley model (see equations above and compare Figure 3 
top).  

2μAcm10I 

As previously discussed, some potassium channels are 
ATP and therewith glucose dependent. In turn, KATP 

channel kinetics depends on the extracellular glucose 
concentration. We assume that the linear transformation 

 calculates the intra-neuronal ATP 
concentration 
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tration  (compare [16]). This transformation seems to 
be arbitrary at first sight. However, the observed glucose 
levels of 0 to 10 mM in the experimental superfusion 
system lead to intra-neuronal ATP concentrations of 33 to 
47 µM, the relevant range of KATP channel kinetics 
(compare [17]). Note the neurochemical experiment in-
cludes hyperphysiological glucose levels (see Section 1). 
In order to mathematically simulate the addition of glu-
cosamine, we modify the ATP production by glucose 
utilization, i.e., 

G

0.0A 014 0.033G   with 0.05  . 
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where ma  is the saturated closing rate of the KATP 
channels, A

xv
K  is the ATP concentration causing half- 

maximal channel closing, and H  is the Hill coefficient. 
We choose max 0.1v  ,  for low affine 
and  for high affine KATP channels and 

0.05mMAK 
0.02mMA K

1.8H   (compare [17]). The parameter   represents 
the addition of the KATP channel blocker glibenclamide. 
Without glibenclamide, we set 1  , 1.03   models 
a low glibenclamide concentration and 4   reflects 
adding a high glibenclamide concentration. 

Since the closing probability of the KATP channels de-
pends on the ATP concentration, we receive the follow-
ing modification of n for the GABAergic neuron 

/22.222( ; )0.025 V
n AA K e   . 

Here, we assume that KATP and voltage dependent po-
tassium channels interact. Hence, we model the closing 
rate n  as product of ATP and voltage dependent 
channels. The open probability is independent of ATP, 
and n  does not need to be modified. 

The same Hodgkin-Huxley model holds for the do-
paminergic neuron if we for once neglect the inhibitory 
effect of the GABAergic neuron. Taking the effect of the 
GABAA receptors on the dopaminergic neuron into ac-
count, we couple two Hodgkin-Huxley models. We in-
troduce the synaptic current GABA , which depends on the 
membrane potential V  of the GABAergic neuron (see 
first equation of equations above). It describes the in-
hibitory chemical connection between GABAergic and 
dopaminergic neuron. We use “~” to identify the specific 
values of the dopaminergic neuron 
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with the synaptic current 

( )GABA syn synI g r V V  . 

In neuronal models, synaptic events are often formal-
ized as stereotyped, time-varying conductance wave-
forms. The α-function is most commonly used [18]. Al-
ternatively, one can compute synaptic conductances using 
a kinetic model [19]. This approach is consistent with the 
formalism, which describes conductances of ion channels 
in the Hodgkin-Huxley model. It allows a more realistic 
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biophysical representation as it implicitly accounts for 
saturation and summation of multiple synaptic events. 
Therefore, in our model we describe the GABAergic 
synapse by a kinetic model of receptor binding. 

 JBiSE 

Following an action potential at the presynaptic ter-
minal of the GABAergic neuron, the neurotransmitter 
GABA ( ) is released into the synaptic cleft. GABA 
binds to the postsynaptic GABAA receptors  at the 
dopaminergic neuron according to the following first- 
order kinetic scheme 
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We set raise 0.1ms  , the decay time constant 
decay 5ms 

g 
, , and the maximal conduc-

tance syn . These values are taken from 
[15]. We assume the maximal conductance syn

syn 75mV  
20.7mScm

V

g  to be 
seven times larger than the literature value due to a strong 
coupling of dopaminergic and GABAergic neuron. In the 
equations above,  represents the fraction of bound 
receptors so that . Thus,  means that all 
channels are open whereas  indicates that all 
channels are closed. 

r
[0,1]r 1r 

0r 

Our goal is to model the neuronal activity of the do-
paminergic neuron depending on the extracellular glu-
cose concentration. We identify the predicted neuronal 
activity as neurotransmitter outflow. The activity of a 
neuron can be interpreted as spiking. One spike can be 
specified as upward crossing of the voltage trace at 0 
mV [20]. Numerically, we identify the time of an action 
potential as local maximum of the membrane volta  
V  with a value greater than 0 mV. The spike intervals 

i

ge

  – interpreted as neuronal activity – are defined as 
time span between two spikes (see Figure 3). We calcu-
late the mean spike interval and its standard error of 
mean to characterize the activity of the spike train [21]. 

3. RESULTS 

In our simulations, we observe a biphasic relation be-
tween extracellular glucose concentration and dopamine 
outflow consistent with the experimental results (com-
pare Figure 1(a) and Figure 4(a)). At low glucose con-
centrations, we notice a moderate dopamine outflow. 
The dopamine outflow rises with increasing glucose 
concentration at low glucose levels since the inhibitory 
effect of the GABAergic neuron is not effective enough 
to interfere with the dopaminergic neuron. Maximal do-
pamine outflow is reached at a glucose level of about 7 
mM. The dopamine release is increased by 30% of the 
basal level, which is consistent with the results of Stein-
kamp et al. (see [1]). At higher glucose concentrations, 
the inhibitory stimulus of GABA starts to interfere with 
the firing pattern of the dopaminergic neuron and even 
leads to a chaotic behavior. Hence, the dopaminergic 
spiking frequency decreases. Starting at the glucose level 
with maximal dopamine outflow, the neurotransmitter 
GABA acts like a pacemaker, synchronizing GABAergic 
and dopaminergic spiking at a lower frequency. 

A robust oscillating behavior can be observed at low (0 
mM), high (10 mM) and even for the glucose concentration 
 

 

Figure 3. Spiking of interacting GABAergic (top) and dopa-
minergic neurons (bottom) simulated with our coupled Hodg-
kin-Huxley model. Here, we chose the glucose level 7.9G   
mM. The GABAergic neuron inhibits the dopaminergic neuron 
while releasing GABA. Hence, the regularity of the dopaminer-
gic neuron’s spiking pattern is disturbed, what is represented by 
the spiking periods i  of the dopaminergic neuron. 



M. Chung et al. / J. Biomedical Science and Engineering 4 (2011) 136-145 142 

      
                                  (a)                                                         (b) 

      
                                  (c)                                                         (d) 

Figure 4. Dopaminergic spiking frequency interpreted as dopamine outflow with varying extracellular glucose concentration. Depicted 
is the mean dopamine outflow in percent of basal level ± standard error of mean. (a) Dopamine outflow under normal conditions. (b) 
Dopamine outflow in the absence (gray) and presence (black) of glucosamine. (c) Dopamine outflow in the absence (gray) and presence 
(black) of a low glibenclamide concentration ( 1.03  ). (d) Dopamine outflow in the absence (gray) and presence (black) of a high 
glibenclamide concentration ( 4  ). 
 
with maximal dopamine outflow (7 mM). Figure 5(a) 
illustrates this behavior. However, at glucose concentra-
tions between 7 and 9 mM, the neurotransmitter GABA 
starts to interfere more powerful, compare Figure 5(c). 
Then, the spiking pattern of the dopaminergic neuron 
reaches a chaotic behavior; see Figure 5(b) and 5(d). The 
uniformity of the dopaminergic neuron spiking pattern is 
disturbed since its firing is suppressed by excitation of the 
GABAergic neuron. The rapid response of the GABAA 
receptors to the neurotransmitter [22] and the immediate 
influence on the dopaminergic neuron become dominant. 
As the glucose level increases, the KATP channels are 
inactivated resulting in increased inhibition to the dopa-
minergic neuron due to GABA. This leads to the overall 
stable decrease of dopamine outflow. 

In general, we observe a higher spiking frequency of 
the dopaminergic neuron compared to the GABAergic 
cell for a fixed glucose concentration (see Figure 3). This 
is caused by the high affine KATP channels in the mem-
brane of dopaminergic neuron compared to the GABAer-

gic low affine KATP channels. This simulation result is 
consistent with experimental measurements [5]. The ratio 
of dopaminergic to GABAergic spiking frequency re-
mains almost constant (slightly increasing from 2 at 0 
mM up to 2.1 at 7 mM). At high glucose concentrations, 
the ratio steeply decreases to about 1.5 indicating the 
inhibitory effect of GABA on dopamine outflow (data not 
shown). 

The effects of glibenclamide on neuronal activity can 
be observed in our simulations. The addition of a low 
glibenclamide concentration is represented by the pa-
rameter 1.03   in our model. At low glucose concen-
trations, characterized by an elevation of dopaminergic 
activity, the spiking frequency of the dopaminergic neu-
ron is increased compared to values found without gliben- 
clamide. However, maximum frequency as well as de-
creased dopaminergic activity at higher glucose concen-
trations remain unaffected. At glucose concentrations 
higher than 8 mM, the spiking frequency of the dopa-
minergic neuron slightly increases compared to the values  
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                                  (a)                                                         (b) 

    
                                  (c)                                                         (d) 

Figure 5. (a) Phase diagrams for low (0 mM, dotted), medium (7 mM, dashed) and high (10 mM, solid) extracellular glucose con-
centration. (b) Chaotic behavior for the extracellular glucose concentration 8.2 mM. (c) Spiking times of the GABAergic neuron 
depending on the extracellular glucose concentration. (d) Spiking times of the dopaminergic neuron depending on the extracellular 
glucose concentration. 
 
without glibenclamide (compare Figure 4(c)). At high 
glibenclamide concentrations, the increasing glucose 
concentration does not modulate the spiking frequency of 
dopaminergic neurons. Consistently, our simulation re-
sults with 4   show neither an increase nor a decrease 
in the spiking frequency (Figure 4(d)). 

As shown in Figure 4(b), glucosamine does not 
change the activity of the dopaminergic neuron with 10 
mM glucose. However, at 7 mM glucose, glucosamine 
decreases the spiking frequency in comparison to the 
control values without glucosamine. It is reduced to ap-
proximately 95% of the frequency at 10 mM glucose, 

which coincides with the value at low glucose concen-
trations. 

Our simulations are consistent with the experimental 
observations shown in Section 1. Therefore, they give 
evidence to the regulatory mechanisms of KATP chan-
nels. 

4. DISCUSSION 

The purpose of this study is to specify a potential regu-
latory element of the brain to sense and regulate the en-
ergy supply of the organism. Our presented results 
demonstrate that a simple isolated coupled Hodgkin- 
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Huxley model simulates the interactive behavior of 
GABAergic and dopaminergic neurons accurately. The 
simulations are consistent with the results of the in vitro 
cell experiments [1]. The model reflects the observed 
neuronal biphasic response. Furthermore, simulations on 
interventions with glibenclamide and glucosamine show 
consistent dynamics with experimental observations. 

To our best knowledge, there do not exist any experi-
mental data on the frequency of firing in neuronal net-
works consisting of dopaminergic and GABAergic neu-
rons. The relation between spiking frequency and neuro-
transmitter outflow of neurons remains unknown. Our 
model for the first time predicts the spiking behavior of 
neuronal networks consisting of dopamine and GABA 
neurons under varying glucose concentrations. Moreover, 
our simulation results suggest that the dopamine outflow 
of a dopaminergic neuron is congruent to its spiking 
frequency. 

One may argue that our developed coupled Hodg-
kin-Huxley model is too comprehensive to address the 
observed biphasic dynamics. Apart from this model, there 
exist several other mathematical models describing the 
behavior of neurons, which give an even more simplified 
representation. For example, one could mention the 
Leaky-Integrate-and-Fire model or the FitzHugh-Na- 
gumo model. Unlike these models, the Hodgkin-Huxley 
model particularly describes ion channel gating resulting 
in excitation of neurons. Since we  investigate the KATP 
channel dynamics that cause the associated changes in 
neuronal activity, the Hodgkin-Huxley model is adequate 
to model extracellular glucose dependent dopamine out-
flow. 

Furthermore, one may argue that our model is over-
simplified since we only investigate an isolated two- 
neuron model. But one has to take into account that sim-
ple and robust biological mechanisms are more likely to 
evolutionary prevail. Therefore, the development of a 
simple stable system is required. Here, we simply address 
coupled dopaminergic and GABAergic neurons with 
different KATP channels as essential regulatory mecha-
nism behind the dopamine outflow. Our future research 
will investigate and simulate the behavior of larger neu-
ronal networks with coupled dopaminergic and GABAer-
gic neurons as basic subunits. 

The principle of interacting excitatory and inhibitory 
elements like high and low affine KATP channels can be 
found in many other biological systems (see [23,24]). For 
instance, almost all known ligands bind to at least two 
receptor types. In most cases, the formed complexes have 
opposing actions. Considered in closed loops these posi-
tive and negative feedbacks are shown to generate ho-
meostatic systems [25]. This gives additional evidence 
for our presented concept and may reveal the potential 

control mechanism of the biphasic dopamine response in 
a global brain energy sensing concept. 

How does the brain sense energy, and how does the 
brain send control signals to the body? The answer to 
these questions is fairly unknown. The Selfish Brain 
Theory [26] specifies KATP channels to be involved in 
sensing the energy supply in the brain so that the biphasic 
dopamine release may be explained by the dynamic of 
high and low affine KATP channels. Our neuronal model 
supports the plausibility of interacting KATP channels 
controlling dopamine and GABA outflow. Suppose the 
maximal dopaminergic outflow as an energy resting state. 
A deviation from this glucose resting state will result in a 
dopaminergic response and might be identified as a brain 
energy sensing mechanism. 

In this way, the brain might be able to sense its energy 
supply via the intra-neuronal ATP concentration and to 
react accordingly. It has been demonstrated that the cau-
date nucleus is highly involved in learning, memory, and 
feedback processes, in particular [27,28]. These proc-
esses play a decisive role in the energy metabolism of 
the whole organism. This may be evidence that the brain 
is the superior administrative instance and has the 
strongest position in the competition for energy within 
the body. Hence, consistent with the Selfish Brain The-
ory on a systemic scale the described mechanisms may 
be a driving force for a global regulation in energy me-
tabolism. 
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