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ABSTRACT 

The capacity of zoonotic influenza to cross species 
boundaries to infect humans poses a global health 
threat. A previous study identified sites in 10 influ-
enza proteins that characterize the host shifts from 
avian to human influenza. Here, we used seven 
feature selection algorithms based on machine 
learning techniques to generate a novel and exten-
sive selection of diverse sites from the nine internal 
proteins of influenza based on statistically impor-
tance to differentiating avian from human viruses. 
A set of 131 sites was generated by processing each 
protein independently, and a selection of 113 sites 
was found by analyzing a concatenation of se-
quences from all nine proteins. These new sites 
were analyzed according to their annual mutational 
trends. The correlation of each site with all other 
sites (one-to-many) and the connectivity within 
groups of specific sites (one-to-one) were identified. 
We compared the performance of these new sites 
evaluated by four classifiers against those recorded 
in previous research, and found our sites to be bet-
ter suited to host distinction in all but one protein, 
validating the significance of our site selection. Our 
findings indicated that, in our selection of sites, 
human influenza tended to mutate more than avian 
influenza. Despite this, the correlation and connec-
tivity between the avian sites was stronger than that 
of the human sites, and the percentage of sites with 
high connectivity was also greater in avian influenza. 

Keywords: Connectivity, Correlation, Feature Selection, 
Host Specificity, Influenza, Machine Learning, Mutation 
 
1. INTRODUCTION 

The genetic shift and recombination of influenza have 
resulted in a virus that is an annually recurring health 
problem [1,2]. In addition to infecting humans, the 

viruses are also able to infect a number of other hosts, 
including swine and birds. While these species-specific 
strains typically remain within their species of origin, 
there is a potential for them to cross over to human hosts, 
with the outbreak of H1N1 (swine) Flu in 2009 being the 
most recent example [1,3,4]. Because these strains of 
host-shifted viruses have the potential for increased vi-
rulence and mortality rate in humans, study of these 
crossover pandemic shifts is critical. In particular, iden-
tification of key amino acid sites that have significant 
impact on the biological functions of the viruses, especially 
those sites that potentially affect host shifts, is crucial in 
influenza research. 

The genome of influenza can be divided into eight 
gene segments which encode 11 proteins. Of these, nine 
are internal proteins (M1, M2, NP, NS1, NS2, PA, PB1, 
PB1-F2, PB2) while two are surface glycoproteins (HA, 
NA) [1,2,5]. Information from the HA gene was utilized 
in a predictive analysis of evolutionary trends [6], in 
which a five step process was used to create a mutual 
information matrix that could be used to characterize 
evolutionary paths and to make predictions on future 
genetic shifts based on previous data. Given quality in-
put, the process was able to predict historical trends with 
70% accuracy [6]. Co-mutation of amino acids has also 
been used in order to track antigenic shifts in the viruses 
[2,7]. Metrics have been created to reduce the back-
ground information in the protein sequences, furthering 
the ability to identify co-evolving amino acid sites [8]. 

A study [1] conducted in 2009 by Asif U. Tamuri et al. 
analyzed sequences from 10 influenza proteins using a 
phylogenic analysis on each individual protein, which 
resulted in a large number of specific sites in each pro-
tein being found to have different selection constraints in 
human and avian viruses. There were 172 amino acid 
sites found with strong support and 346 sites with mod-
erate support. In [1], each site was treated as a com-
pletely independent attribute, but the authors suggested 
that a pair-wise analysis might yield further interesting 
results. 
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In addition to the phylogenic analysis conducted in [1], 
a paper [3] published in 2009 by Jonathan Allen et. al. 
reported the use of linear support vector machines 
(SVMs), a machine learning technique, to evaluate hu-
man and avian influenza protein sites as markers for 
high mortality rate and host specificity. Combined, these 
two characteristics were indicators of potential pandemic 
outbreak of avian influenza in human hosts. A set of 34 
amino acid markers associated with both of these traits 
was found. Further, the study demonstrated that current 
recombinations of avian and H1N1 strains of human and 
swine influenza could attain these pandemic markers 
with a double reassortment and two amino acid muta-
tions. 

A project [2] conducted by Xiangjun Du, et. al. fo-
cused on the relationships between nucleotide positions 
in the eight gene segments comprising the entire influenza 
genome. A value Ci,j was used to calculate the co-occur-
rence of a pair of nucleotides occurring at sites i and j. 
Another value, the K-Value, made use of Ci,j to evaluate 
the connectivity within a gene sequence (Ci,j and a modi-
fied version of the K-Value are defined in Subsection 
2.3). The averaged K-Values of different influenza gene 
sequences were evaluated according to year, which 
showed the trends of nucleotide substitution co-occur-
rence against the passing of flu-seasons. The analysis in [2] 
showed that the methodology of generating co-occurrence 
networks was an effective tool for tracking influenza’s 
evolutionary patterns. Interestingly, the study implied that 
there was a correlation between nucleotide co-occurrence 
and virus antigenicity, where 86% of the pairs shared both 
connectivity clusters and antigenicity clusters. 

The design of our study was inspired by the work of 
[1-3]. It was our intention in this project to use seven 
feature selection algorithms based on machine learning 
techniques to discover a diverse set of widely distributed 
sites in each of the nine internal proteins of avian and 
human influenza, as well as a set selected competitively 
from a concatenation of all nine sequences. The muta-
tional trends of these sites were analyzed, as was the site 
correlation using the connectivity and co-occurrence 
metrics described in [2]. Finally, connectivity networks 
of related sites within each individual protein and be-
tween all nine internal proteins were generated. 

2. MATERIALS AND METHODS 

2.1. Protein Sequence Data 

Three sets of avian and human influenza protein se-
quences were used in the current study, all selected from 
the National Influenza Virus Database, managed by The 
National Center for Biotechnology Information. 

In order to establish a baseline of comparison with 
previous studies, the first sequence set, hereafter referred 

to as sequence set A, was the same as that used in [1]. 
Sequence set A included aligned full-length sequences 
from 10 influenza proteins (HA, NA, M1, M2, NP, NS1, 
NS2, PA, PB1, PB2). Near-duplicate sequences (those 
95% similar to already-included sequences), were not 
included. This resulted in each protein having around 
400 to 500 sequences. 

A second set, hereafter referred to as sequence set B, 
was formed to evaluate comparatively the connectivity 
across all nine internal proteins. Sequences from each 
protein (M1, M2, NP, NS1, NS2, PA, PB1, PB1-F2 and 
PB2) were aligned using the MAFFT multi-sequence 
alignment tool (available at http://mafft.cbrc.jp/align- 
ment/server/index.html), and divided according to host 
species. Protein sequences with common identifiers were 
concatenated in the order given above to create a set of 
protein sequences spanning all nine internal proteins. 
Positions that contained gaps in the majority of se-
quences were eliminated, leaving a set of 2286 concate-
nated sequences of length 3520.  

Lastly, a third sequence set, hereafter referred to as 
sequence set C, was included to allow for time- depend-
ant analysis. Because sequence set B was constructed 
based on common sequence identifiers among all nine 
proteins, there were not enough sequences from each 
year to conduct a statistically reliable analysis. Sequence 
set C included roughly 3000 to 5000 full length se-
quences from each internal protein. 

2.2. WEKA Feature Selection 

In order to identify the sites significant to species dis-
tinction, a feature selection was performed. To reduce 
the bias from a particular feature selection algorithm, 
seven algorithms from the data mining utility WEKA [9] 
were employed in our analysis. The algorithms used 
were: Chi-Squared, Information Gain, Information Gain 
Ratio, 1R, Relief, Symmetrical Uncertainty and Filtered 
Attribute Evaluation. In the current study, the features to 
be selected were the amino acid sites in the protein se-
quences. 

Chi-Squared feature selection uses the Chi-Squared 
test to select the best discriminating features between 
positive and negative examples [10]. Both Information 
Gain and Information Gain Ratio construct decision 
trees to determine their selections. Information Gain 
decision trees use the Kullback-Leibler divergence (of-
ten called information gain) to build the tree, while In-
formation Gain Ratio decision trees use a slight modifi-
cation of the Kullback-Leibler divergence that keeps the 
selection from focusing on features with large pools of 
potential values [11]. 

The 1R algorithm is different than most other feature 
selection algorithms because it ranks the features ac-
cording to the error rate rather than using entropy-based 
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measures. The algorithm chooses the most informative 
feature and interprets the rest of the data based on this 
one features [12]. Relief ranks features by their ability to 
discriminate between neighboring patterns [13]. Sym-
metric Uncertainty evaluates the weighted mutual in-
formation of two features. Filtered Attribute Evaluation 
simply allows for an arbitrary filter to be used to evalu-
ate features; in this instance, the Ranker filter, provided 
by WEKA, was used. 

2.3. Co-Occurrence and K-Value 

The evaluation of co-occurrence and connectivity be-
tween amino acid sites was performed through two 
measurements. The original versions of these metrics 
were used in [2], however one of them has been modi-
fied slightly to better serve the purposes of this analysis. 
Ci,j, which  measures the co-occurrence between two 
amino acids x and y at a pair of sites i and j respectively, 
can be defined as 

   
2

,

( , )

*

i j
i j

i j

f x y
C

f x f y
  

where f(xi) is the frequency of amino acid x occurring at 
position i, f(yj) is the frequency of amino acid y occur-
ring at position j, and f(xi,yj) is the frequency of both 
occurring in the same sequence. The range of the value 
produced is, where 1 means perfect co-occurrence of xi 
and yj. While [2] used these values to construct connec-
tivity matrices, wherein only pairs of sites with perfect 
co-occurrence would receive an edge between them, all 
pairs are utilized in this study, and the Ci,j value is used 
as a weight, such that those pairs with greater co-occur-
rence contribute more to the total connectivity. 

The K-Value, Ki, which measures the average 
co-occurrence value of all amino acid pairs involving 
site i can be given as:  
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where l is the sequence length, m is the number of se-
quences, and n(xi,yj) is the number of occurrences of 
both amino acids x and y at the sites i and j occurring 
together. In [2], the K-Value was used to represent the 
average connectivity of all sites within a single sequence, 
however in this study; the formula was modified to rep-
resent the connectivity of a single site to all other sites in 
all sequences in a given sequence set. 

3. RESULTS AND DISCUSSION 

3.1 Important Sites for Distinguishing Avian 
from Human Viruses 

The original selection of sites important to distinguishing 
host species was the critical foundation for the subse-

quent work in this study. Using amino acid sites as fea-
tures for the seven WEKA feature selection algorithms 
(Subsection 2.2), two selections of sites were generated: 
one based on sequence set A and one based on sequence 
set B. 

For the selection based on sequence set A, the inter-
section of the top 25 sites generated by each algorithm 
was taken for each protein. The number of sites selected 
by the different algorithms varied; on average, 15 sites 
were selected from each protein, for a total of 131 sites 
over all the proteins. This selection will subsequently be 
referred to as the individually selected sites (Table 1). 

In order from most to least, the number of sites se-
lected from each protein was as follows: NP(22), PB2(19), 
M2(18), PA(17), NS1(12), PB1(12), PB1- F2(11), M1(10), 
NS2(10). The frequency of amino acid substitution at 
these sites (Table 1) showed the avian strains generally 
had less amino acid variation than the human strains: the 
avian and human proteins maintained site conservation 
averages of 94.2 and 80.9 respectively. The avian protein 
with the most conserved sites was NP with a site con-
servation average of 99.8, compared to human NP, with 
a conservation average of 87.2. PB1-F2 sites showed the 
lowest site conservation average for avian (76.8). The 
proteins that contained the highest and lowest site con-
servation averages for human influenza were M2 with a 
site conservation average of 89.1, and PB1 with a site 
conservation average of 60.2 respectively. 

The same process was followed for the selection of 
sites for sequence set B, which contained full-length 
concatenated sequences. The intersection of the top 150 
sites selected by the seven algorithms yielded 113 sig-
nificant sites in sequence set B. Of these 113, 89 were 
also part of the individually selected sites (marked in 
Table 1). Those that were distinct from the individually 
selected sites included: NP:136, NP:535, NP:450, NS1:59, 
NS1:70, NS1:84, NS1:166, NS1:171, PA:142, PA:184, 
PA:272, PA:277, PA:231, PA:383, PA:385, PA:387, 
PA:400, PA:668, PB1-F2:73, PB1-F2:76, PB1-F2:79, 
PB1-F2:87, PB2:67 and PB2:292. This selection will be 
hereafter referred to as the concatenated selected sites. 

Because the concatenated selected sites were based on 
full-length concatenated sequences, all sites were treated 
equally, regardless of which protein they were located in. 
When selected competitively, we found some proteins to 
be more essential to determining host species than others. 
The number of sites selected from each individual pro-
tein was: PA(25), NP(21), PB2(20), M2(14), NS1(13), 
PB1-F2(8), M1(5), PB1(4) and NS2(3). In addition to 
the raw number of sites each protein contributed, the 
total percentage of the sites in each protein selected was 
also considered. The percentages selected from each 
protein, in order from greatest to least, were: M2(14.4%), 
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PB1-F2(8.9%), NS1(5.7%), NP(5.0%), PA(2.9%), PB2 
(2.6%), NS2(2.5%), M1(2.0%) and PB1(0.5%), suggesting 

certain proteins contained more sites informative to host 
origin. Notably, the proteins containing the highest per- 

 

Table 1. Important Sites for distinguishing avian from human viruses. 

Site Avian Freq. Human Freq. Site Avian Freq. Human Freq. Site Avian Freq. Human Freq. 

M1  99(Avg)  81.9(Avg) 375*^ D 100 E(G,V,D) 66(22,10,2) 552*^ M 100 S(T) 99(1) 

115*^ V(M) 98(2) I(V) 99(1) 421 E 100 D(E) 66(34) PB1  99.7  60.2 

121* T 100 A 100 422* R 100 K(R) 87(13) 212* L 100 L(V) 51(49) 

137*^ T 100 A(T) 99(1) 423* A 100 S(T,P,A) 45(34,18,3) 327* R 100 R(K) 51(49) 

147 V 100 V(I) 90(10) 442* T 100 A(T) 87(13) 336* V 100 I(V) 62(38) 

167 T(A) 98(2) T(A) 57(43) 455* D 100 E(D) 87(13) 361 S 100 S(R) 59(41) 

205 V 100 V(I) 71(29) NS1  90.1  84.9 473 V 100 V(L) 66(34) 

218* T 100 A(T,V) 82(17,1) 21* R(L) 85(15) Q(R) 85(15) 486 R 100 R(K) 70(30) 

227* A 100 A(T) 73(27) 22* F(L) 85(15) V(I,F) 95(3,2) 576 L(I) 98(2) L(I) 62(38) 

231^ D(N) 96(4) D(N) 84(16) 23 A(S) 85(15) V(A) 58(42) 581* E 100 E(D) 63(37) 

239 A(T) 98(2) A(T) 64(36) 53 D 100 D(N) 54(46) 584^ R(H) 98(2) R(Q,H) 65(34,1) 

M2  95.1  89.1 60* A(E) 75(25) V(A) 91(9) 645 V 100 V(M,I) 68(28,4) 

11* T(I) 98(2) I(T) 97(3) 81*^ I(-,T) 94(4,2) M(-) 99(1) 654 S 100 S(N,I) 66(32,2) 

14* G(E) 96(4) E 100 98 M(I) 85(15) L(M) 57(43) 768 A 100 S(T,A) 39(31,30) 

16* E(G) 96(4) G(E) 96(4) 114* S(G) 79(21) P 100 PB1-F2  76.8  67 

18* K(R,S) 64(34,2) R 100 125 K(R) 99(1) K 100 3 Q(R,-) 53(44,3) Q(-) 98(2) 

20* S(N) 98(2) N 100 196* E(-) 98(2) K(E) 84(16) 6 D(G,-) 85(13,2) G(D,-) 79(19,2) 

28* I(V,F,T) 78(18,2,2) V(I) 90(10) 215*^ P(-) 98(2) T 100 23 N(S,-,D) 59(38,2,1) S(D,-,N) 67(29,2,2)

36 L 100 L(V) 96(4) 227*^ E(-) 98(2) R(-,E) 96(3,1) 27* T(I,-) 94(4,2) I(T,-) 78(20,2) 

43 L 100 L(I) 96(4) NS2  89  82 29* R(K,-) 66(31,3) K(R,-) 95(3,2) 

48 F 100 F(S) 96(4) 14 M(Q,T,V) 77(19,2,2) L(M,V) 60(37,3) 59* K(R) 97(3) R(-,K) 62(29,9) 

50 C 100 C(S) 96(4) 26 E(V,A) 87(11,2) E(G) 94(6) 60* Q(R,-,P) 95(2,2,1) L(-,P,Q) 55(29,8,8)

54* R(C) 98(2) L(F,R,I) 53(36,7,4) 37 S(R) 87(13) S 100 62 L(P,-) 95(4,1) P(-,L) 52(30,18) 

55* L(F,I) 93(5,2) F(L) 96(4) 55 L(F) 98(2) L(I,F) 96(2,2) 66 S(N,-,I) 57(41,1,1) N(-,S) 69(30,1) 

57* Y 100 H(Y,R) 90(9,1) 57 S 100 S(L) 59(41) 70 G(E,V) 53(44,3) G(-,V,E) 39(30,27,4)

78* Q 100 K(E,T) 89(10,1) 60 S(N,I) 79(13,8) N(S,H,T,I) 92(3,3,1,1) 82 L(S,-) 91(7,2) S(-,P,L) 43(31,14,12)

82* S(N) 95(5) N(S) 51(49) 70* S 100 G(S) 97(3) PB2  98.9  88 

86* V 100 A(V) 97(3) 86 R(I) 87(13) R(K) 80(20) 9* D 100 N(D,T) 96(3,1) 

89* G(S) 96(4) S(G,D) 79(18,3) 89* I(K,V,M) 75(19,4,2) T(I,V) 56(43,1) 44*^ A 100 S(A) 90(10) 

93*^ N 100 S(N) 81(19) 107* L 100 F(L) 86(14) 64* M(I) 96(4) T(M,I) 96(2,2) 

NP  99.8  87.2 PA  99.1  88.4 81* T 100 M(V,T,I) 91(4,3,2) 

16* G 100 D 100 28* P(T) 95(5) L(P) 96(4) 105*^ T 100 V(M,T,I) 60(36,3,1)

31* R 100 K(R) 94(6) 55* D 100 N(D) 96(4) 114 V 100 V(I) 57(43) 

33* V 100 I(V) 96(4) 57* R 100 Q(R) 97(3) 199*^ A 100 S(A) 99(1) 

61* I 100 L 100 65* S(F) 95(5) L(P,S,F) 87(9,3,1) 271* T(A) 96(4) A(T) 94(6) 

100* R 100 V 100 66* G 100 D(G,E) 76(17,7) 368* R(Q) 98(2) K(R) 86(14) 

109* I(T) 95(5) V(I) 84(16) 100* V(I) 95(5) A 100 453* P(S,T) 96(2,2) H(P,S) 71(27,1) 

127 E 100 D(E) 81(19) 225* S 100 C(S) 90(10) 475*^ L 100 M(L) 99(1) 

146 A 100 T(A) 79(21) 241 C 100 Y(C) 51(49) 567* D(V) 98(2) N(D) 99(1) 

214* R 100 K(R) 97(3) 268* L 100 I(L) 86(14) 588* A(T) 98(2) I(A,V) 94(3,3) 

283*^ L 100 P(S) 99(1) 312 C 100 R(K) 83(17) 613*^ V 100 T(A,V,I) 90(6,3,1) 

293* R 100 K(R) 84(16) 337* L 100 S(A) 97(3) 627*^ E(K) 98(2) K 100 

305*^ R 100 K(R) 91(9) 356*^ K 100 R(K) 87(13) 661*^ A 100 T(A,V) 90(9,1) 

313* F 100 Y(F) 99(1) 382* V 100 D(E) 94(6) 674* A 100 T(A,P) 96(3,1) 

351 R 100 K(R) 93(7) 404* R 100 S(A) 90(10) 684*^ A 100 S(A,D) 67(31,2) 

357*^ Q 100 K(R,Q) 94(5,2) 409* W 100 N(S) 97(3) 702*^ K 100 R(K) 97(3) 

372* E 100 D(E) 90(10) 421* T 100 I(V,S,T) 76(11,9,4) Average        94.2(Avian)    80.9(Human)    

The table contains the individually selected sites, with those sites that are also in the concatenated selected sites marked with a "*". The avian and human col-
umns show the consensus amino acids and their frequencies. Sites marked with a "-" signify a gap in the protein sequence alignment and "^" shows that the 
selected sites also occur in [1].         
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centage of sites critical to host differentiation were those 
with the shortest sequence length (M2 and PB1-F2), and 
the protein with the longest sequence length had the 
lowest percentage of sites (PB1). 

3.2. Performance of Classification of the  
Individually Selected Sites 

To validate the statistical significance of our individually 
selected sites, we compared them with the sites reported 
in [1]. Four classifiers provided by WEKA were used to 
assess the ability of these two sets of sites to differentiate 
avian from human viruses: Support Vector Machine, 
Naive Bayes, Random Forest and Rotation Forest. Pro-
tein sequences from sequence set A were used in this 
comparison, as both our individually selected sites and 
the sites reported in [1] were generated using this se-
quence set. 

Support Vector Machines are machine learning tech-
niques which, in binary classification, calculate the op-
timal separating hyperplane between two data sets 
[14,15]. The Naive Bayes classifier uses probability to 
associate each independent feature with a particular class. 
The classifier then takes the product of the individual 
probabilities and classifies the instance [16]. The Ran-
dom Forest constructs a number of decision trees, using 
a random subset of the training dataset for each. The 
resulting forest of decision trees represents the final en-
semble classifier where each decision tree votes for the 
final classification, and the majority decision wins [17]. 
The Rotation Forest classifier randomly splits the entire 
data set into N training subsets, and applies the Principle 
Component Analysis (PCA) to each. A N axis rotation is 
used to select the new features for a base classifier [18]. 

The performance of the classifiers was calculated by 
the sensitivity, specificity, overall accuracy (Q2) and the 
Matthews correlation coefficient (MCC) expressions,  
defined as: 

TP
Sensitivity

TP FN



,  

TN
Specificity

TN FP



, 

2
TP TN

Q
TP FP TN FN




  
, 
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* *

* * *

TP TN FP FN
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


   
 

where TP is the number of true positives, TN is the 
number of true negatives, FP is the number of false posi-
tives, and FN is the number of false negatives. The re-
sults of these calculations for all four classifiers were 
averaged (Table 2), attesting that our individually se-
lected sites were, with the exception of those from the 
NP protein, better able to determine the host species than 
those reported in [1]. Because [1] did not provide a se-
lection of sites for NS2 and PB1-F2, these two proteins 
could not be compared. 

3.3. Annual Mutational Trends of Individually 
Selected Sites 

In order to determine the mutational trends of the indi-
vidually selected sites, the amino acids at these sites in 
sequence set B were concatenated based on protein to 
form nine sets of subsequences with equal size. Se-
quence set A was not used because there were not 
enough sequences per year. These subsequences were 
grouped and a consensus sequence was taken with re-
spect to each year. The annual consensus sequences were 
then used to generate a consensus of all the years for 
each protein. The percentage of sites in each annual 
consensus that differed from the all-year consensus was 
recorded. 

As can be seen in the plots of Figure 1, avian influ-
enza tended to have very low deviation values, often 

 
Table 2. Performance metrics of WEKA classifiers on individually selected sites vs. sites in [1]. 

Performance Metrics for Sites Published in [1]. 

 M1(4) M2(2) NP(13) NS1(4) NS2(0) PA(2) PB1(3) PB1-F2(0) PB2(13) 

Sensitivity 0.9890 0.9269 0.9992 0.9897 0.9930 0.9059 0.9954 

Specificity 0.9827 0.9751 1.0000 0.9830 0.9951 0.8640 1.0000 

Q2 0.9873 0.9433 0.9994 0.9886 0.9933 0.8961 0.9963 

MCC 0.9668 0.8807 0.9986 0.9580 

No  
Data 

 
0.9723 0.7311 

No  
Data 

 
0.9883 

Performance Metrics for Our Individually Selected Sites 

 M1(10) M2(18) NP(15) NS1(9) NS2(10) PA(17) PB1(12) PB1-F2(11) PB2(19) 

Sensitivity 0.9958 0.9928 0.9976 0.9960 0.9870 0.9978 0.9643 0.9154 0.9969 

Specificity 0.9926 0.9985 1.0000 0.9877 0.9729 1.0000 0.9924 0.9870 1.0000 

Q2 0.9949 0.9949 0.9983 0.9946 0.9835 0.9981 0.9713 0.9610 0.9975 

MCC 0.9868 0.9893 0.9957 0.9804 0.9546 0.9927 0.9280 0.9154 0.9922 

These tables display the accuracy of the WEKA classification in comparison to the sites recorded in [1] by performing the calculations for sensitivity, specificity, 



D. King et al. / J. Biomedical Science and Engineering 3 (2010) 942-954 

Copyright © 2010 SciRes.                                                                  JBiSE 

947

overall accuracy (Q2) and the Matthews correlation coefficient (MCC). 
 
differing from year to year by only a single site’s worth 
of variance. Additionally, within the avian proteins, 
many years displayed no deviation whatsoever. This lead 
to curves that tended to be constant with occasional 
spikes of deviation. On average, 58.9% of the annual 
avian consensus sequences matched the all-year con-
sensus perfectly. The avian proteins which produced the 
lowest deviation values on average were PB1 with 0.5%, 
followed by PB2, PA, and M1 with 1.0%, 0.9%, and 
0.9% respectively. The proteins with the highest devia-
tion values were NS1, NS2, and PB1-F2: they averaged 
13.6%, 7.9%, and 9.4% respectively. 

Human influenza produced curves that were more va-
ried, with distinctly higher deviation values. On average 
there was 13.7 times more deviation in human influenza 
than there was in avian. The proteins with the lowest 
deviation were M2 with 7.3% and NS2 with 8.7%, and 
the proteins that displayed the highest were PB1-F2, 
NS1 and PB1, with 29.1%, 25.5% and 25.4% respec-
tively. Human influenza also had far fewer annual con-
sensus sequences that matched the all-year consensus 
perfectly: only 7.5%. 

A comparative analysis of avian and human trends 
was also performed. While both PB1-F2 and NS2 were 
highly varied in both, other proteins showed distinct 
patterns. PB1 was one of the most varied proteins in 
human influenza, but one of the least in avian, with the 
human having 44.1 times the deviation of the avian, 
compared to only 1.2 times for NS2. Human influenza 
was clearly more varied: in no protein was the average 
deviation for avian greater than it was for human. There 
were, however, specific annual consensuses wherein the 
deviancy of the avian was greater than that of the human. 
For instance in 1971 the avian deviation of NS1 was 
89.3%, the highest deviation for any one protein at any 
one year, while the human deviation was 3.6%. This 
occurred rarely, and the dramatic disparity in NS1 in 
1971 was the extreme case. 

3.4. Correlation of Sites in Proteins According to 
Year 

In Subsection 3.3, the annual mutational trends of the 
individually selected sites were analyzed. The current 
section analyzes the correlation patterns of amino acid 
pairs according to year. Because the correlation metrics 
used require a greater number of sequences than our 
mutational trends, sequence set B was not used for this 
analysis, despite the benefit of having the same number 
of sequences in each protein. The protein sequences in 
sequence set C were separated according to year. If the 
two sites i and j are conserved, Ci,j is an value of 1.0. 
Thus, all sites that were conserved in a given year were 
removed from the sequences from that year, leaving only 
those sites that were variable. The K-Value Ki was cal-

culated for each variable site i for each year, using all 
other variable sites in the K-Value formula. The aver-
aged K-Values of these sites in each protein were used 
as the K-Value of that protein for that year. We stan-
dardized the K-Values according to the mean and stan-
dard deviation. 

The contrast between avian and human influenza can 
be seen in Figure 2, Plot A. Human influenza had higher 
K-Values than avian influenza across all years except 
1986. Further, the patterns of correlation in each of the 
human influenza proteins were very similar to one an-
other (Figure 2, Plot B), while those of avian influenza 
were much more diverse. In human influenza, when the 
K-Value of one protein was high, the others tended to be 
high, and vice versa. The proteins of avian influenza 
produced much more varied K-Value distributions. 
While there were few similarities between all nine pro-
teins, we found three groups of proteins that had 
K-Value distributions similar to one another, these being 
[PA, PB1, PB2], [M1, M2, NP] and [NS1, NS2, PB1-F2]. 
These can be seen in Figure 2, Plots C through E. The 
[PA, PB1, PB2] group was especially interesting, as 
these three proteins make up the polymerase complex of 
influenza, which is essential for the replication and tran-
scription of the influenza viruses. 

3.5. Correlation of Sites in Proteins for All Years 

To expand the year-dependant study of the patterns of 
correlation of sites within each protein in Subsection 3.4, 
the patterns were also analyzed for all years. Unlike in 
Subsection 3.4, where all variable sites were used, in this 
analysis only a certain percentage of variable sites in 
each protein were included. Because of the different 
mutation rates of avian and human influenza (Figure 1), 
a different cutoff was applied to each. For the avian se-
lection, the 33% most variable sites were selected from 
the individually selected sites, while the top 20% were 
used for the human. These selections were subsets of the 
individually selected sites and from hereafter will be 
referred to as the I-sites. Correlation was evaluated both 
for I-site pairs exclusively within individual proteins as 
intra-protein K-Values, and for I-site pairs between pro-
teins as inter-protein K-Values. Both calculations of 
K-Value were performed using the I-sites from sequence 
set B (Table 1). 

There were significant distinctions between both the 
intra- and inter-correlation of avian and human I-sites. 
While correlation in human influenza was fairly uniform 
in all proteins, with K-Values predominantly remaining 
between 0.5 and 0.6, avian influenza tended to be more 
variable, with values commonly ranging as low as 0.4 
and as high as 0.8. Further, sites within avian proteins 
typically had similar correlation values; for instance, PA, 
PB1, and M1 ha consistently high K-Values for all sites,  
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Figure 1. Annual mutational trend of individually selected sites. 
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Plot A shows the average K-Values of all the proteins for both avian and human-host influenza. Plots B through E show the K-Values for the specific pro-
teins of both human and avian hosts. Plot B shows all human-host proteins, which had similar patterns of K-Value distribution. Avian proteins yielded 
K-Value curves less similar to one another, and have been split into three different plots (C through E) for clarity. 

Figure 2. Average standardized K-Value of proteins according to year. 
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while PB1-F2 had low values. On the other hand, while 
there were individual sites that deviated from the norm 
in human influenza, these tended to not be grouped by 
protein; for example, the PB1 protein in human housed 
both the site with the second highest K-Value (PB1:336 
with an average value of 0.688) and the site with the 
lowest K-Value (PB1:79 with an average value of 
0.386). 

Although both the intra- and inter-protein correlations 
are similar in all proteins for both avian and human in-
fluenza, the average distance between the inter- and in-
tra-protein K-Values varied: 0.060 for avian, and only 
0.024 for human. The K-Value gain from intra- to in-
ter-K-Values was calculated such that positive numbers 
would represent an increase, and negative numbers a 
decrease; then the average was taken for each protein 
(Figure 3). Human K-Value gain was typically positive, 
indicating that human influenza tended to have higher 
correlation between proteins than within proteins. In 
contrast, avian inter-protein K-Value gain was typically 
negative, indicating that correlation was stronger within 
specific proteins than between proteins. Despite this, 
avian influenza had higher K-Values, indicating higher 
correlation, than human influenza, in both inter- and 
intra-proteins. This was different from the results re-

ported in 3.4, where it was observed that annual correla-
tion, which was measured by the K-Value of the se-
quences in a particular year, was higher in human influ-
enza than in avian (Figure 2). This indicated that the 
contribution of correlation between sequences in differ-
ent years was significant. 

In both human and avian, an exception to this trend 
was the PB1-F2 protein, where the trend of hu-
man-positive and avian-negative K-Value gain was re-
versed: the averaged K-Value gain for PB1-F2 was 0.016, 
while the averaged human K-Value gain was –0.088, 
indicating that in PB1-F2 avian influenza had greater 
correlation outside the protein than within, and vice ver-
sa for human influenza. Averaged human K-Value gain 
was negative in NS1 and PB1 as well. These three pro-
teins were also found to have the highest annual variabil-
ity of any of the human proteins, as seen in Table 2. 

3.6. Site-Connectivity Networks 

In the previous several sections, the correlations between 
one site and other related sites (one-to-many) were de-
tected. In this section, specific associations between one 
site and another single site (one-to-one) from sequence 
set A, the set of individual-protein sequences, were ana- 

 

 

Plots A and B were generated by calculating K-Values for each of the I-sites. The inter-protein K-Values were calculated using pairings with all I-sites from all 
nine proteins, while the intra-protein K-Values include only pairings within a single protein - for instance, the site M1:167 would only be paired with amino 
acid sites that are also in M1. All site positions are given relative to the starting position in their containing protein. Plot C shows the K-Value gain per protein 
from plots A and B, such that positive values indicate that the inter-protein K-Values are higher than the intra-protein K-Values, and negative vice versa. Avian 
K-Value gain is consistently lower than human, with the exception of PB1-F2. 

Figure 3. Avian and human K-Values produced by inter- and intra-protein analysis. 
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Figure 4. Amino acid connectivity networks.             
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lyzed. Connectivity networks between correlated sites 
were generated by calculating the co-occurrence Ci,j be-
tween two different sets of amino acid sites. The first 
consisted of the I-sites described in Subsection 3.5. The 
second set acted as a baseline of comparison, containing 
all sites in each protein that displayed any variation 
whatsoever, hereafter referred to as B-sites. This allowed 
connections to be formed not only between two sites 
deemed to be important (between two I-Sites), but also 
between an important site and a variable site that had not 
been previously selected by WEKA (between an I-site 
and a B-site). 

Co-occurrence values were calculated for all amino 
acid pairs such that one site of the pair belonged to the 
first set, and the other site belonged to the second. The 
connection strength between the site-pairs was the sum-
mation of the co-occurrence values of all amino acid 
pairs occurring at those sites. To retain the most signifi-
cantly connected sites, only the sites associated with the 
four strongest connections to each of the I-sites were 
included. Further, any B-sites that had only a single 
connection within the network were removed. 

As seen in Figure 1, human influenza tended towards 
higher variance, leading to a greater number of sites be-
ing selected by our procedure despite the more rigorous 
cutoff limit, as described in Subsection 3.5. The network 
graphs in Figure 4 indicated that while human influenza 
had more variable positions than avian, the average 
number of sites in each graph was almost equal: 7.625 
sites per graph for human, and 7.429 for avian. The rea-
son for this was that the human connectivity networks 
tended to be more reflexive, having more connections 
between the I-sites. The avian, on the other hand, tended 
to be less reflexive, having more connections to B-sites, 
those not found by WEKA. In other words, human 
I-sites tended to co-mutate among themselves, while the 
avian I-sites tended to co-mutate with sites that, while 
still variable, were not statistically important to host dif-
ferentiation. 

3.7. Protein-Connectivity Networks 

A process similar to that of Subsection 3.6 was also ap-
plied to the concatenated sequences of sequence set B. 
The connectivity between the nine internal proteins was 
our goal in this section, rather than the one-to-one con-
nectivity between sites. Three sets of sites were used in 
this portion of the study: the I-sites from Subsection 3.5, 
the B-sites from Subsection 3.6, and a set of all variable 
sites in the concatenated selected sites, hereafter referred 
to as C-sites. Two sets of networks were generated: one 
connecting the I-sites and B-sites, and another connect-
ing the C-sites and B-sites. Because the B-sites included 
all variable sites, both the I- and C-sites were subsets of 
the B-sites. 

All B-sites were retained in sequence set B by remov-
ing those sites that were conserved. Then, networks were 
generated by calculating Ci,j for all pairs such that site i 
was part of the contributing set I or C, and site j was part 
of the set of B-sites. For each pair of amino acid sites, 
the summation of all Ci,j values was taken, and a cutoff 
(the average of these summations) was applied such that 
the resulting value was 1 if greater than or equal to the 
cutoff, and 0 otherwise. Then the average value of all 
site pairs within a pair of proteins was taken, giving each 
pair of proteins a connectivity value between 0 and 1. 

The plots in Figure 5 represent the protein-connectivity 
networks. The vertical axis indicates the B-sites, while 
the horizontal axis indicates the I- or C-sites. The col-
umns, then, display the connectivity of the I- or C-sites 
to the B-sites, while the rows show the connectivity of 
the B-sites to the I- or C-sites. Because the B-sites were 
different than the I- and C-sites, these graphs are not 
symmetric. Lists of the I- and C-sites are provided in 
Table 3. 

The connectivity of the different sets of selected sites 
in these networks varied. Avian PB1-F2-I sites, for in-
stance, had no connectivity whatsoever, while the avian 
PB1-F2-C sites showed high connectivity. The opposite  

 

 

Figure 5. Protein connectivity heat maps. 
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Table 3. I-sites and C-sites used in Figure 5. 

 Human (I) Human(C) Avian (I) Avian (C) 

M1 167, 205, 239 115^, 137, 227 219, 231 115^ 

M2 54^, 56, 82*, 89^ 11, 16, 28, 54^, 55^, 57, 78, 82*, 86, 89^, 93 55^, 82* 14, 16, 20, 54^, 55^, 82*, 89^ 

NP 
217, 334, 343, 
344, 353^, 373, 
423^, 459 

31, 33^, 109^, 214, 283, 293, 305, 313, 353^, 357, 372, 
375, 422, 423^, 442, 450, 455 

34, 109^ 33^, 109^ 

NS1 
53, 56, 59, 84*, 
166, 244 

21, 22, 59, 60, 70, 81, 84*, 171, 196, 227 
55, 60, 67, 
70, 84* 

21, 22, 59, 60, 70, 81, 84*, 166, 196, 215, 
227 

NS2 57, 89^ 89^, 107 48  

PA 
62, 184^, 241, 
256, 322, 383^ 

28^, 55^, 57, 65^, 66^, 142^, 184^, 268^, 272, 277^, 
321^, 337, 356^, 382^, 383^, 385^, 387, 400, 404^, 409, 
552^, 668^ 

28^, 65^ 
28^, 55^, 65^, 66^, 142^, 184^, 225, 268^, 
277^, 321^, 356^, 382^, 383^, 385^, 404^, 
421, 552^, 668^ 

PB1 
52^, 212^, 327^, 
336^, 361, 430, 
741 

212^, 327^, 336^, 581 52^, 75, 383  

PB1-F
2 

60*, 82 27^, 29, 59^, 60*, 73, 76^, 79, 87  27^, 59^, 60*, 76^ 

PB2 
67^, 105^, 114, 
120, 461, 526, 
676 

9, 44, 64^, 67^, 81, 105^, 199, 271^, 292^, 368^, 453^, 
475, 567^, 588^, 613, 661, 674, 684, 702 

64^, 271^, 
292^, 453^ 

64^, 271^, 292^, 368^, 453^, 567^, 588^, 
627 

This table shows the I- and C-sites for both human and avian influenza. Those sites marked with a "*" occur in all four instances, those marked with a "^" occur 
in two or three. 

 
was true for PB1, with PB1-C sites displaying no con-
nections, and high connectivity in the PB1-I. There were 
commonalities between avian I- and C- sites, also: NS1 
and NS2 sites yielded very low connectivity in both, 
while M1 and PA had very high connectivity. 

Similarly, in human influenza, both I- and C-sites of 
PB1-F2 displayed extremely low, and only mild connec-
tivity for PA and NS1. NS2-C sites, on the other hand, 
displayed much higher connectivity than NS2-I. Other-
wise, both I- and C-sites for human influenza were fairly 
normative, with typical connectivity values ranging be-
tween 0.3 and 0.5. 

There were also differences between the avian and the 
human networks. While both NS1 and NS2 sites had 
very low connectivity in avian, the connectivity of hu-
man NS1 and NS2 sites was moderate to high, with a 
very high connectivity value for NS2-I sites. In the same 
fashion, PB1-F2 sites were in general poorly connected, 
but the avian PB1-F2-C sites showed exceptionally high 
connectivity. 

In general, both avian I- and C-sites tended to have 
higher connectivity between proteins than human, which 
was consistent with the trend of avian influenza having 
more widespread connectivity within individual proteins 
noted in Subsection 3.6. Both of these findings were 
interesting in light of avian influenza’s relatively lower 
mutation rate, noted in Subsection 3.2. 

4. CONCLUSIONS 

There were five main components in our findings. First, 
a diverse and extensive set of sites in nine internal pro-
teins of avian and human influenza was identified 
through the use of seven feature selection algorithms. 

The validity of these sites was justified by the capability 
to differentiate between avian and human protein se-
quences using four machine learning classifiers. Second, 
the mutational trends of these sites were analyzed, which 
signified that in general human influenza displayed 
higher mutation rates than avian. Third, by calculating 
the K-Values of these sites, it was found that in contrast 
to the higher mutation rate, the patterns of correlation in 
each of the human influenza proteins were very similar 
to one another, while those of avian influenza were 
much more diverse. When considered for all years, 
K-Values illustrated that avian site-correlation was on 
average higher than human site-correlation. Further, 
while the correlation of most individual human sites was 
very similar with occasional outliers, the correlation of 
avian sites was much more varied. Fourth, networks of 
correlated sites from each protein were generated, not 
only showing that avian connectivity tended to be higher, 
but also that the sites selected in avian networks tended 
to be more evenly distributed over the entire protein. 
Finally, connectivity heat maps were generated from the 
sites selected from concatenated sequences of all nine 
internal proteins, exhibiting the global trends of connec-
tion across all the proteins. 

These findings suggest that in our site selection there 
is an inverse relationship between variability and con-
nectivity within the nine internal proteins of avian and 
human influenza. Avian influenza showed consistently 
higher correlation and connectivity, reflected by 
co-occurrence and K-Value, than human, despite the 
significantly lower rate of mutation. Within individual 
proteins, there is a higher percentage of variable sites 
with high connectivity in avian than in human. The con-
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tribution of connectivity between proteins to the overall 
connectivity of the nine proteins, however, is greater in 
human influenza than it is in avian. In conclusion, the 
sites we selected were significant in distinguishing avian 
and human viruses, and revealed the signatures of corre-
lation and connectivity of the nine internal proteins, 
which reflected the characteristics of avian and human 
influenza viruses. 
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