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ABSTRACT 
Arrhythmia beat classification is an active area of 
research in ECG based clinical decision support sys-
tems. In this paper, Pruned Fuzzy K-nearest neighbor 
(PFKNN) classifier is proposed to classify six types of 
beats present in the MIT-BIH Arrhythmia database. 
We have tested our classifier on ~ 103100 beats for six 
beat types present in the database. Fuzzy KNN 
(FKNN) can be implemented very easily but large 
number of training examples used for classification 
can be very time consuming and requires large stor-
age space. Hence, we have proposed a time efficient 
Arif-Fayyaz pruning algorithm especially suitable 
for FKNN which can maintain good classification 
accuracy with appropriate retained ratio of train-
ing data. By using Arif-Fayyaz pruning algorithm 
with Fuzzy KNN, we have achieved a beat classifi-
cation accuracy of 97% and geometric mean of sensi-
tivity of 94.5% with only 19% of the total training 
examples. The accuracy and sensitivity is comparable 
to FKNN when all the training data is used. Principal 
Component Analysis is used to further reduce the 
dimension of feature space from eleven to six without 
compromising the accuracy and sensitivity. PFKNN 
was found to robust against noise present in the ECG 
data. 
 
Keywords: Arrhythmia; ECG; K-Nearest Neighbor; 
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1. INTRODUCTION 

Arrhythmias result due to improper pacing of the car-
diac muscle or any discrepancy in the electrical con-
duction network of the heart [1]. Detection of these 
pathologically significant arrhythmias is an impera-
tive task in the diagnosis of cardiac diseases. Electro-

cardiograph (ECG) can be used as a non-invasive di-
agnostic tool for the detection of these disorders. With 
the development in computing and sensor technology, 
standalone automated ECG based decision support sys-
tems are an active area of research. A clinical decision 
support system includes ECG acquisition, pre-proc-
essing and noise removal (baseline variation, electronic 
and electromyographic noise etc.), ECG Delineation (for 
detection and delineation of P, QRS and T waves of 
ECG), feature extraction and beat classification. 

A variety of methods exist in the literature for QRS 
delineation [2] which rely upon derivative based meth-
ods, use of digital filters and filter-banks etc. One of the 
most promising approaches for QRS detection and 
delineation has been proposed by Martínez et al. [3] 
as it offers very high detection and delineation accu-
racy. It uses wavelet domain analysis for performing 
QRS detection and delineation which is particularly 
suited to the ECG signal due to the non-stationary 
nature of the signal. 

ECG beat classification, being an integral part of any 
ECG based automatic decision support system, has 
been studied by a number of researchers. Different 
feature extraction methods for beat classification in-
clude use of Fourier Transform [4], multi-resolution 
analysis [5], wavelet transform [6-9], independent 
component analysis [10], morphological analysis [11] 
etc. For the purpose of beat classification, literature re-
ports a variety of classifiers such as Backpropagation 
Neural Networks [8], Learning Vector Quantization and 
Probabilistic Neural Networks [6], Fuzzy Inference Sys-
tems [12], Nearest Neighbor classifiers [13] etc. 

In our previous work [9], we have used features ex-
tracted from two-level wavelet decomposition of an 
ECG signal. The wavelet decomposition was performed 
through algorithm a’trous using the wavelet proposed by 
Martínez et al. [3] for QRS delineation. This wavelet 
offers inherent noise suppression and eliminates the need 
of re-evaluation of wavelet coefficients for beat classifi-
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cation as these are already obtained during QRS detec-
tion and delineation. A simple K-nearest neighbor 
(SKNN) classifier has been employed for the classi-
fication of 6 types of beats (Paced Beats (PB), Atrial 
Premature Beat (APB), Premature Ventricular Con-
traction (PVC), Normal (N), Left and Right Bundle 
Branch Blocks (LBBB & RBBB)) to give an accu-
racy of ~ 99.5% over selected records (23,200 beats 
only) from the MIT-BIH Arrhythmia database [14] 
with high noise tolerance and robustness against de-
crease in the size of the training data set. 

Simple K-Nearest Neighbor (SKNN) classifier 
used in our previous work offers many advantages 
over other classifiers including simplicity and ease 
of parallel implementation, adaptability and online 
learning [15,9]. Moreover, we have demonstrated its 
high accuracy for beat classification in comparison 
to other existing approaches. SKNN classifier as-
signs equal weights to all of the K-nearest neighbors 
regardless of their distances from the query point. An 
improvement over the SKNN classifier is the Fuzzy 
K-Nearest Neighbor classifier (FKNN) [16] which 
uses concepts from fuzzy logic to assign degree of 
membership of the given query point to different 
classes while considering the distance of its K-near- 
est neighbors. Points closer to the query point con-
tribute a larger value to be assigned to the member-
ship function of their corresponding class in com-
parison to far away neighbors. Class with the highest 
membership function value is taken as the winner. 
Fuzzy KNN gives class memberships for a beat to be 
classified as compared to true or false decision by 
SKNN. In case of comparable class memberships for 
winner and runner up classes, a confidence metric 
can be used on the decision. 

Inherent variability of the ECG signal for different 
individuals, variability over age, amongst different 
beat classes and within each beat class itself [1] re-
quires large amount of training data for effective 
training of an ECG beat classification system. There-
fore, an instance based classifier like SKNN or 
FKNN can only be efficient in terms of both time and 
space complexities while offering high classification 
accuracy when number of training examples is very 
large. In such a case, amount of memory required to 
store the training prototype set and time required for 
finding the distance or the nearest neighbors of the 
query point can be tremendous. Solution to this issue 
is to use a pruning algorithm on the training data 
removing some data points from the training dataset 
without greatly affecting classification accuracy. A 
variety of pruning algorithms exist in the literature. 
A very good introduction to pruning techniques for 

instance-based learning algorithms is given in [17]. 
In this paper, we have proposed a new pruning algo-
rithm that can be integrated in FKNN and pruning 
time is very small as compared to other pruning 
methods. 

In this paper, we present a beat classification al-
gorithm which inherits its noise robustness from the 
use of ten wavelet domain features and the instant- 
taneous RR interval as used in [9]. Use of the same 
wavelet transform for delineation of the QRS com-
plex through [3] eliminates the need of re-evaluation 
of wavelet coefficients for beat classification, thus 
reducing over all time complexity of the system. To 
reduce the space complexity the dimensionality of 
the feature space can be reduced using Principal Compo-
nent Analysis (PCA). A Pruned Fuzzy K-nearest neighbor 
(PFKNN) classifier is proposed for beat classifica-
tion. Training data is pruned first and fuzzy decision 
of this classifier is weighted with respect to a priori 
probabilities of different classes to handle the class 
imbalance problem. To further reduce time complex-
ity of PWFKNN, an efficient nearest neighbor search 
called ATRIA [18] has been used. 

2. ARRHYTHMIA BEAT CLASSIFICATION 
Architecture of an ECG based clinical decision sup-
port system is shown in Figure 1. Beat classification 
module of the system includes feature extraction, 
normalization of features, dimensionality reduction 
if applicable and Classification. Details of each of 
these components are given in detail as under. 

2.1. Feature Extraction 
For feature extraction, we have used the same wave-
let as in [3] with wavelet transform implemented 
through Algortihm a’ trous. The wavelet is taken to 
be the derivative of a low pass filter which offers 
inherent noise suppression. This wavelet is given by, 
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4
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From the implementation viewpoint, it can be imple-
mented through FIR low pass (H) & high pass (G) filters 
whose frequency responses are given by: 

( )
3

cos
2

ω ω ω =   
j jH e e                (2) 

( ) 4 sin
2

ω ω ω =  
 

j jG e je               (3) 
   



M. Arif et al. / J. Biomedical Science and Engineering 3 (2010) 380-389 

Copyright © 2010 SciRes.                                                                   JBiSE 

382 
 

 
Figure 1. Architecture of a ECG based clinical decision support system. 

 
For details, please refer to [9]. The same wavelet 

transform can be used for detection and delineation of 
the QRS complex. For the purpose of beat classification, 
we have used wavelet coefficients of a 64 point window 
centered at the QRS fiducial point, only up to scale 22. 
Following eleven features are extracted from the ECG 
signal: 

1) Variance of the original QRS complex signal de-
noted by 2σ S  

2) Variance in each sub-band denoted by 2
2σ A , 2

2σ D , 
2

1σ D  
3) Variance of the autocorrelation function of wavelet 

coefficients in each sub-band denoted by 2
( 2)σ R A , 

2
( 2)σ R D , 2

( 1)σ R D  
4) Ratio of minimum to maximum wavelet coefficient 

in each sub-band denoted by 2Ar , 2Dr , 1Dr  
These features are combined with the instantane-

ous RR interval to produce a feature set given by 
{ }2 2 2 2 2 2 2

1 ( 1) 1 2 ( 2) 2 2 ( 2) 2, , , , , , , , , ,σ σ σ σ σ σ σS D R D D D R D D A R A Ar r r RR  
for a single beat. 

2.2. Normalization 
A normalization process is necessary to standardize all 
features to the same level. Tangent sigmoid function is 
used for the normalization as given below, 

' tansig
σ

 −
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where jx  and σ
jx  are the mean and the variance of 

the jth component of the feature vector. This function will 
normalize the range of features to [–1,1]. The normal-
ized feature set for the kth beat is denoted by 1

kF . 

2.3. Dimensionality Reduction 
Features extracted from a beat except the RR interval are 
subjected to Principal Component Analysis (PCA) for 
dimension reduction. RR interval is treated separately 
because of its temporal nature. A covariance matrix is 

formed on the basis of the first ten features and its ei-
gen-values and eigen-vectors are computed. Five of the 
ten eigen-vectors corresponding to the highest eigen- 
values are retained as they capture about 98% of energy 
in the features [9]. Input data is then projected onto these 
bases and normalized RR interval values are appended to 
the projected feature set that result in a 6 dimensional 
feature space. 

2.4. Pruned Fuzzy K-Nearest Neighbor 
Classifier (PFKNN) 

Consider a training set T and class label of a point x in 
the training set is denoted by c(x). Fuzzy K-Nearest 
Neighbor search is used in training and classification of 
PFKNN. It is explained as follows. 

2.4.1. Fuzzy K-Nearest Neighbor Search 
Fuzzy KNN search is similar to simple KNN search. In 
simple KNN, every data point can belong to only one 
class which is the majority class in the K-nearest 
neighbor search. Whereas in fuzzy KNN, a data point 
can belong to multiple classes with different member-
ship functions associated to these classes. Fuzzy KNN is 
described as follows, 

Step 1: Find K nearest neighbor xj, j = 1…K of the 
given query point x using Euclidean distance from a set 
of stored data points using Fast nearest neighbor search 
through ATRIA [18]. 

Step 2: Evaluate the membership function value of 
each of the Nc classes (ci, i = 1… Nc) using the following 
relation. 
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where = −j jd x x  is the Euclidean Distance between 

x and xj and ( )µ
ic jx  is the membership value of the 

point jx  for class ci. These membership values are 
calculated from the stored data points. For each point, 
xp, in the training set membership values for each class 
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are as follows, 
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where ki is the number of points from the original train-
ing set among the K nearest neighbors of xp that belong 
to the same class as xp itself. 

The parameter m is used to control the effective mag-
nitude of distance of the prototype neighbors from the 
query point and it can be selected through cross valida-
tion along with K. If m is taken to be infinity then the 
classifier reduces to a SKNN classifier. 

Step 3: The class label of the query point x, c (x), is 
chosen as follows: 

( ) ( )( )arg max
io c

i
c x xµ=             (7) 

2.4.2. Proposed Pruning Method 
It involves pruning of the training data set T to obtain the 
prototype set P. Following steps explain our proposed 
Arif-Fayyaz Pruning Algorithm. 

Step 1: Start with an empty prototype set, φ=P  and 
training set T. 

Step 2: Find K-Nearest Neighbors, xj, j = 1…K, of 
each training point, x, such that ( ) ( )≠jc x c x  and add 
them to the prototype set P. This gives us the border 
points of different clusters in the data. 

Step 3: Classify each training point using the prototype 
set P through FKNN explained in Subsection 3.1. If the 
training point is misclassified, add it to the prototype set P 
and re-evaluate class weights and membership values of 
prototype set P. This is done in order to accommodate any 
clusters which may have been missed in Step 2. 

Step 4: For each ith class in the training set, Initialize 
a set W (i), i = 1, 2,…, Nc

Pruned, where Nc
Pruned is the 

number of prototypes in P for ith class. For each train-
ing point in the class, find the winner from the pruned 
set of same class. After all the training points are fin-
ished, remove the entire prototype from set P whose 
W (i) is an empty set. 

The prototype set P obtained after Step 4 will be a 
pruned set of prototypes obtained from the training set T. 
In the next step, class weights are calculated to deal with 
the data imbalance problem. 

Incremental Policy in the Pruned Set using Arif-Fayyaz 
Pruning Method 
Once pruned prototype is set for a certain training data 
points, it is very easy and efficient to include any new 
data points available in the later time without effecting 
already pruned prototype set. New training data point 

can become member of pruned prototype set if it is mis-
classified with the existing pruned prototype set. 

2.4.3. Classification Using PFKNN 
Classification involves calculation of the membership 
function values of an unknown query point using FKNN 
from the stored prototype training data set P obtained 
after pruning and assigning its class label. 

3. DESCRIPTION OF DATABASE 
The MIT-BIH Arrhythmia Database is used in this paper 
for beat classification using PFKNN. It contains two- 
channel ambulatory ECG recordings from 47 subjects 
studied by the BIH Arrhythmia Laboratory between 
1975 and 1979. ECG recordings were digitized at the 
sampling rate of 360 Hz with 11-bit resolution. We have 
used the annotations of the cardiologist originally pro-
vided by the database. We have used six types of beats 
(Paced Beats (PB), Atrial Premature Beat (APB), Pre-
mature Ventricular Contraction (PVC), Normal (N), Left 
and Right Bundle Branch Blocks (LBBB & RBBB)) 
from the MIT-BIH Arrhythmia database. Number of 
beats is plotted in Figure 2 for all six beat types. It can 
be seen in the figure that Normal beats dominate the 
database and rest of the beats are also not equally repre-
sented. 

4. Results & Discussion 
In this section, results of classification of the six types of 
cardiac rhythms are presented. 

4.1. Performance Metrics 
Following performance metrics are used to evaluate the 
performance of classifier, 

1) Mean & Standard Deviation of Positive Predictive 
Values (PPV) of each class over five runs with ran dom 
selection of training and testing data. With TPc and FPc 
representing the number of true and false 
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Figure 2. Distribution of beats in the database. 



M. Arif et al. / J. Biomedical Science and Engineering 3 (2010) 380-389 

Copyright © 2010 SciRes.                                                                   JBiSE 

384 

positives for a given class c, its PPV is defined by, 

=
+

c
c

c c

TP
PPV

TP FP
                (9) 

2) Mean & Standard Deviation of Sensitivity Values 
(Se) of each class over five runs with random selection 
of training and testing data. If FNc is the number of false 
negatives for a class c its Sensitivity is defined by, 

=
+

c
c

c c

TP
Se

TP FN
                (10) 

3) Mean & Standard Deviation of Total Accuracy (A) of 
each class over five runs with random selection of training 
and testing data. Total Accuracy is define by, 

1
 

= − 
 

error

test

NA
N

               (11) 

where Nerror is the number of misclassifications and Ntest 
is the total number of testing beats for all classes. 

4) Mean & Standard Deviation of the Geometric 
Mean of Sensitivity values (G) over five runs with ran-
dom selection of training and testing data. G is given by, 

1
6 6

1=

 
=  

 
∏ kc
k

G Se               (12) 

This measure is used to assess the performance of dif-
ferent classifiers while dealing with the class imbalance 
problem. 

Performance measure for analyzing the performance 
of pruning algorithms is defined as retained ratio, R, 
given as below, 

No. of points in the prototype set (after pruning)  
No. of points in the training set (before pruning)

=R  

 (13) 
We have also tested noise robustness of the classification 
by adding uniform Gaussian noise of different intensity 
levels to the ECG signals and analyzed the results. The 
level of noise in the signal is quantized through the Sig-
nal to Noise ratio given by, 

2

210log σ
σ

 
=  

 
s

dB
e

SNR              (14) 

where 2σ s  and 2σ e  are the power of the signal and 
noise respectively. 

4.2. Comparison of Different Pruning Algorithms 
In ECG based beat classification problem, number of 
training beats can grow very large and an efficient prun-
ing method is required. Pruning of data for different 
classes is a difficult task when the separation boundary 
is nonlinear and complex and representation of classes is 
sparsely clustered. Checkerboard data is an example of 
multi-modal two class problem as shown in Figure 3(a) 

and Spiral data corresponds to two class separable pro- 
blem having complex separation boundary as shown in 
Figure 3(b). In this section, our proposed Arif-Fayyaz 
pruning algorithm is compared with the other pruning 
algorithms. We have used the implementation of Wilson 
et al. [17] of different pruning algorithms. For the com-
parison 10 fold cross validation results are presented 
with K = 1 and m = ∞ (FWKNN being used as SKNN) 
over two different data sets. 

In Table 1, different pruning methods are compared 
with our proposed Arif-Fayyaz pruning method. The 
accuracy of the proposed pruning approach is compara-
ble to other approaches over these data sets. We have 
compared different algorithms in terms of Pruning Time, 
Accuracy after pruning and Retained fraction R. All al-
gorithms were run on PIV 2.26 GHz PC with 512 Mb 
RAM. 

In the first row of Table 1, result of simple KNN is 
presented without any pruning. The maximum accuracy 
achieved in two data sets is 98.33% and 99.97% for 
checkerboard and spiral data respectively by retaining all 
the training examples. Our proposed Arif-Fayyaz prun-
ing method has achieved the accuracy of 97.54% and 
99.83% respectively while retaining only 19.86% and 
7.72% training examples. Other pruning methods are 
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Figure 3. (a) Top: Checkerboard data; (b) Bottom: Spiral data. 
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Table 1. Comparison of different pruning algorithm for checkerboard and spiral data. 

Spiral (Ntotal = 2760, dimension = 2) Checkerboard (Ntotal = 3600, dimension = 2) 
 

Time 
(seconds) 

Accuracy 
(%) 

R × 100 
(%) 

Time 
(seconds) 

Accuracy 
(%) 

R × 100 
(%) 

KNN 0.95 98.33 100.00 1.61 99.97 100.00 
Proposed Method 0.32 97.54 19.86 0.32 99.83 7.72 
CNN [19] 0.95 95.38 8.83 1.55 98.33 3.70 
SNN [20] 13.35 96.80 10.61 10.47 99.44 3.57 
IB2 [21] 0.94 95.38 8.83 1.53 98.33 3.70 
IB3 [21] 1.18 94.91 10.70 1.70 98.66 4.37 
DEL [22] 3.13 91.71 6.64 14.16 97.49 2.24 
DROP1 [22] 2.69 89.82 7.34 4.78 93.84 2.83 
DROP2 [22] 2.62 96.07 15.62 12.31 99.13 5.90 
DROP3 [22] 2.66 96.65 15.49 12.31 99.22 5.91 
DROP4 [22] 2.65 96.47 15.54 12.32 99.22 5.91 
DROP5 [22] 3.58 96.73 6.78 14.90 99.39 1.63 
ENN [23] 1.02 98.00 98.59 1.62 99.94 99.95 
RENN [23] 1.02 97.96 98.58 1.62 99.94 99.95 
All KNN [24] 0.94 98.00 98.26 1.61 99.94 99.95 
EL Grow [25] 2.20 64.04 0.45 3.69 85.54 0.32 
Explore [25] 3.00 67.46 0.60 4.73 87.22 0.33 
ELH [17] 2.64 91.42 5.86 4.72 96.07 2.01 

 
better than our proposed method in retained ratio but our 
method outperform other methods in term of pruning 
time which is very important in case of large training set. 
Moreover, classification accuracy of Arif-Fayyaz prun-
ing method is almost similar to simple KNN without 
pruning. If we look at the table, only ENN is better than 
Arif-Fayyaz pruning method in terms of accuracy but the 
retained ratio of ENN is very high (more than 98% in 
both cases). Explore method offers least retained ratio 
but its classification accuracy is very poor. Incremental 
policy of Arif-Fayyaz pruning algorithm is very simple 
and straightforward. These results clearly indicate the 
advantage in terms of computational complexity of using 
Arif-Fayyaz pruning method. 

Our proposed approach offers a suitable and manage-
able reduction factor and faster pruning. Our proposed 
Arif-Fayyaz pruning method is used in the rest of paper 
for pruning. 

4.3. Classification Results of PFKNN 
Firstly, we present the result of fuzzy KNN with pa-
rameter values of k = 5 and m = 1.5. No pruning or 
class weights are used. We have divided total number of 
beats into two sets; training set include 50% of total 
number of beats (51600 beats) and 50% testing beats 
(51599 beats). Beats are selected randomly for training 
and testing sets. 

Classification results for FKNN based classification 
are given in Table 2 with 11 features as explained in 

Subsection 2.1. Effect of noise on classification accuracy 
in terms of SNR as explained in Subsection 3.1 is also 
illustrated in Table 2. Overall accuracy is dropped by 
only 1% for SNR equals to 20 dB. This shows good ro-
bustness of FKNN against Gaussian noise. 

In PFKNN, our proposed Arif-Fayyaz pruning method 
is used to prune the training data set of 51600 beats and 
pruned feature set is used to classify the testing set of 
51599 beats of six classes. Results of classification with 
and without noise are illustrated in Table 3. Overall ac-
curacy and geometric mean of sensitivity G are given in 
the 9th column as A (G) and retained ration R is given in 
the last column of the table. It can be observed from  
Table 3 that with only 19% retained ratio of the training 
feature set, overall accuracy is dropped by only 0.3% 
and geometric mean of sensitivity G is dropped by only 
0.2%. Hence our proposed PFKNN method offers ad-
vantage in terms of space and computational complexity. 

Principal Component Analysis (PCA) is used to reduce 
the number of features. Considering the eigen-values of the 
resultant principal components, six principal components 
are selected and 11-dimensional feature space is pro-
jected on six-dimensional space. Table 4 shows overall 
accuracy, geometric mean of sensitivity and retained 
ratio considering no noise and different level of noise. It 
can be observed from the Table 4 that with the same 
overall accuracy and geometric mean of sensitivity it can 
further reduce the computational complexity of the classifier.  
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Table 2. Beat classification using fuzzy KNN. 

Effect of noise Without PCA Feature Reduction (Ntrain = 51600, Ntest = 51599) with FKNN, k = 5, m = 1.5 
SNR (dB) 

 PB APB LBBB Normal RBBB PVC Overall Accuracy 
(G) 

PPV 99.93 ± 0.05 83.11 ± 1.11 94.65 ± 0.35 98.55 ± 0.05 98.30 ± 0.14 94.58 ± 0.26 
No Noise 

SEN 99.95 ± 0.00 83.47 ± 1.15 94.53 ± 0.47 98.54 ± 0.05 98.59 ± 0.19 94.36 ± 0.28 
97.63 ± 0.02 

(94.74) 
PPV 99.91 ± 0.06 83.51 ± 0.68 94.45 ± 0.42 98.48 ± 0.06 98.20 ± 0.04 94.96 ± 0.44 

40 
SEN 99.91 ± 0.10 82.83 ± 1.30 94.48 ± 0.21 98.54 ± 0.04 98.63 ± 0.16 94.09 ± 0.49 

97.59 ± 0.04 
(94.56) 

PPV 99.89 ± 0.07 82.38 ± 1.18 94.60 ± 0.31 98.47 ± 0.05 98.11 ± 0.13 94.38 ± 0.43 
35 

SEN 99.97 ± 0.05 82.42 ± 0.55 94.14 ± 0.20 98.48 ± 0.08 98.59 ± 0.20 94.26 ± 0.31 
97.52 ± 0.06 

(94.45) 
PPV 99.82 ± 0.09 81.56 ± 1.43 93.65 ± 0.40 98.37 ± 0.08 97.99 ± 0.23 93.99 ± 0.21 

30 
SEN 99.95 ± 0.05 82.36 ± 0.74 93.57 ± 0.24 98.34 ± 0.09 98.47 ± 0.16 93.54 ± 0.36 

97.31 ± 0.04 
(94.18) 

PPV 99.91 ± 0.06 81.38 ± 0.89 93.00 ± 0.70 98.21 ± 0.08 97.74 ± 0.22 93.65 ± 0.71 
25 

SEN 99.90 ± 0.05 80.79 ± 1.27 93.06 ± 0.27 98.23 ± 0.03 98.44 ± 0.18 92.90 ± 0.27 
97.11 ± 0.07 

(93.65) 
PPV 99.85 ± 0.05 78.53 ± 1.23 91.55 ± 0.16 97.74 ± 0.04 96.92 ± 0.33 92.49 ± 0.37 20 
SEN 99.81 ± 0.15 77.78 ± 0.64 90.12 ± 0.46 97.88 ± 0.08 97.77 ± 0.29 92.19 ± 0.21 

96.45 ± 0.10 
(92.27) 

 

Table 3. Beat classification using pruned fuzzy KNN. 

Effect of Noise Without PCA Feature Reduction (Ntrain = 51600, Ntest = 51599) with PFKNN, k = 5, m = 1.5 
SNR (dB) 

PB APB LBBB Normal RBBB PVC A (G) R 

PPV 99.93 ± 0.05 78.61 ± 0.68 93.66 ± 0.23 98.51 ± 0.06 97.51 ± 0.33 94.46 ± 0.52 
No Noise 

SEN 99.86 ± 0.07 83.49 ± 0.98 94.60 ± 0.32 98.17 ± 0.03 98.65 ± 0.14 93.72 ± 0.50 
97.32 ± 0.05 

(94.58) 0.19 

PPV 99.88 ± 0.06 78.77 ± 0.94 93.65 ± 0.52 98.54 ± 0.04 97.55 ± 0.25 94.07 ± 0.52 
40 

SEN 99.89 ± 0.10 83.50 ± 0.35 94.62 ± 0.27 98.12 ± 0.08 98.70 ± 0.18 94.03 ± 0.31 
97.32 ± 0.06 

(94.64) 0.19 

PPV 99.91 ± 0.03 77.90 ± 1.48 93.21 ± 0.29 98.48 ± 0.04 97.51 ± 0.13 93.63 ± 0.26 
35 

SEN 99.94 ± 0.04 83.42 ± 0.74 94.30 ± 0.17 98.02 ± 0.08 98.49 ± 0.23 93.67 ± 0.49 
97.17 ± 0.08 

(94.47) 0.19 

PPV 99.93 ± 0.06 78.12 ± 1.63 93.18 ± 0.56 98.39 ± 0.043 97.42 ± 0.14 93.63 ± 0.46 
30 

SEN 99.82 ± 0.08 83.35 ± 0.94 93.89 ± 0.48 98.04 ± 0.06 98.53 ± 0.07 93.07 ± 0.45 
97.12 ± 0.04 

(94.28) 0.19 

PPV 99.88 ± 0.06 77.31 ± 0.95 91.83 ± 0.31 98.20 ± 0.03 97.06 ± 0.29 92.75 ± 0.38 
25 

SEN 99.88 ± 0.09 82.57 ± 0.55 92.44 ± 0.21 97.77 ± 0.04 98.31 ± 0.17 92.86 ± 0.21 
96.76 ± 0.04 

(93.79) 0.20 

PPV 99.82 ± 0.09 74.05 ± 0.75 89.83 ± 0.23 97.79 ± 0.12 96.34 ± 0.37 91.87 ± 0.26 
20 

SEN 99.83 ± 0.08 78.29 ± 1.24 90.77 ± 0.55 97.40 ± 0.06 97.76 ± 0.34 91.40 ± 0.73 
96.12 ± 0.09 

(92.28) 0.23 

 

Table 4. Beat classification using pruned fuzzy KNN with reduced feature space using PCA. 

Effect of Noise With PCA Feature Reduction (Ntrain = 51600, Ntest = 51599) with PCA & PFKNN 
SNR (dB) 

PB APB LBBB Normal RBBB PVC A (G) R 

PPV 99.92 ± 0.05 78.88 ± 0.85 93.56 ± 0.3 98.54 ± 0.08 97.62 ± 0.21 93.92 ± 0.32 
No Noise 

SEN 99.91 ± 0.08 84.46 ± 1.14 94.24 ± 0.4 98.13 ± 0.09 98.78 ± 0.14 93.78 ± 0.2 
97.31 ± 0.10 

(94.74) 0.19 

PPV 99.96 ± 0.03 78.88 ± 1.98 93.39 ± 0.22 98.52 ± 0.07 97.57 ± 0.27 93.55 ± 0.56 
40 

SEN 99.85 ± 0.14 83.28 ± 1.25 94.70 ± 0.22 98.14 ± 0.09 98.69 ± 0.18 93.55 ± 0.56 
97.29 ± 0.03 

(94.53) 0.19 

PPV 99.92 ± 0.05 78.75 ± 1.39 93.33 ± 0.23 98.52 ± 0.05 97.39 ± 0.09 93.70 ± 0.36 
35 

SEN 99.87 ± 0.06 83.98 ± 0.62 94.08 ± 0.25 98.06 ± 0.05 98.61 ± 0.19 94.05 ± 0.42 
97.23 ± 0.05 

(94.62) 0.19 

PPV 99.91 ± 0.05 78.14 ± 1.52 92.92 ± 0.52 98.41 ± 0.07 97.49 ± 0.32 93.62 ± 0.43 
30 

SEN 99.91 ± 0.12 82.80 ± 1.01 93.94 ± 0.46 98.02 ± 0.08 98.51 ± 0.33 93.39 ± 0.55 
97.12 ± 0.20 

(94.25) 0.20 

PPV 99.86 ± 0.06 77.02 ± 0.80 91.76 ± 0.21 98.26 ± 0.05 97.01 ± 0.32 93.11 ± 0.13 
25 

SEN 99.89 ± 0.07 81.49 ± 1.14 93.04 ± 0.28 97.80 ± 0.05 98.39 ± 0.21 92.90 ± 0.37 
96.82 ± 0.06 

(93.71) 0.21 

PPV 99.89 ± 0.10 72.67 ± 0.63 89.89 ± 0.48 97.78 ± 0.09 96.11 ± 0.22 91.80 ± 0.65 
20 

SEN 99.73 ± 0.12 78.65 ± 0.86 90.36 ± 0.18 97.31 ± 0.08 97.83 ± 0.26 91.53 ± 0.75 
96.04 ± 0.08 

(92.28) 0.23 
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4.4. Analysis of Results 
Main advantage of using fuzzy KNN over simple KNN 
is the membership value of each class for a particular 
query beat. Hence it gives a much more informed deci-
sion by inclusion of a higher level decision process. To 
accomplish this, we can first normalize the firing 
strengths of each class and then use the following classi-
fication rule: If the normalized firing strength of the 
runner-up class lies within a certain threshold of that of 
the winner class then we can assume the winning class 
label to be doubtful and take the runner-up class label in 
to consideration as well. Mathematically the winner 
class label is considered to be doubtful if, 

( ) ( )
( )

i

winner runner up

c
i

x x
x

µ µ
θ

µ
−−

≤
∑

        (15) 

where θ is the threshold value and it is user specific. If 
we take winner and runner-up classes into consideration 
when inequality Eq.15 is satisfied, we can consider the 
beat classification as correct if winner or runner-up be-
longs to correct class. Following this strategy, overall 
accuracy versus threshold value is plotted in Figure 4. 
We can observe from the figure that accuracy increases 
with the relaxation of threshold value. 

Table 5 illustrates the time and space complexity of 
standard FKNN algorithm and our proposed PFKNN 
algorithm with fast nearest neighbor search using ATRIA. 
It can be seen from the table that PFKNN is very time 
efficient with small retained ratio. Overall accuracy and 
geometric mean of sensitivity of standard FKNN and 
PFKNN are also comparable. Hence, it highlights the 
effectiveness of using PFKNN. 
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Figure 4. Plot of overall accuracy a versus threshold value. 
 
Table 5. Time and space complexity for standard FKNN and 
PFKNN. 

Type of 
Algorithm 

Classification 
Time 

(Seconds) 

Retained 
Ratio 

R 

Overall 
Accuracy 

Geometric 
Mean 

Sensitivity 

Standard 
FKNN 1116 1.0 97.63 94.74 

PFKNN 
(With 11 
Features) 

353 0.19 97.32 94.58 

PFKNN 
(With 6 

Features) 
303 0.19 97.31 94.74 

 
Table 6. Comparison of beat classification techniques. 

Method Number of Beat Types Number of Features Database Size Accuracy (%) 

Osowski et al [26] 7 18 7,185 Beats 96.06 

Guler et al [27] 5 24 450 Beats 97.78 

Guler et al [28] 4 19 450 Beats 96.94 

Minami et al [4] 3 5 700 Beats 98 

Al-Fahoum et al [6] 4 6 1590 Beats 97.5 

Dokur et al [29] 5 15 1,000 Beats 97 

Prasad et al [5] 12 25 105,423 Beats 96.77 

Chen et al [8] 7 30 23,200 Beats 99.7 

Yu et al [30] 6 11 23,200 Beats 99.65 

Yu et al [31] 8 17 9,800 Beats 98.7 

PFKNN (Proposed) without PCA 6 11 23,200 Beats 99.30 

PFKNN (Proposed) with PCA 6 6 23,200 Beats 99.25 

PFKNN (Proposed) without PCA 6 11 104,700 Beats 97.35 ± 0.04 

PFKNN (Proposed) with PCA 6 6 104,700 Beats 97.30 ± 0.04       
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Many researchers have compared their methods with the 
other existing methods present in the literature. Table 6 
shows the comparison of the proposed approach with 
other methods in the literature. In our view, a fair com-
parison of methods is not possible as most of the re-
searchers have focused on different set of beat types and 
tested their methods on selected number of records pre-
sent in the MIT-BIH database. From the table, we can 
observe that accuracy of our method is comparable to 
other methods although we have tested our method on 
whole set of six beat types present in the MIT-BIH data-
base. Moreover, our feature set is very small (only six) 
and exhibits good time and space complexity. While 
using a limited set of 23200 beats, our accuracy is dropped 
by only 0.5% as compared to [30]. 

5. CONCLUSIONS 
Pruned fuzzy KNN (PFKNN) classifier is proposed for 
arrhythmia beat classification that can offer reduced 
computational complexity and simple incremental policy. 
A new pruning algorithm is proposed especially suited 
for KNN based classifiers that can prune the data effi-
ciently in less computational time without compromising 
the accuracy of the classifier. PCA is used to further re-
duce the feature set to only six features per beat. Results 
have proved that PFKNN can offer better computational 
complexity than FKNN without compromising the clas-
sification accuracy. Hence PFKNN is a suitable option 
for online implementation of such clinical decision sup-
port system for Arrhythmia beat classification that de-
mands less space and time complexity. Because of sim-
plicity of the proposed classifier it is very easy to incre-
ment further training data of similar beat types or new 
beat types. 
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