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ABSTRACT 
A new approach to estimating level of uncon-
sciousness based on Principal Component 
Analysis (PCA) is proposed. The Electroen-
cephalogram (EEG) data was captured in both 
Intensive Care Unit (ICU) and operating room, 
using different anesthetic drugs. Assuming the 
central nervous system as a 20-tuple source, 
window length of 20 seconds is applied to EEG. 
The mentioned window is considered as 20 
nonoverlapping mixed-signals (epoch). PCA 
algorithm is applied to these epochs, and larg-
est remaining eigenvalue (LRE) and smallest 
remaining eigenvalue (SRE) were extracted. 
Correlation between extracted parameters (LRE 
and SRE) and depth of anesthesia (DOA) was 
measured using Prediction probability (PK). The 
results show the superiority of SRE than LRE in 
predicting DOA in the case of ICU and isoflurane, 
and the slight superiority of LRE than SRE in 
propofol induction. Finally, a mixture model 
containing both LRE and SRE could predict 
DOA as well as Relative Beta Ratio (RBR), which 
expresses the high capability of the proposed 
PCA based method in estimating DOA. 
 
Keywords: Bispectral Index, Depth of Anesthe-
sia, Eignevalue Decomposition, Principal Com-
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1. INTRODUCTION 
To provide optimal working conditions for surgeons in 
the operating room as well as ensuring patient’s safety, 
an anesthesiologist’s effort is absolutely essential. How-
ever, patient awareness during surgery with the rate of 
1:1000 [1] and over dosing with anesthetic agents is of 
major clinical concerns of anesthesia. Therefore, the ne-
cessity to assess and monitor the depth of anesthesia 
(DOA) is obvious. In conventional methods, DOA is 
measured based on the monitoring of several physio-
logical signals such as respiration pattern, blood pressure, 

body temperature, tearing, sweating and heart rate [1], 
even though these signals are affected indirectly by an-
esthetic agents. On the other hand, these agents have 
significant effects on the electroencephalogram (EEG) 
waveform. 

A large amount of information can be extracted from 
EEG waveform based on different signal processing 
methods. Ability of this information to predict DOA de-
pends on the variation of its value in different levels of 
anesthesia. In general, the goal is to produce a unit-less 
EEG-based index that monotonically quantifies DOA. 
Several methods are available that have recently been 
reviewed by Freye et al. [2] and Jameson et al. [3]. 

The earliest methods were based on the FFT analysis 
of EEG signals. These approaches tend to find parame-
ters that describe spectrum characteristics. Peak power 
frequency (PPF), median power frequency (MPF), and 
spectral edge frequency (SEF) have been the first de-
scriptors in this field. Another parameter extracted from 
spectrum was the ratio of power in two empirically de-
rived frequency bands [4]. In a work presented by Traast 
et al. [5] the power of EEG in different frequency bands 
was determined and the results indicate pronounced 
changes in EEG during emergence from propo-
fol/sufentanil total intravenous anesthesia. 

Zikov et al [6] proposed a wavelet based anesthetic 
value for central nervous system monitoring (WAVCNS) 
that quantifies the depth of consciousness between 
awake and isoelectric state. Their proposed technique is 
based on the analysis of the single-channel (frontal) EEG 
signal using stationary wavelet transform (SWT). The 
wavelet coefficients calculated from the EEG are pooled 
into a statistical representation which is then compared 
to well-defined awake and isoelectric states. Presenting a 
clinical study, they compared this technique with BIS 
monitor (Aspect Medical Systems, MA) as a reference 
and showed that they are well correlated (r=0.969). Fur-
thermore, WAVCNS had a faster algorithm than BIS and 
was well suited for use as a feedback sensor in advisory 
systems and closed-loop control schemes. 

Ferenets et al [7] analyzed the performance of several 
new measures based on the regularity and complexity of 
the EEG signal. These measures consist of spectral en-
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tropy (SpEn), approximate entropy (ApEn), and Higuchi 
fractal dimension (HFD) and Lempel-Ziv complexity 
(LZC). Their results show superior ability of the men-
tioned measures to predict DOA. Due to the arguments 
presented in their paper it is not feasible to point out “the 
best” EEG measure for the assessment of the depth of 
sedation, their results indicate that the measures sensitive 
to both the power spectrum as well as the amplitude distri-
bution, i.e., the ApEn, LZC and HFD, perform slightly bet-
ter than the other two tested measures. In the case of their 
tested measures, they recommend window length of 20 s. 

Application of neural networks (NN) in estimating 
DOA is reviewed by Robert et al [8]. They examined a 
large number of EEG derived parameters as NN inputs 
including spectral, entropy, complexity, bicoherence, 
wavelet transformation derived, autoregressive modeling 
and hemodynamic parameters as well as a great NN to-
pology such as MLP and Self-Organizing networks. Fi-
nally, they recommended a two hidden layers MLP 
model or an ART model in which their weights are con-
tinuously updated after training phase. Moreover the use 
of qualitative parameters, besides quantitative ones, as 
network inputs is recommended. In a recent work by 
Lalitha et al [9] non-linear chaotic features and neural 
network classifiers are used to detect anesthetic depth 
levels. Chaotic features consist of correlation dimension 
(CD), Lyapunov exponent (LE) and Hurst exponent (HE) 
are used as features and two neural network models, i.e., 
multi-layer perceptron network (feed forward model) 
and Elman network (feedback model) are used for clas-
sification. Their experimental results show that the 
Lyapunov exponent feature with Elman network yields 
an overall accuracy of 99% in detecting the anesthetic 
depth levels. 

According to various mentioned methods, different 
EEG monitors have been developed. The Narcotrend™ 
monitor (Monitor Technik, Bad Bramsted, Germany) that 
is based on pattern recognition of the raw EEG and clas-
sifies the EEG into different stages, introduces a dimen-
sionless Narcotrend™ index from 100 (awake) to 0 
(electrical silence). The algorithm uses parameters such 
as amplitude measures, autoregressive modeling, fast 
Fourier transform (FFT) and spectral parameters [10]. 
The SEDLine™ EEG monitor capable of calculating of 
PSI™ index uses the shift in power between the frontal 
and occipital areas. The mathematical analysis includes 
EEG power, frequency and coherence between bilateral 
brain regions [11]. Datex-Ohmeda™ s/5 entropy Module 
uses entropy of EEG waves to predict DOA [3] and fi-
nally BIS™ (Aspect Medical Systems, Newton, MA), 
that is the first monitor in the marketplace and has be-
come the benchmark comparator for all other monitors, 
introduces the BIS™ index (that is a unit-less number 
between 100 and 0) as a DOA indicator based on com-
bination of spectral, bispectral and temporal analysis [4]. 
Approximately 450 peer-reviewed publications between 
1990 and 2006 have examined the effectiveness, accu-
racy and usefulness, both clinical and economical, of the 
BIS™ monitor [3]. 

The aim of Principal Component Analysis (PCA) is to 
find source signals which are gaussian and uncorrelated. 
PCA can be interpreted in terms of blind source separa-
tion methods inasmuch as PCA is like a version of ICA 
in which the source signals are assumed to be gaussian. 
In other words, PCA finds a matrix which transforms the 
signal mixtures into a new set of uncorrelated signals. 
Extracted signals are ordered via PCA according to their 
variances (variance can be equated with power or ampli-
tude). Consequently, the function of PCA is more than sim-
ply finding a transformation of the signal mixtures [12]. 

PCA has been widely used in pattern recognition and 
signal processing. The major applications and examples 
are engineering and scientific disciplines, e.g., in data 
compression, feature extraction, noise filtering, signal 
restoration, and classification [13]. PCA is used widely 
in data mining as a data reduction technique. In image 
processing and computer vision, PCA representations 
have been used for solving problems such as face and 
object recognition, tracking, detection, background mod-
eling, parameterizing shape, appearance, and motion [14, 
15]. In [16], the noise sensitivity, specificity and accu-
racy of the PCA method is evaluated by examining the 
effect of noise, base-line wander and their combinations 
on the characteristics of ECG for classification of true 
and false peaks. 

The most important biomedical application of ICA and 
PCA is identifying different types of generators of the 
EEG as well as identifying its magnetic counterpart 
(MEG) [17]. MEG measurements give basically very 
similar information to EEG, but with a higher spatial 
resolution. MEG is mainly used for basic cognitive brain 
research. Another contribution is noise cancellation for 
brain signals such as electroencephalograms and magne-
toencephalograms (EEG/MEG). References [18,19] in-
troduced a new method to separate brain activity from 
artifacts using ICA. The approach is based on the as-
sumption that the brain activity and the artifacts, e.g. eye 
movements or blinks, or sensor malfunctions, are ana-
tomically and physiologically separate processes, and 
this separation is reflected in the statistical independence 
between the magnetic signals generated by those proc-
esses. In addition, ICA has been applied to problems in 
fields as diverse as speech processing, brain imaging (e.g., 
fMRI and optical imaging [20]), electrical brain signals 
(e.g., EEG signals), to extract features from a special array 
of electroencephalographic electrodes. The ICA framework 
can also be used for feature extraction from other kinds of 
data, for example, color and stereo images [21,22]. 

Additionally, EEG from patients undergoing surgery 
was collected. We introduce a novel method based on 
PCA. Our concentration would be on eigenvalues and 
eigenvectors. Finally, based on proper statistical methods 
and our data bank, the correlation between the extracted 
parameters and BIS index is observed. The reminder of 
paper is organized as follows: In part 2, methods and 
materials is described. The results and discussion are 
presented in section 3, and section 4 contains the final 
conclusion. 
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2. METHODS AND MATERIALS 
In this section, the experiment, the data acquisition, and 
the data analysis are described. 

2.1. Patients 
Following the approval of the ethical committee of the 
medical school, eight coronary artery bypass graft sur-
gery candidates were selected (6 males, 2 females, of 
average age 56.2 years and the average weight of 68.3kg) 
and written informed consents were obtained from all 
selected subjects. Inclusion criteria were absent of neu-
rological disorders such as cerebrovascular accidents and 
convulsions. Preoperative neurological complications 
(such as cerebral emboli and convulsion) caused exclu-
sion from the study. The anesthesiologist performed 
Preoperative evaluation on the day before surgery. For 
anxiolysis, the patients were premedicated by intramus-
cular morphine 0.1 mg/kg and promethazine 0.5 mg/kg, 
30 minutes before transfer to operating room. After arri-
val in operating room, electrocardiogram, pulse oxy-
metry, depth of anesthesia, and invasive blood pressure 
monitoring was established. The BIS-QUATTRO sen-
sorTM (Aspect Medical Systems, Newton, MA) applied 
to the forehead of the patients before induction of anes-
thesia. Then 8 patients after preoxygenation with O2, 
were anesthetized in the same manner by intravenous 
thiopental sodium (5mg/kg), pancuronium bromide (0.1 
mg/kg), fentanyl (5μg/kg), and lidocaine (1.5 mg/kg). 
After the induction of anesthesia and until cardiopul-
monary bypass beginning, anesthesia continued by ad-
ministration of isoflurane (1 MAC), morphine (0.2 
mg/kg) and O2 (100%). During coronary artery bypass 
grafting under CPB, patients were anesthetized by pro-
pofol (50-150 μg/kg/min) under BIS control (40-60) and 
O2 (80%). For organ protection during CPB, patients 
were undergone mild hypothermia (31-33°C). After 
coronary artery bypass grafting and patients rewarming 
and obtaining standard CPB separation criteria, the pa-
tients gradually were weaned from CPB. After separation 
from CPB, anesthesia was continued by isoflurane (1 
MAC) and O2 (100%) administration to the end of sur-
gery. After surgery, patients were transported to ICU 
under portable monitoring and manual ventilation. In the 
ICU mechanical ventilation with 60% fractioned inspired 
oxygen and standard homodynamic monitoring were 
continued. In ICU and until complete recovery, the seda-
tive regimen was intravenous morphine (2mg) if needed. 
In this study the raw EEG data and relative BIS index 
were collected during whole period of operation from 
operative room arrival to complete recovery in the inten-
sive care unit. 

2.2. Data Acquisition 
The EEG signal was collected by using a BIS-QUAT-
TRO Sensor™ that was composed of self- adhering 
flexible bands holding four electrodes, applied to the 
forehead with a frontal-temporal montage. 

The used EEG lead was Fpz-At1, and the reference 
lead was placed at FP1. The sensor was connected to a 

BIS-X-P Monitor and all binary data packets containing 
raw EEG data wave signals and BIS index which is con-
verted to binary format using an A/D converter operating 
with 128 Hz sampling frequency were recorded via an 
RS232 interface on a laptop using a Bi-spectrum ana-
lyzer developed with C++ Builder by Satoshi Hagihira 
[23]. The algorithms that are presented in this study were 
tested on these raw EEG signals. 

The sensor was attached to the patient’s forehead at 
the beginning of anesthesia and the data were collected 
continuously until he/she awoke at ICU. Therefore, in 
this study a large amount of EEG data with their BIS 
index was collected for each patient. Although DOA is 
an index beyond BIS index and BIS index needs to be 
validated and processed, in this paper the BIS index is con-
sidered as DOA for simplicity. Some other events such as 
changes of anesthesia regimen, intubations and applying 
CPB and transferring to ICU were recorded. Because of 
short acting time of thiopental sodium (approximately 
15-20 sec), this part of EEG data was not analyzed. 

2.3. Principal Component Analysis 
PCA is a well-known technique in multivariate analysis 
and data mining. One of the properties of PCA is Ei-
genvalue Decomposition. The aim of PCA is to derive a 
relatively small number of decorrelated linear combina-
tions (principal components) of a set of random zero- 
mean variables while also retaining the signal informa-
tion as much as possible [24]. 

Principal Components Analysis has the applications of 
dimensionality reduction, determination of linear com-
binations of variables, feature selection, multidimen-
sional data visualization, and identification of underlying 
variables. 

Often components with the smallest variances called 
minor components (MCs) are regarded as unimportant or 
associated with noise, while those within which the input 
data have the largest variances are regarded as important. 
However, in some applications, the MCs are of the same 
importance as the PCs, which is noteworthy here. In the 
proposed algorithm the MCs reveal meaningful informa-
tion. In the case of feature extraction and dimension re-
duction, PCA proposes a method based on the eigen 
structure of data covariance matrix. If signals are 
zero-mean, the covariance and correlation matrices are 
identical. Applying the PCA or equivalently Karhunen- 
Loeve transform (KLT) as a technique for eigenvectors and 
eigenvalues computation, the algorithm could be formu-
lated as follows. Let X the signal to be analyzed, then 

mmTT
XX VVKXKXER ×

∧
ℜ∈Λ== )}()({       (1) 

Where XXR
∧

 }{ TXXE=  is the covariance matrix of 
zero-mean signal X and E is the expectation operator. 
Also, },...,,{ 21 mdiag λλλ=Λ  is a diagonal matrix con-

taining m eigenvalues and mm
mvvvV ×ℜ∈= ],...,[ 21  are 

principal eigenvectors. Applying KLT as a linear trans-
formation, principal and minor components could be 
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extracted as follows 

XVy T
SP =                    (2) 

Where T
m kxkxkxX )](),...,(),([ 21=  is the zero-mean 

input vector and T
nP kykykyy )](),....,(),([ 21=  is the 

output vector called the vector of principal components 
(PCs) and T

nS vvvV ],...,,[ 21= ∈ ℜ nm×  is the set of sig-
nal subspace eigenvectors, with the orthonormal vectors 

T
imiii vvvv ],...,,[ 21= . The vectors iv  are eigenvectors of 

the covariance matrix, while the variances of the PCs 
iy  are the corresponding principal eigenvalues. Minor 

components are 
XVy T

NM =                        (3) 
Where ],...,,[ 11 +−−= nmmmN vvvV  consists eigenvectors 

associated with the smallest eigenvalues [21]. The basic 
problem is the standard eigenvalue problem which can 
be formulated by the equations 

nivvR iiiXX ,...,2,1, == λ            (4) 

Where iv  are the eigenvectors and iλ  are the cor-
responding eigenvalues. Note that the above equation 
can be written in matrix form Λ=VRV XX

T . 
In the standard numerical approach for extracting the 

principal components, first the covariance matrix 
XXR }{ TXXE=  is computed and then its eigenvectors 

and corresponding eigenvalues are extracted by one of 
the known numerical algorithms. However, if the input 
data vectors have a large dimension, then the covariance 
matrix XXR  becomes very large and it may be difficult 
to compute the required eigenvectors [24]. 

A neural network approach with adaptive learning al-
gorithms enables us to find the eigenvectors and the as-
sociated eigenvalues directly from the input vectors 
without a need to compute or estimate the very large 
covariance matrix XXℜ . Such an approach will be espe-
cially useful for nonstationary input data, i.e., in cases of 
tracking slow changes of correlations in the signals or in 
updating eigenvectors with new samples. 

Every neuron inside the human brain acts like a small 
electric generator when it is active. If large numbers of 
neurons become simultaneously active it is possible to 
measure the resultant electrical effects at the scalp using 
an array of electrodes. Our virtual assumption is to simu-
late the central nervous system (CNS) as a 20-tuple 
source, which generate 20 signals. The EEG sensor at-
tached to patient forehead collect different 20-tuple mix-
tures of these sources. Our aim is to track small changes, 
but due to time-domain nature of our analysis, small 
window lengths are more preferable. Fortunately, this 
would reduce the dimension. Nevertheless, large data 
vectors made the covariance matrix XXR  very large. 
Different window and epoch (each mixed signal is 
named as an epoch) lengths have been investigated and 
at the end, window length of 20 seconds was selected for 
further analysis. After that, each window is divided into 
20 equal and nonoverlapping epochs. So, epoch length is 

equal to one second. The mentioned epochs are consid-
ered as 20 mixed signals. Then, PCA analysis and espe-
cially eigenvalue decomposition are applied to the elec-
troencephalogram (EEG). Thus, the covariance matrix 

XXR }{ TXXE=  is computed and then its eigenvectors 
and associated eigenvalues are determined. The extracted 
eigenvalues presented an acceptable behavior in different 
depths of anesthesia. Our concentration was put specifi-
cally on largest remaining eigenvalue (LRE) and small-
est remaining eigenvalue (SRE). The correlation between 
DOA and LRE were measured with regression analysis. 
The same was done for SRE and DOA. 

2.4. Statistical Analysis 
The coefficient of determination (R2) was calculated to 
evaluate the performance of different parameters and 
their combinations to predict DOA. Statistical signifi-
cance was assumed at probability levels of P≤0.05. Our 
aim was to maximize the correlation between the meas-
ured sub- parameters (LRE and SRE) and BIS index, i.e., 
it is equivalent to nonlinear regression with ordinary 
least squares. Also, the correlation between BIS index 
and the extracted sub-parameters was investigated with 
the model-independent Prediction Probability (Pk) [25]. 
As a nonparametric measure, the Pk is independent of 
scale units and does not require knowledge of underlying 
distributions or effort to linearize or otherwise transform 
scales. A Pk value of 1 means that the predicting vari-
ables (LRE and SRE) always predict the value of the 
predicted variable (e.g., BIS index) correctly. Pk value of 
0.5 means that predictors predict no better than only by 
chance. The Pk values were calculated on a spreadsheet 
using the Excel 2003 software program and the 
PKMACRO written by Warren Smith [25]. In the case of 
inverse proportionality between indicator and indicated 
parameters, the actual measured Pk value is 1-Pk. 

Another statistical analysis used in this study was ordinal 
logistic regression. This regression examines the relation-
ship between one or more predictors and an ordinal re-
sponse. The index that determines the efficiency of this 
regression model is called “Concordant”, which shows the 
percentage of values predicted successfully with the model. 

3. RESULTS AND DISCUSSION 
The results were classified in drug groups (isoflurane 
and propofol) and Intensive Care Unit (ICU). The corre-
lation between the extracted parameters and BIS index 
(Bispectral index) is measured by means of the statistical 
methods described in the previous section and the results 
are presented. 

3.1. SRE 
First and foremost, it can be concluded that SRE is di-
rectly proportional to the BIS index. The scatterplots depicted 
in Figure 1 and Figure 2 show the above assert clearly. 

Figure 3 compares the efficiency of SRE and LRE in 
predicting depth of anesthesia in different groups (ICU 
and drugs). In this figure, concordant was used as a sta-
tistical measure. 
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Figure 1. BIS index versus Smallest Remaining Eigen-
value (SRE) in ICU 
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Figure 2. BIS index versus Smallest Remaining Eigen-
value (SRE) in propofol 
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Figure 3. Concordant for different groups versus SRE and LRE 

 
The results show the higher capability of SRE when 

it is used as a measure of DOA in ICU, rather than 
when it is used as measure of DOA in isoflurane and 
propofol groups. For further analysis, prediction prob-
ability (PK) was used. PK values are presented as 
mean ± STD in Table 1. 

It should be noted that the Pk values are calculated for 
the whole BIS index range and without being divided 
into predetermined groups. This is the reason of the ex-
istence of smaller values in comparison with concordant 
values. The values in Table 1 corroborate the results of 
Figure 3. 

Table 1. Prediction probabilities of different group for SRE 

Different Groups PREDICTION PROBABILITY 
ICU  65.5±8 % 

Isoflurane 63±8 % 
Propofol 58.5±10 % 
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Figure 4. BIS index versus Largest Remaining Eigen-
value (LRE) in ICU 
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Figure 5. BIS index versus Largest Remaining Eigenvalue 
(LRE) in isoflurane 

Table 2. Prediction probabilities of different group for LRE 

Different Groups Prediction Probability 
ICU 60±6.97 % 
Isoflurane 60.5±8 % 
Propofol 62.5±9 % 

3.2. LRE 
LRE is inversely proportional to the BIS index, that is, 
LRE increases with the increasing depth of anesthesia. 
Scatterplots shown in Figure 4 and Figure 5 could prove 
the above claim. 

In order to compare the efficiency of LRE algorithm 
in different groups we should refer to Figure 3. This 
figure indicates that there is no obvious superiority in 
any of these groups. 
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In this case prediction probability (PK) provides us with 
a more precise insight. PK values are presented as 
mean±STD in Table 2. The measured PK values presented 
in Table 2 confirm the result of Figure 3 for LRE. The 
only extra information extracted from Table 2 is that in the 
case of propofol induction the results are slightly better. 

Finally, Figure 3 expresses the superiority of SRE 
than LRE in predicting DOA in the case of ICU and 
isoflurane induction, and the slight superiority of LRE 
than SRE in propofol induction. 

3.3. Relative Beta Ratio 
Finally a mixture model including both LRE and SRE is 
compared to the model containing Relative Beta Ratio 
(RBR). RBR is calculated as 

Hz

Hz

P
PRBR

2011

4730log
−

−=                  (5) 

Where, P30-47Hz and P11-20Hz indicate the power spectral 
density in frequency ranges of 30-47 Hz and 11-20 Hz, 
respectively. A mixture model is a model in which all of 
the model parameters are involved in predicting the de-
sired index. For instance, in our mixture model, BIS in-
dex is predicted using both LRE and SRE parameters. 
RBR is said to be the main parameter in calculating the 
BIS index and is referred to as an effective and critical 
parameter in predicting depth of anaesthesia [4]. Figure 
6 reveals a high similarity between the proposed mixture 
model containing both LRE and SRE parameter and the 
main parameter of BIS monitor which is called RBR. 

In this figure, the group containing isoflurane induc-
tion is omitted. Both of the parameters (LRE and SRE) 
perform more satisfactorily in ICU than propofol induc-
tion. 

4. CONCLUSION 
A method based on PCA is proposed to estimating DOA. 
The principal components are extracted and the related 
eigenvalues are calculated as well. The smallest and larg-
est eigenvalues express a meaningful behavior due to the 
changes of BIS index. So, the above parameters are se-
lected for estimating DOA. 
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Figure 6. Comparison of RBR and proposal mixture 
model based on concordant values 

The main result of applying the foregoing algorithm is 
that SRE is directly proportional to the BIS index. On the 
other hand, LRE is inversely proportional to the BIS 
index. All in all, the results show an acceptable correla-
tion between the extracted parameters and DOA. The 
LRE and SRE are extremely capable of estimating DOA, 
especially in ICU. This is due to the ability of PCA in 
calculating the changes in signal energy and the changes 
in signals complexity as well. On the other hand, it is 
shown [7] that the EEG signal complexity changes 
meanwhile patients level of consciousness vary. Thus, 
PCA could be a powerful tool for predicting BIS index. 

Except in propofol, the SRE parameter could predict 
the BIS index better than LRE. Consequently, the mix-
ture model containing both LRE and SRE is approxi-
mately equal to a model containing RBR in predicting 
BIS index. 

Another point that should be mentioned is that the 
original BIS is in fact much more than its components. 
The elaborate artifact rejection algorithms as well as the 
nature of the nonlinear function to combine the compo-
nents have an important impact on the original BIS value, 
which were not considered in this study. Consequently, 
in order to improve the accuracy of the depth of anesthe-
sia estimation, comparison against sedation scales (such 
as OAA/S) and drug levels is needed. The reason is that 
BIS is not equal to depth of anesthesia but needs to be 
validated for DOA assessment itself. 

The work reported is preliminary. Although the results 
are significant, wide patient population is necessary for 
better evaluation. In conclusion, the approach used in 
this work based on the application of PCA could propose 
the use of PCA in estimating DOA. 
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