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Abstract 
BellaGel SmoothFine® implant is a novel nanotextured silicone breast im-
plant. The objective of this study was to characterize differences of BellaGel 
SmoothFine® surfaces with commercial available implant surfaces in terms of 
texture, topography, and wettability as well as the behavior of capsular con-
tracture. The surface textures of breast implants from two different manufac-
turers (Hans Biomed and Motiva) were evaluated. The implants utilized in 
this study were BellaGel Smooth®, BellaGel Textured®, BellaGel SmoothFine® 
or Motiva SilkSurface®. The shell textures of these implants were characte-
rized using a scanning electron microscopy, three dimensional confocal laser 
scanning microscope, and contact angle goniometer. Silicone breast implants 
were emplaced beneath the panniculus carnosus muscle on the dorsum of 
Sprague Dawley rats and observed for up to 8 weeks postoperative days. The 
fibrous capsules around silicone implants were explanted for histological 
examination. BellaGel SmoothFine® exhibits a relatively flat, with little or no 
depth in the texturing, 5.96 ± 0.41 μm surface roughness, and a contact angle 
of 103.14 ± 2.06 BellGel SmoothFine® implant resulted in significant decreas-
es in capsule thickness (P < 0.05) and collagen production (P < 0.05) at 8 
weeks with respect to the BellaGel Smooth® and BellaGel Textured® implant 
groups. Significant (P < 0.05) decreases in inducible nitric oxide synthase, an 
inflammation marker, were observed in the BellGel SmoothFine®. Fibrous 
tissue formation markers (Vimentin and alpha-smooth muscle actin) were 
significantly reduced in BellaGel SmoothFine® surfaces versus BellaGel 
Smooth® surfaces (P < 0.05) or BellaGel Textured® groups (P < 0.05). Overall, 
these findings suggest that the nanotextured BellaGel SmoothFine® implant is 
associated with less breast implant derived capsular contracture than other 
surfaces. 
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1. Introduction 

According to a 2013 report from the American Society of Plastic Surgeons, there 
are more than 200,000 women in the USA who had reconstructive or cosmetic 
breast augmentations. The medical literature describes that silicone gel-filled 
breast implants are linked with significant adverse health effects [1] [2]. The 
most common local complication associated with silicone gel-filled breast im-
plant is capsular contracture, with a combined overall incidence of 10.6% [3] [4] 
[5] [6]. Capsular contracture is a multifactorial fibrotic foreign body reaction 
that promotes the hardening and tightening of the capsule at the contact site 
between the tissue and implant, which then causes dissatisfaction and pain after 
breast augmentation in addition to deformity and device failure [7]. Though the 
pathogenesis of capsular contracture has not been fully elucidated, a variety of 
causal associations including surface texture of the breast implant have been 
proposed to date [8].  

The surface texture of the shell surrounding breast implant acts as the inter-
face between the breast tissue and device [9] and its understanding is important 
in the field of implantation. They can markedly alter the pathophysiology and 
directly influence cellular biology, body tissues, and fibrous capsule develop-
ment, specially the adherence of the tissue to the breast implant and the align-
ment of collagen fibers [8] [10] [11]. Traditionally, there are two main kinds of 
implants: smooth and textured implants. Smooth-surface implants are used 
worldwide; however, the prevalence of capsular contracture is higher with the 
smooth implants than others. Meta-analyses studies showed approximately 5 
times increase in the contracture rate on smooth surface with respect to textured 
surfaces [12] [13]. Textured-surface implants, which can disrupt the contractile 
forces, were developed to minimize capsular contracture [8]. However, serious 
complications such as double capsule formation, late seroma, and anaplastic 
large cell lymphoma (ALCL) have been appeared for textured implants due to 
their aggressive texturization [14] [15]. 

Recently, numerous articles have proposed the use of nanometric surface 
topographies to induce specific cellular behavior like cell proliferation, at-
tachment, migration, and differentiation, which affect the prevalence rate of 
capsular contracture [8] [16] [17] [18] [19] [20]. Surfaces with nanoscale 
roughness closer to cellular dimensions are known to exhibit profound effects 
on cells and also produce a reduced foreign body response [21] [22]. BellaGel 
SmoothFine® implants have a novel nano textured surfaces. The complication 
rates of BellaGel SmoothFine® were almost 10 times less than any other devices 
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in our practice [23]. Our intuitive aim here is to evaluate the tissue’s reaction 
to the BellaGel SmoothFine® surface texture with different surfaces using a rat 
implant model.  

2. Materials and Methods 
2.1. Breast Implants 

Each shell of implants was obtained from 4 different breast implant devices 
(Table 1).  

2.2. Scanning Electron Microscope (SEM) 

A 2-cm2 shell sample was obtained from each of BellaGel Smooth®, BellaGel 
Textured®, BellaGel SmoothFine®, and Motiva SilkSurface® implants. These spe-
cimens were cleaned twice in isopropylalcohol and viewed via an SEM (Hitachi, 
Tokyo, Japan). Analysis was done at accelerating voltage of 5 keV. The electron 
beam intensity was I = 10 - 11 A. 

2.3. 3D Confocal Images 

Physical properties of silicone breast implant surfaces including roughness, 
skewness, and kurtosis were observed by looking at their topographical features 
using a 3D confocal laser scanning microscope (LEXT OLS5000, Olympus Cor-
poration, Tokyo, Japan). The experiments have been performed on 3 sample 
areas. 

2.4. Wettability 

Wettability assessment was carried out using a contact angle meter Phoenix-MT(T) 
(SEO, Suwon, Gyeonggido, Korea). The experiments were undertaken three 
times to ensure significance of the tests. 

2.5. In Vivo Animal Experiment 

Sixty Sprague-Dawley rats with a body weight of about 250 - 300 g (Orientbio, 
Seongnam, Gyeonggido, Korea) were maintained in an exceedingly 12/12 
light/dark cycle under a pathogen-free condition and given water ad libitum. 
Animal care and experimental procedures were approved from the Institutional 
Animal Care and Use Committee of Seoul National University Bundang Hospital  
 
Table 1. Breast implant types included in this study. 

Designation Trade Name Manufacturer Surface Manufacturing Method 

Smooth BellaGel Smooth® HansBiomed None 

Macro BellaGel Textured® HansBiomed Salt loss 

Smooth BellaGel SmoothFine® HansBiomed Imprinting 

Smooth Motiva SilkSurface® Motiva Imprinting 
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(approval number: N-1803/454-602). 
In this study, 5 rats were allocated to each group and divided into four 

groups: 1) BellaGel Smooth® implant, 2) BellaGel Textured® implant, 3) Bella-
Gel SmoothFine® implant, and 4) Motiva SilkSurface® implant. Each animal 
was anesthesed through inhalation using isoflurane (Hana Pharm, Seoul, Ko-
rea) and the incision site was made approximately 2 cm long on the dorsal part 
of rat. Subsequently, silicone breast implants were placed to the subpaniculus 
pocket. After 1, 2, and 8 weeks with the implant, rats were sacrificed with car-
bon dioxide.  

2.6. Hematoxylin & Eosin Staining 

Implants were excised in block with the surrounding tissue. Harvested speci-
mens were fixed with 10% neutral buffered formalin and embedded in paraffin. 
Sections (5 µm) of tissue samples were stained with hematoxylin and eosin (H & 
E) before dewaxing and dehydration for histological analysis. Each stained slide 
was examined at × 100 magnification using a microscope (Carl Zeiss, Germany). 
The capsular thickness was calculated using Image J software (National Insti-
tutes of Health, Bethesda, MD, USA).  

2.7. Masson’s Trichrome Staining 

Masson’s Trichrome stain was performed according to manufacturer’s instruc-
tions (Polysciences, Pennsylvania, USA). 

2.8. Western Blot Analysis 

The capsule tissue around silicone breast implant was prepared using a RIPA 
buffer (Sigma Aldrich, MO, USA) that contained phosphatase inhibitor cocktail 
(BioPrince, Chuncheon, Gangwon, Korea). Samples were then denatured by 
heating for five min and immediately placed on ice. After centrifugation, ali-
quots containing approximately 60 μg protein were separated by gel electropho-
resis. After electrophoresis, the protein was transferred from the gel onto nitro-
cellulose membranes and then the membranes were blocked in 5% skim milk for 
2 h. After blocking, the membranes were subjected to western blotting with an-
tibodies for iNOS, α-SMA, ARG1 (1:1000; Abcam, Cambridge, UK), Vimentin 
and β-actin (1:1000; Santa cruz, CA, USA) at 4˚C for overnight. The blot was 
incubated with secondary antibodies (1:5000 in TBST, rabbit for iNOS and 
α-SMA; mouse for ARG1 and β-actin) for 1 h for protein detection. Finally, pro-
teins were detected using the enhanced chemiluminescence reagent (Amersham 
Co. Newark, NJ, USA) following the manufacturer’s instruction. The density of 
protein bands was measured using the Image J (National Institutes of Health, 
USA). The relative quantities were normalized by β-actin. 

2.9. Statistical Analysis 

All values are reported as means ± S.E.M. (standard error of the mean). Statistic-
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al analyses were performed using SPSS statistical software (SPSS 11.5, Armonk, 
NY, USA). For all data, significant differences were determined using an un-
paired t-test. For all analyses, P < 0.05 was defined as statistically significant. 

3. Results 
3.1. Texturing Analysis of BellaGel SmoothFine® Implant 

BellaGel Smooth® texture was found a characteristic relatively flat appearance, 
with no height or no depth in the texturing and occasional surface irregularity 
(Figure 1). The BellaGel Textured® has striking surface characteristics and is 
made up of the pitted irregular cuboid appearance of the pores (“open-cell net-
work”) with sizes ranging from 100 to 400 μm width and depths varying between  
 

 
Figure 1. Texturing analysis of BellaGel SmoothFine® implant. SEM images of the top 
view (50×, 100×, and 200×) of BellaGel Smooth®, BellaGel Textured®, BellaGel Smooth-
Fine®, and Motiva SilkSurfaces®. 
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100 and 400 μm. It has an average well density of six per mm2 and pores com-
posed of 80% of the total surface area (pores with 70 nm diameter). BellaGel 
SmoothFine® and Motiva SilkSurface® has more physically similar shapes and a 
more random and bumpy surface topography (Figure 1). 

3.2. Surface Characterization of BellaGel SmoothFine® Implant 

The surface area per mm2 from 4 breast implant devices ranged from 1.0 mm2 
for the BellaGel Smooth® to 4.62 mm2 for the BellaGel Textured® (Table 2). The 
BellaGel SmoothFine® and Motiva SilkSurface® have the surface area value, with 
1.29 ± 0.01 mm2 and 1.32 ± 0.02 mm2, respectively.  

Surface roughness is defined as the variance in the surface height with respect 
to the reference plane. Of the four implant textures tested, the BellaGel Smooth® 
surface contains a nano-scale roughness value of 0.40 μm ± 0.20 μm (Table 2 
and Figure 2). The relatively large increased peak roughness value obtained for  
 
Table 2. 3D surface parameters including surface area, roughness, kurtosis, and skewness. 

Breast implant Surface area Roughness Kurtosis Skewness 

BellaGel Smooth® 1.00 ± 0.00 0.40 ± 0.20 14.70 ± 12.56 0.45 ± 0.53 

BellaGel Textured® 4.62 ± 1.25 100.10 ± 10.40 1.90 ± 0.14 −0.65 ± 0.19 
BellaGel 

SmoothFine® 
1.29 ± 0.01 5.96 ± 0.41 4.23 ± 0.68 0.36 ± 0.19 

Motiva SilkSurface® 1.32 ± 0.02 3.05 ± 0.82 5.03 ± 1.26 0.89 ± 0.33 

 

 
Figure 2. Surface characterization of BellaGel SmoothFine® 
implant. Confocal laser 3-D topography of BellaGel Smooth®, 
BellaGel Textured®, BellaGel SmoothFine®, and Motiva Silk-
Surfaces®. 
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the BellaGel Textured® surfaces (100.10 μm ± 10.40 μm), which were about 250 
times rougher than the BellaGel Smooth® surfaces (Table 2 and Figure 2). The 
BellaGel SmoothFine® surface has a roughness value of 5.96 μm ± 0.41 μm, 
which is relatively less rough than the BellaGel Textured® surface (P < 0.001). 
Motiva SilkSurface® contains nano-scale features with an average roughness of 
3.05 μm ± 0.82 μm, this low roughness therefore would reduce the friction and 
particle lose (Table 2 and Figure 2). 

The positive skewness values (Sk > 0) exhibited by the BellaGel Smooth® (Sk = 
0.45 ± 0.53), BellaGel SmoothFine® (Sk = 0.36 ± 0.19), and Motiva SilkSurface® 
(Sk = 0.89 ± 0.33) implants suggests more peaks than valleys on the surfaces of 
these samples (Table 2). In contrast, the negative skewness value (Sk < 0) exhi-
bited by the BellaGel Textured® (Sk = −0.65 ± 0.19) indicates the presence of 
more valleys than peaks on the surfaces (Table 2).  

The BellaGel Smooth® surfaces exhibited an excess kurtosis value (Sku = 14.70 ± 
12.56) suggesting that a repetitive surface with spikes. The smaller kurtosis val-
ues obtained for the BellaGel Textured® (1.90 ± 0.14), BellaGel SmoothFine® 
(4.23 ± 0.68), and Motiva SilkSurface® (5.03 ± 1.26) implants suggesting that 
bumpier and random surface.  

Contact angle measurement was carried out to investigate the hydrophobicity 
of the surface texture. All implants were hydrophobic with contact angles all 
greater than 100˚ (Figure 3). From the measurements it was determined that the 
BellaGel Smooth® and BellaGel SmoothFine® surface were less hydrophobic than 
others, exhibiting a lower contact angle of 102.76˚ ± 0.62˚ and 103.14˚ ± 2.06˚, 
respectively (Figure 3) while the larger contact angle of 125.11˚ ± 2.35˚ and 
121.61˚ ± 5.54˚ were obtained for the Motiva SilkSurface® and the BellaGel Tex-
tured® surface, respectively (Figure 3). The values indicate that the BellaGel 
Textured® surface and Motiva SilkSurface® and is less wettable than the BellaGel 
Smooth® and BellaGel SmoothFine® surface (Figure 3). 

3.3. Effect of BellaGel SmoothFine® Implant on Capsule Formation 

We compared the fibrous capsule development with respect to the implant sur-
face texture of each implant device based on the contact site of the implant. The 
capsules wall diameter around the BellaGel Smooth® and BellaGel Textured®  
 

 
Figure 3. Contact angle analysis of BellaGel SmoothFine® implant. The assessment of 
contact angle of BellaGel Smooth®, BellaGel Textured®, BellaGel SmoothFine®, and Moti-
va SilkSurfaces® was carried out using a contact angle meter Phoenix-MT(T) (SEO, Su-
won, Gyeonggido, Korea). The experiments were undertaken three times to ensure signi-
ficance of the tests. 
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surface appeared significantly thicker than those around the BellaGel Smooth-
Fine® and Motiva SilkSurface®. The average capsular thickness was 964.03 ± 
20.05 μm in the BellaGel Smooth group®, compared with 935.9 ± 51.4 μm in the 
BellaGel Textured® group. This difference was not statistically significant (P = 
0.621; Figure 4). Meanwhile, the thickness of capsules to BellaGel SmoothFine® 
(680.58 ± 46.64 μm) and Motiva SilkSurface® (775.92 ± 49.66 μm) were signifi-
cantly thinner than those surrounding the BellaGel Smooth® (P < 0.05) and Bel-
laGel Textured® surfaces (P < 0.05). These results clearly indicate a close rela-
tionship between implant texture and the capsule thickness.  

3.4. Effect of BellaGel SmoothFine® Implant on Collagen Density 

To evaluate the collagen density, the sections were subjected to MT staining, 
there was a significantly greater increased collagen density to both BellaGel 
Smooth® (62.3% ± 1.18%) and BellaGel Textured® (61.01% ± 0.61%) surface 
(Figure 5). There were no significant differences in collagen density between the 
BellaGel Smooth® and the BellaGel Textured® group (P > 0.05; Figure 5). In 
contrast, a significant reduction in the rate of MT-positive tissue was seen both 
in the BellaGel SmoothFine® (54.2% ± 3.5%; P = 0.042) and Motiva SilkSurface® 
(55.3% ± 2.12%; P = 0.011) related to the BellaGel Smooth® (Figure 5).  

3.5. Effect of BellaGel SmoothFine® Implant on iNOS and Arg-1  
Expression 

iNOS levels are crucial to quantify local inflammatory response. As seen in Fig-
ure 6, at the 1-week point, the levels of iNOS around the BellaGel Smooth® and 
BellaGel Textured® surface appeared significantly overexpressed than those around 
the BellaGel SmoothFine® and Motiva SilkSurface® (Figure 6). The mean relative 
expression level was 1.27 ± 0.18 in the BellaGel Smooth® group, compared with 
0.81 ± 0.11 in the BellaGel Textured® group (Figure 6). This difference was not  
 

  
(a)                                         (b) 

Figure 4. The effect of BellaGel SmoothFine® implant on capsule formation. (a) Capsule 
tissues at the tissue-implant interface at 8 weeks were stained with hematoxylin and eosin 
(H & E). (b) The capsule thickness was measured. Five randomly selected tissue sections 
per rat were counted. Data are represented as the mean ± S.E.M. with n = 5 rats per 
group. #P < 0.05, significantly different from BellaGel Smooth implant. Original magnifi-
cation ×400, scale bar = 100 μm. 
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Figure 5. The effect of BellaGel SmoothFine® implant on collagen density. (a) Capsule 
tissues at the tissue-implant interface at 8 weeks were stained with Masson’s Trichrome 
(MT). (b) The collagen density was measured. Five randomly selected tissue sections per 
rat were counted. Data are represented as the mean ± S.E.M. with n = 5 rats per group. #P < 
0.05, significantly different from BellaGel Smooth implant (independent t-test). Original 
magnification ×400, scale bar = 100 μm. 
 

 
Figure 6. The effect of BellaGel SmoothFine® implant on iNOS and Arg-1 expression. Silicone breast implants were emplaced 
beneath the panniculus carnosus muscle on the dorsum of Sprague Dawley rats and the fibrous capsule tissues at the tis-
sue-implant interface at 1 week, 2 weeks, 8 weeks were extracted explanted for histological examination. Expressions of iNOS and 
Arg-1 were detected by immunoblot analysis. Data are represented as the mean ± S.E.M. with n = 5 rats per group. 
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statistically significant (P = 0.072; Figure 6). Meanwhile, the relative expression 
level to BellaGel SmoothFine® (0.24 ± 0.03) and Motiva SilkSurface® (0.38 ± 0.04) 
were significantly lower than those surrounding the BellaGel Smooth® (P < 0.05) 
and BellaGel Textured® surfaces (P < 0.05). This result provides evidence of a 
more severe inflammatory reaction against BellaGel Smooth® than against Bel-
laGel SmoothFine® or Motiva SilkSurface®. At the 2-week point, iNOS levels also 
tended to decrease when compared with the BellaGel Smooth® and BellaGel 
Textured®, although this decrease was not significant (Figure 6). In contrast, at 8 
weeks, the level of iNOS expression peaked in the BellaGel Textured® surface 
(mean = 1.22). The BellaGel SmoothFine® surface (mean = 0.55) and Motiva 
SilkSurfaces® (mean = 0.54) showed a significantly lower level of iNOS than the 
BellaGel Smooth® surface (mean = 1.02) (Figure 6). However, Arg-1 expression 
was not affected significantly (P > 0.05). In all groups analyzed (1, 2, and 8 
weeks), the expression of iNOS was higher in the BellaGel Smooth® and the 
BellGel Textured® surfaces, it was statistically significant than BellaGel Smooth-
Fine® and Motiva SilkSurfaces®.  

3.6. Effect of BellaGel SmoothFine® Implant on Vimentin and  
α-SMA Expression 

Vimentin and SMA are molecular markers of fibrosis. After 1 week, there was a 
greater increased Vimentin expression to both BellaGel Smooth® and BellaGel 
Textured® surfaces in comparison to both BellaGel SmoothFine® (BellaGel Smooth® 
P = 0.12; BellaGel Textured® P = 0.042) and Motiva SilkSurface® (BellaGel Smooth® 
P = 0.12; BellaGel Textured® P = 0.044) (Figure 7). At the 2-week point, Vimen-
tin levels to BellaGel SmoothFine® also tended to decrease when compared with 
the BellaGel Smooth®, although this decrease was not significant (P = 0.449; 
Figure 7). At the 2-week point, we did not observe any difference between them. 
In contrast, at 8 weeks, the Motiva SilkSurface® group showed a significantly 
lower level of Vimentin than the BellaGel Smooth® (P = 0.015; Figure 7). How-
ever, there was no significant differences in the BellaGel Smooth® in comparison 
to BellaGel SmoothFine® (P = 0.377). There was a significant increase in myofi-
brobalsts in the capsule around the BellaGel Smooth® surfaces. Notably, forma-
tion of α-SMA-negative stress fibers was also reduced on the Motiva SilkSurface® 
was completely absent from 1 week to 8 weeks (Figure 7).  

4. Discussion 

The BellaGel SmoothFine® implant is a novel nanotextured breast implant. On a 
clinical level, BellaGel SmoothFine® demonstrated excellent safety outcomes and 
reduced serious adverse events such as double capsules, capsular contracture, 
implant rupture for device failure, or late seromas [23]. In the current study, we 
investigated the physical properties of BellaGel SmoothFine® surfaces and the ef-
fect and underlying mechanisms of BellaGel SmoothFine® on the capsular con-
tracture in vivo animal model.  
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Figure 7. The effect of BellaGel SmoothFine® implant on Vimentin and α-SMA expression. Silicone breast implants were em-
placed beneath the panniculus carnosus muscle on the dorsum of Sprague Dawley rats and the fibrous capsule tissues at the tis-
sue-implant interface at 1 week, 2 weeks, 8 weeks were extracted explanted for histological examination. Expressions of Vimentin 
and α-SMA were detected by immunoblot analysis. Data are represented as the mean ± S.E.M. with n = 5 rats per group. 
 

BellaGel SmoothFine® has a low surface roughness value at a subcellular level, 
which implies less particle friction coefficients and no tissue ingrowth [24] [25]. 
A skewness value of 0.36 ± 0.19, a kurtosis value of 4.23 ± 0.68 and a contact an-
gle of 103.14˚ ± 2.06˚, are known to show higher biocompatibility. Therefore, we 
expected that BellaGel SmoothFine® may have led to the blocking of fibrous 
capsule formation in the current study.  

Collagenous capsules formation is an inevitable response to all kind of foreign 
bodies and is always occur after silicone breast implant insertion into the body. 
Externally, a capsule develops a relatively undetectable thin membrane sur-
rounding the implant in those undergoing breast augmentations. However, a 
stronger foreign body reaction to the implant leads to more excessive hypocellu-
lar thicker capsule formation, which is rich in collagen and positively related to 
the contracture formation [26]. This can cause an abnormally hard feel of the 
implant and pain in the breast. Previous study reported that surface texture may 
predispose implants to excessive capsular formation [9] [27]. Smooth surfaces 
are known to be correlated with high prevalence of capsular contracture, because 
fibroblasts on the surface of smooth textured implant produce collagen fibers, 
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which are align highly within the capsule next to the implant in response to a 
shearing motion within the implant pocket [28] [29]. The continual rubbing 
between a smooth-surfaced implant and its nonadherent capsule plays a key role 
in causing a thick capsule and an acute, active tissue response [30]. By contrast, 
textured surfaces disrupt certain collagen alignment of the surrounding capsule 
through inhibiting micromotion at the porsthesis/host interface. Therefore, tex-
tured surfaces induce decreased malposition and capsular contracture with re-
spect to smooth surfaces [5] [8] [12] [28] [31] [32] [33]. However, additional 
studies showed no statistically significant reduction in the capsule formation 
[33]-[39]. In the present study, we conducted an experiment in which silicone 
implants were emplaced beneath the muscle layer in rat, and the capsules that 
developed surrounding the silicone implants were then investigated. BellaGel 
SmoothFine® surfaces promoted significantly decreased collagenous capsule 
thickness in comparison to the BellaGel Smooth® and BellaGel Textured® surfac-
es. In addition, the collagen densities in the capsules surrounding the BellaGel 
SmoothFine® and Motiva SilkSurfaces® were significantly decreased with respect 
to the BellaGel Smooth® and BellaGel Textured®. The hierarchical nano-texutred 
surfaces of the BellaGel SmoothFine® implant, together with its perceived 
roughness may lead to the dramatic reduction of capsule thickness and collagen 
density as well.  

Inflammatory reaction occurred when silicone breast implant inserted into 
the body, plays a vital role in the progression of capsular contracture, because it 
activates fibroblasts around capsules to cause excessive fibrosis and hypertrophic 
scar contracture [40] [41]. iNOS, a degradative enzyme, is an acute phase in-
flammatory factor and expressed by macrophages. They seem central to degrade 
the silicone breast implant through the production of nitric oxide. Significantly, 
iNOS is important in the pathogenesis of breast implant derived capsular con-
tracture [42] [43]. In this work we found that the expression of iNOS was re-
duced on BellaGel SmoothFine® and Motiva SilkSurfaces® in comparison to Bel-
laGel Smooth® and Textured® surfaces. The constant rubbing between a smooth 
surfaces implant and host tissue might induce significantly increased inflamma-
tory response [30]. The reduction in frictional forces between the textured sur-
faces and host tissues may result in minimal inflammation with respect to 
smooth surfaces. However, frequent cracking of the collagen fibers on textured 
surfaces may cause persistent inflammation. BellaGel SmoothFine® is not rough 
enough to cause friction with the surrounding tissues; therefore, the initial in-
flammatory response was decreased.  

Fibroblasts differentiate into myofibroblasts in contracted fibrous capsules 
and upregulate the expression of IL-8, TGF-β, TGF-β 1, α-SMA, collagen 1, and 
MMP12 as they differentiate into capsular myofibroblasts [21]. Myofibroblasts 
present in some conditions associated with contraction processes, such as teno-
synovitis, Dupuytren’s contracture, and fibrous capsules formed around implant 
[44]. Inside the body, fibroblasts and myofibroblasts are known to make a stiff 
extracellular matrix that remodels the original healthy tissue. An abundance of 
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vimentin positive fibroblasts and α-SMA positive myofibroblasts were seen in 
contracted capsules, and were relatively absent in normal breast tissue. Our re-
sult showed that the BellaGel SmoothFine® induced decreased expression of Vi-
mentin and α-SMA in comparion to BellaGel Smooth® and BellaGel Textured®. 
This results indicated that silicone breast implant with nano texture inhibited 
BI-induced capsular contracture by inhibiting the proliferation of fibroblast and 
myofibroblasts. 

In conclusion, our study showed that variations in surface roughness of breast 
implant influenced breast implant derived fibrous capsule formation. Of note, 
surface texture with nano-textured implant such as BellaGel SmoothFine® and 
Motiva SilkSurfaces® can affect the pathophysiology of the foreign body reaction, 
causing less capsule formation, inflammation, and influx of fibroblasts, which 
contributes to the development of capsular contracture. 
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