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Abstract 
The article investigates the influences of a variable thermal conductivity and 
wall slip on a peristaltic motion of Carreau nanofluid. The model is con-
cerned with heat and mass transfer inside asymmetric channel. The blood is 
considered as the base Carreau non-Newtonian fluid and gold (Au) as nano-
particles stressed upon. The Fronchiener effect of the non-Darcian medium is 
taken in consideration. The system is stressed upon a strong magnetic field 
and the Hall currents are completed. The problem is modulated mathemati-
cally by a system of non-linear partial differential equations which describe 
the fluid velocity, temperature and concentration. The system is reformulated 
under the approximation of long wavelength and low Reynolds number. It is 
solved on using multi-step differential transform method (Ms-DTM) as a 
semi-analytical method. A gold nanoparticle has increased the temperature 
distribution which is of great importance in destroying the cancer cells. 
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1. Introduction 

Cancer is a dangerous and deadly to most of its patients. Recent studies have 
shown that gold nanoparticles (GNP) can cure and overcome it because these 
particles have high atomic numbers which produce heat and leads to treatment 
of malignancy tumors. GNP has many properties that are very essential in can-
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cer therapy. They are very small and can penetrate widely throughout a body. 
They have been considered as major area of research due to their applications in 
biomedical sciences [1]. Huang and El-Sayed [2] studied an important optical 
and photothermal property of gold nanoparticles in different shapes and struc-
tures and address some recent applications for cancer imaging, spectroscopic 
detection and photothermal therapy. The flow of GNP through two coaxial tubes 
has been investigated by some authors. Hamzehnezhad et al. [3] and Hatami et 
al. [4] studied the third-grade non-Newtonian fluid conveying GNP in a porous 
and hollow vessel by various analytical methods which is essential idea of the 
present paper. 

The studying is that Darcian and non-Darcian flow in Newtonian and 
non-Newtonian fluid flow saturating porous medium. This because of their wide 
applications such as chemical reactors, building non-Darcian fluids in saturated 
porous media meets a great importance. The Dag insulation, packed bed, en-
hanced oil recovery, food technology and filtration processes. Eldabe and Abu 
Zeid [5] have studied a non-Darcian Couette flow through a porous medium of 
magnetohydrodynamic visco-elastic fluid with heat and mass transfer. They 
found the solutions of velocity, temperature and nanoparticles distribution by 
using the homotopy perturbation method. The effect of the boundary conditions 
on a peristaltic flow of a nanofluid in an asymmetric channel embedded with a 
non-Darcian porous medium was scrutinized by Rathod and Sanjeevkumar [6]. 
Wu et al. [7] studied the analysis of multiphase Non-Darcian flow in porous 
media. 

In the literature, numerous studies regarding peristaltic flow of a Carreau na-
nofluid have been done for Non-Newtonian fluids. Akbar et al. [8] studied the 
numerical simulation of peristaltic flow of a Carreau nanofluid in an asymmetric 
channel. They found solutions for the distributions of stream function, pressure 
rise, and temperature and nanoparticle volume fraction by using the fourth and 
fifth order Runge-Kutta-Fehlberg. The effects of Nanofluid on peristaltic flow of 
a Carreau fluid model in an inclined magnetic field are proposed by Akram [9]. 
He found the solutions of the simplified coupled nonlinear equations using an 
analytical approach. Eldabe et al. [10] scrutinized the peristaltic transport of 
magnetohydrodynamic Carreau nanofluid with heat and mass transfer inside 
asymmetric channel. 

Peristaltic flow of a nanofluid under the effect of the hall current and porous 
medium was studied by Nowar [11]. Abo-Eldahab et al. [12] introduced the hall 
currents and heat transfer effects on peristaltic transport in a vertical asymmetric 
channel through a porous medium. Steh and Ghosh [13] addressed the com-
bined influence of rotation and Hall current in the presence of a transverse 
magnetic field, neglecting the induced magnetic field. Ghosh [14] discussed the 
effects of Hall current on an unsteady hydromagnetic flow in a rotating channel 
permeated by an inclined magnetic field in the presence of an oscillator. 

Several applications in engineering occur at high temperature through varia-
ble thermal conductivity. Few such operations include nuclear power plants, in 
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turbines, rockets, space vehicles and pumps operated at high temperatures (see 
Ref. [15] [16]). In addition, studying velocity slip effects are adequate for certain 
flow problems at the walls of the pipes/channels. 

The governing equations of motion become more complex to handle as sup-
plemental nonlinear terms. So, the exact solutions of such problems are practi-
cally impossible, so we turn to find a new method such as the differential trans-
form method (DTM). DTM is semi-analytical methods appear in the equations 
of motion, because of the flow behavior of Non-Newtonian nanofluids. This 
method was proposed by Zhou [17], for solving ordinary, partial differential and 
integral equations. Different applications of DTM can be found in [18]. The 
Ms-DTM method accelerates the convergence of the series solution over large 
region and yields a series solution, this series will be truncated due to the re-
quired accuracy of solutions. This modified technique is verified through illustr-
ative examples of non-chaotic or chaotic systems by Odibat et al. [19]. 

To the best of our knowledge, the effect of the Hall current, variable thermal 
conductivity on peristaltic flow of Carreau nanofluid has not been discussed be-
fore. Motivated by the above discussions, the aim of the present paper is to ex-
amine the MHD peristaltic flow of Carreau nanofluid accompanying heat and 
mass transfer in the presence of viscous dissipation. In order to clarify the prob-
lem at hand, the mathematical modeling is affirmed in Section 2, solutions of the 
problem on using the multi-steps DTM are presented in Section 3. In Section 4 
the influence of the various parameters, the pressure gradient, pressure rise, lon-
gitudinal velocity, temperature and concentration are explored through figures 
and tables. The main findings have been abbreviated in Section 5. 

2. Formulation of the Problem 

Consider a peristaltic flow of an incompressible Carreau nanofluid in a two di-
mensional asymmetric channel of width 1 2d d+ . It is convenient to work with 
the Cartesian coordinates ( ),X Y  where X-axis and Y-axis are the horizontal 
and vertical axes, respectively. The right and left walls have a constant tempera-
ture of 1T  and 0T , respectively. Also, they have nanoparticle volume fractions 
of 1C  and 0C . Asymmetry in the channel is produced by propagation of waves 
along the channel walls and traveling with different amplitudes, phases and of 
the constant speed. The sketch of the model is given in Figure 1. In the Carte-
sian coordinates system ( ),X Y , the right wall 1Y H=  and the left wall 

2Y H= . They are given from the following relations: 

( )1 1 1
2πcosY H d a X ct
λ

 = = + −  
   Right hand side        (1) 

( )2 2 1
2πcosY H d b X ct φ
λ

 = = − − − +  
   Left hand side       (2) 

where 1a  and 1b  are the amplitudes of the waves, λ  is the wave length, the 
phase difference φ  diverse in the range ( )0 πφ≤ ≤ , 0φ = , corresponds to  
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Figure 1. Geometry of physical model. 

 
symmetric channel with waves out of phase and πφ =  the waves are in phase, 
and further 1 1 1 2, , ,a b d d  and satisfies the condition. 

( )2 2 2 2
1 1 1 1 1 22 cosa b a b d dφ+ + ≤ +                  (3) 

A strong uniform magnetic field with magnetic flux density ( )00,0,B B=  is 
applied and the Hall effects are taken, also into account. Assuming that no ap-
plied polarization voltage, so that the electric field ignored. In case of the hall 
current, as given from generalization of the ohm [20]: 

( ) ( )1

e

J E V B J B
e n

σ
 

= + × − × 
  

,                 (4) 

where σ  is the electrical conductivity of the fluid, V  is the velocity vector, e 
is the electric charge of electrons, en  is the number density of the electrons. 
Equation (3) can be solved in J  to yield the Lorentz force vector in the form: 

( ) ( )
2
0

2 ,
1

BJ B V mU i mV U j
m

σ  × = + + − +
              (5) 

where U and V are the X and Y components of the velocity vector ( ), ,0x yV V V= , 

( )
0

e

Bm
e n
σ

=  is the hall parameter. 

The variable thermal conductivity, with dimensionless temperature θ  is 
taken into account where, 

( ) ( )0 1 , for 1k kθ θ= + <                  (6) 
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Here ( )m wT T= −  is the thermal conductivity variation parameter, 0k  is 
the thermal conductivity constant parameter at 0= . 

The constitutive equation for a Carreau fluid is given by [8]. 

( )2

0

1η η
γ

η η
∞

∞

−  = + Γ −
 ,                    (7a) 

and 

( )2
0

11 ,
2ij ij

n
τ η γ γ

− = + Γ  
                    (7b) 

In which ijτ  is the extra stress tensor, η∞  is the infinite shear rate viscosity, 

0η  is the zero shear rate viscosity, Γ  is the time constant, n is the power law 
index, and γ  is defined as: 

1 1 .
2 2ij jii jγ γ γ= =∑ ∑ ∏                    (8) 

where ( )( )2T. trac gradV gradV= +∏  is the second invariant strain tensor. For 

considering the natural convection, the nanofluid density ρ  is defined by [2] 
as: 

( ) ( ) ( )( )0
1 1 1p f p f T wρ ϕρ ϕ ρ ϕρ ϕ ρ β ϑ θ = + + ≅ + + − −  ,     (9) 

where pρ  is the density of the gold nanoparticles, 
0f

ρ  is the base fluid’s den-
sity, ϑ  is the temperature distribution, wθ  is the reference temperature, Tβ  
is the volumetric coefficient of the expansion and fρ  is the nanofluid’s density 
at the reference temperature, ϕ  is the concentration of nanoparticles. 

The governing equations of peristaltic flow in the case of an incompressible 
flow of Carreau nanofluid are given by [4] [8]: 

The continuity equation: 

0,U V
X Y
∂ ∂

+ =
∂ ∂

                        (10) 

The conversation of momentum yields 

( ) ( ) ( )

( ) ( )( )

2
0

2

20

1 1

1

1 1 ,

f

XX XY p

f b
f T w

U U UU V
t X Y

BP V mU
X X Y m

C
g U

k k

ρ

σ
τ τ ϕρ

ρη
ϕ ρ β ϑ θ

∂ ∂ ∂ + + ∂ ∂ ∂ 

∂ ∂ ∂
= − + + − + +

∂ ∂ ∂ +

 + + − − − − 

         (11) 

( ) ( ) ( )
2

20
2

1 1

,
1

f

f f b
YX YY

V V VU V
t X Y

CBP mV U V V
Y X Y km k

ρ

µ ρσ
τ τ

∂ ∂ ∂ + + ∂ ∂ ∂ 

∂ ∂ ∂
= − + + + − − −

∂ ∂ ∂ +

    (12) 
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The energy equation gives 

( )

( ) ( ) ( )

( )

2
2 20

2

2 2

2 2
0

1

,

f

XX XY YX YY

T
Bp

T T Tc U V
t X Y

BT Tk T k T U V
X X Y y m

U U V V
X Y Y Y

D T T C T C Tc D
T X X Y YX Y

ρ

σ

τ τ τ τ

ρ

∂ ∂ ∂ + + ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ = + + +  ∂ ∂ ∂ ∂ +   

∂ ∂ ∂ ∂ + + + + ∂ ∂ ∂ ∂ 
  ∂ ∂ ∂ ∂ ∂ ∂ + + + +    ∂ ∂ ∂ ∂∂ ∂     

        (13) 

The concentration equation gives 
2 2 2 2

2 2 2 2
0

.T
B

DC C C C C T TU V D
t X Y TX Y X Y

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + = + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂     
     (14) 

where P is the pressure, 1k  is the permeability of the porous medium, g is acce-
leration of the gravity, T is the temperature of the fluid and C is the nanopar-
ticles concentration. Both the magnetic field and channel are inclined at angle, 
( ) fcρ  is the heat capacity of the fluid, k is the thermal conductivity, (c) p is the 
effective heat capacity of the nanoparticles material, TD  is the thermophoretic 
diffusion and BD  is the Brownian diffusion coefficient. Using similar argu-
ments as given by [2] [8], we may assume the following transformations, 
x X ct= − , y Y= , u U c= − , v V=  and ( ) ( ),p x P X t= . 

To simplify the equations of motion, we may consider the following dimen-
sionless quantities: 

( )

2
1 1 2 2 1

1 2
1 1 2 1 1

11 1 1

1 0 1 0 0 0

01 1
2

1 1

2
1

, , , , , , , , ,

, , , , , ,

, , , , , , ,

f
e xx xx xy xy yy yy

w w
e r

m w m w ff

f
r

d H H d ax y u vx y u v p h h d a
d c c c d d d d

cdb d db R
d cd c c c

d kc KW s P
d c cd

d g
G

δ µ λ
ρ ψ λ

ψ τ τ τ τ τ τ
η η η η

θ θ ϕ ϕ ηγ
γ α θ ϕ

ρ θ θ ϕ ϕ αρ

ρ

λ
= = = = = = = = =

= = = = = =

′ ′− −Γ
= = = = = = =

− −

=





( )( ) ( )( )

( ) ( )

2
1

0 0
2

1

0

1
, ,

, , .

p f m wm w m
r

f bT m w
b B m w t f

w

a g
B

c c

C d cD
N D N C

K

ρ ρ ρ ϕ ϕθ θ ϕ
η η

ρθ θ
ϕ ϕ

θ η

− −− −
=

−
= − = =

(15) 

where δ  is the dimensionless wave number, eR  is the Reynolds number, rP  
is the Prandtl number, fC  is the Forchheimer number, rG  is the local Gra-
shof number, rB  is the local nanoparticles Grash of number, bN  is the Brow-
nian motion parameter and tN  is the thermophoresis parameter, eW  is the 
Weissenberg number, M is the magnetic parameter. Here mθ  and mϕ , denote 
the pipe temperature, fluid temperature and mass concentration, respectively. As 
usual in fluid mechanics, the stream function ( ),x yψ ψ=  may be taken as  

u
y
ψ∂

=
∂

 and v
x
ψ∂

= −
∂

. 

https://doi.org/10.4236/jbnb.2018.94017


N. T. Eldabe et al. 
 

 

DOI: 10.4236/jbnb.2018.94017 296 Journal of Biomaterials and Nanobiotechnology 
 

2 2
2 2 2

2 2

11 ,
2xy e yx

n W
y x
ψ ψ

τ γ δ τ
 − ∂ ∂ = + − =   ∂ ∂   

           (16) 

The governing equations of the Carreau nanofluid are: 

22 2 2
2

2 2 2

2

2

11 2
2 1

0,

e f

f r r

p n MW C
x y yy y m

C G B
y

ψ ψ ψ

ψ
θ ϕ

    ∂ ∂ − ∂ ∂ ∂ − + + − +   ∂ ∂ ∂∂ ∂ +     
∂

− + + =
∂

   (17) 

0,p
y
∂

− =
∂

                      (18) 

42 2 2 2
2

2 2 2

2 22

2

1 11
2

1 0,
1

c e
r

b t
c

r r

nE W
P y y y y

N NME
y P y y P ym

θ θ ψ ψ

ψ θ ϕ θ

      ∂ ∂ ∂ − ∂   + + + +     ∂ ∂ ∂ ∂         

   ∂ ∂ ∂ ∂
+ + + + =   ∂ ∂ ∂ ∂+    

 

    (19) 

2 2

2 2 0t

b

N
Ny y

ϕ θ∂ ∂
+ =

∂ ∂
.                 (20) 

The eliminating of the pressure from Equations (17) and (18) gives 

22 2 2 2 2
2

2 2 2 2 2

3

3

11 2
2 1

0

e f

f r r

n MW C
y y y m y

C G B
y yy

ψ ψ ψ

ψ θ ϕ

    ∂ − ∂ ∂ ∂ + − +   
∂ ∂ ∂ + ∂     

∂ ∂ ∂
− + + =

∂ ∂∂

     (21) 

The appropriate boundary conditions may be represented as: 
2

12, 0, 0, 1, at 1 cos 2π ,
2
q L y h a x

y y
ψ ψ

ψ θ ϕ
∂ ∂

= = = − = − = = +
∂ ∂

     (22) 

( )2, 0, 0, 1, at cos 2π ,
2
q y h d b x

y
φ

ψ
ψ θ ϕ

− ∂
= = = = − = = − − +

∂
    (23) 

The dimensional time mean flow rate Q in the laboratory frame is related to q 
through the relation [20] [21] 

1Q q d= + +                       (24) 

Now, the system of nonlinear differential Equations (19)-(21) subjected to the 
appropriate boundary conditions (22)-(32) must be solved, thus we use the 
Ms-DTM [18] [19]. 

3. The Method of Solution 

The above system may be solved by the MS-DTM method as follows. Using sim-
ilar arguments as given by [19], the functions ( )yψ , ( )yθ  and ( )yϕ  are 
given from the following Equations. 
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[ ][ ][ ][ ] [ ]

( ) [ ][ ][ ][ ]
[ ] [ ] [ ] [ ]

[ ][ ] [ ] [ ]

[ ] [ ] [ ] [ ]

2
0

2

2 0

1 2 3 4 4

1 1 2 31 1
4 1 2 42

1 1 1 1 1
1

1 1 1 1

k
e r

k
r

r r

k k k k k

r k r k r k r
n W

k r r k r k r

M r k r r k r
sm

G k k B k k

=

=

+ + + + Ψ +

 + − + − + − +
+ − +  − + Ψ + Ψ − + Ψ − + 
 

− + + − + Ψ + Ψ − + + 
+ + Θ + + + Φ +

∑

∑
 

( ) [ ][ ][ ][ ](
[ ] [ ] [ ]) [ ][ ][ ]

[ ][ ] [ ] [ ]
[ ][ ] [ ] [ ][ ][ ] [ ]

2
0

0

3 1 1 1 2 3

1 2 3 1 1 2

3 4 2 4

2 1 2 2 1 2 3 3 ,

k
e r

k
r

f f

n W r k r k r k r

r k r k r r k r k r

k r k r k r k r

C k k k C k k k k

=

=

+ − + + − + − + − +

×Ψ + Ψ − + Ψ − + + + − + − +

× − + − + Ψ − + Ψ − +

− + + Ψ + − + + + Ψ +

∑

∑ (24) 

[ ][ ] [ ] [ ]

[ ][ ][ ]
[ ] [ ]

[ ][ ][ ] [ ] [ ]

[ ][ ] [ ] [ ]

0

0

0

0

1 1 1 1

1 1 2
1 2

1 1 2 2 1

1 1 1 1

k
r

r

k
r

r

kb
r

r

kt
r

r

r k r r k r
P

r k r k r
r k rP

N r k r k r k r k r
P
N r k r r k r
P

=

=

=

=


+ − + Θ + Θ − +


 + − + − +

+  Θ + Θ − + 


+ + − + − + Φ − + Θ − + 


+ + − + Θ + Θ − +

∑

∑

∑

∑





 

[ ] [ ] [ ][ ] [ ] [ ]

[ ][ ] [ ] [ ][ ] [ ]

[ ][ ] [ ] [ ][ ]

[ ][ ][ ] [ ] [ ]

2

2 0

2
0

1 2 1 1 1 1 1 1
1

11 2 2 1 2 2

1 1 2 2 1 1
2

2 3 4 1 4 ,

k
c r

r

k
c e r

ME k k r k r r k r
m

k k k k k k
P

nE W k k k r k r

k r k r k r r k r

=

=

+ + + Ψ + + + − + Ψ + Ψ − ++

+ + + Ψ + + + + Θ +

−
+ + + Ψ + + + − +

× − + − + − + Ψ + Ψ − +

∑

∑

 
(25) 

[ ][ ] [ ] [ ][ ] [ ]1 2 2 1 2 2 0t

b

Nk k k k k k
N

+ + Φ + + + + Θ + =      (26) 

where [ ]kΨ , [ ]kΘ  and [ ]kΦ  are the differential transformation functions 
of ( )yψ , ( )yθ  and ( )yϕ  respectively. The differential transform of the as-
sociated boundary conditions are given by: 

( ) ( )0 1 2 0 0 2, 2 1, 1, 1 at cos 2π ,
2
q L y h x d b x φΨ = − Ψ − Ψ = − Θ = Φ = = = − − + (27) 

( ) ( )

( ) ( ) ( ) ( ) ( )

1 20

1 1
1 2 1 21 1

,
2

1 1,

kn
kk

k kn n
k kk k

qh x h x

k h x h x L k k h x h x

=

− −

= =

Ψ − =  

Ψ − − − Ψ − = −      

∑

∑ ∑
 

( ) ( )

( ) ( ) ( ) ( )
1 20

1 2 10

0,

0, at 1 cos 2π .
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h x h x

h x h x y h x a

=

=

Θ − =  

Φ − = = = +  

∑
∑

   (28) 

The expansions of the distributions of ( )yψ , ( )yθ  and ( )yϕ  up to the 
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tenth-order may be listed as follows: 

( ) 2 3

4 5

6 7

8 9

0.75 1.00429 0.0428583 0.196714

0.09676565239842302 0.001193861687515796

0.0006033224257142588 0.0022550902628023194

0.0004527902505426113 0.0003671545327072134

0.00007368744089436

y y y y

y y
y y
y y

ψ = − − +

+ +

− −

+ +

− 1007 ,y

 

( ) 2 3

4 5

6 7

8 9

0.807854 2.5917363287244672 2.2974739187465896

1.5353449243714945 0.7069612997113166

0.27258261651934795 0.11458745801237043

0.05626101276801457 0.027201065873438676

0.012458799783

y y y y

y y
y y
y y

θ = − +

− +

− +

− +

− 107748 ,y

 

And 

( ) 2 3

4 5

6 7

8 9

0.00870575 4.535538575267818 4.020579357806532

2.686853617650115 1.237182274494804

0.47701957890885893 0.20052805152164827

0.0984567723440255 0.04760186527851768

0.021802899621605

y y y y

y y
y y

y y

ϕ = − + −

+ −

+ −

+ −

+ 109 .y

 

4. Graphical Results and Discussions 

The solutions acquired by the Ms-DTM are displayed through the following 
numerical calculation. The aim of these calculations is to obtain the influences of 
various parameters on the distributions for each of pressure gradient and pres-
sure rise as well as velocity, temperature and concentration as the follows: 

Figures 2(a)-(e) show the influences of the different parameters on the  

distribution of pressure gradient d
d
P
x

. It is found that the pressure gradient  

increases with the increase of , fM C  and bN . Therefore larger pressure gra-
dient is needed for the motivation the flow through the channel. It is a usual 
sense. Meanwhile, it decreases by increasing tN . As seen in Figure 2(e) the 
pressure gradient decreases in [ ]0.0,0.2989x∈  and [ ]0.544,1.0x∈ . Mean-
while it increases in [ ]0.342,0.489x∈  with the increase of rG , which is named 
by phenomenon dual role. 

Figures 3(a)-(f) show the influences of the different parameters on the dis-
tribution of pressure rise P∆  with volume flow rate Q for different values of 

, , ,t r bN B N L  and rG  It is seen in Figure 3(a), Figure 3(b) the pressure rise 
decreases in all pumping regions with an increase in tN  and rB . Meanwhile 
the converse behavior was observed with the increment in bN  through Figure 
3(c). Figure 3(d), Figure 3(e) show that pressure rise increases in the retrograde 
pumping ( )0, 0P Q∆ > < , free pumping ( )0 0; 0Q Q P= > ∆ =  and peristaltic 
pumping ( )0, 0P Q∆ > >  regions with an increase in L and fC . Meanwhile in 
the augmented pumping region ( )0, 0P Q∆ < >  the pressure rise increases  
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Figure 2. (a)-(e). Effects of embedded parameters on the pressure gradient, (a) 1rG = , 0.5fC = , 0.7bN = , 0.8tN = ; (b)

1rG = , 0.5bN = , 1M = , 0.8tN = ; (c) 1rG = , 0.5fC = , 1M = , 0.8tN = ; (d) 1rG = , 0.5fC = , 1M = , 0.8bN = ; (e) 

0.7bN = , 0.5fC = , 1M = , 0.8tN = , the other parameters are chosen as 0x = , 1rB = , 2rP = , 1q = , π
4

ϑ = , 0.4a = , 

0.5b = , 1.5d = , 0.5eW = , 1n = , 0.2cE = , 1m = , 0.1= , 0.1L = , 0.2α = . 
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Figure 3. (a)-(f). Effects of embedded parameters on the pressure rise, (a) 1rB = , 1rG = , 0.5fC = , 0.1L = , 0.7bN = ; (b) 

1rG = , 0.5fC = , 0.1L = , 0.7bN = , 0.8tN = ; (c) 1rB = , 1rG = , 0.1L = , 0.7fC = , 0.8tN = ; (d) 1rB = , 1rG = , 

0.1L = , 0.7bN = , 0.8tN = ; (e) 1rB = , 1rG = , 0.5fC = , 0.7bN = , 0.8tN = ; (f) 1rB = , 0.5fC = , 0.1L = , 0.7bN = , 

0.8tN = , the other parameters are chosen as 0x = , 2rP = , 1q = , π
4

ϑ = , 0.4a = , 0.5b = , 1.5d = , 0.5eW = , 1n = , 

0.2cE = , 1m = , 0.1= , 0.2α = . 
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till a certain value Q then it decreases (case of increasing in fC ) , also in case of 
increasing in L the pressure rise increases till a certain value *Q  then the pres-
sure rise decreases in the augmented pumping region. Figure 3(f) portrayed that 
the pressure rise decreases in all pumping regions till a certain value *Q  were 
lies in the augmented pumping region then the pressure rise increases. 

Figures 4(a)-(e) show the influences of the different parameters on the dis-
tribution of velocity profile. It is seen in Figure 4(a), Figure 4(b) the velocity 
profile increases at the central of the channel in [ ]1.201,0.21y∈ . Meanwhile it 
decreases at the left and right hand sides of the channel in [ ]0.22,1.28y∈  and 

[ ]1.85,1.31y∈  with the increase of in M and fC . Therefore, these Figs show 
that the gold nanoparticles are active in drug carrying and drug delivery systems, 
because they can encapsulate large quantities of therapeutic molecules. Figure 
4(c), Figure 4(d) depicted that the velocity increases in the region  

[ ]1.8769,0.6923y∈ , Meanwhile it decreases at the right hand side in a region 
[ ]0.72,0.764y∈  of the channel with the increase of eW  and bN . However 

the converse behavior can be observed through Figure 4(e) with the increase of 

tN . This shows the dual role of the influence of the parameters on temperature. 
Figures 5(a)-(f) show the influences of the different parameters on the dis-

tribution of temperature θ  It is seen in Figures 5(a)-(d) the temperature dis-
tribution increases with the increase of , ,e b tW N N  and M. Also it is noted that 
increases of the temperature distribution in the case of gold. Nanoparticles can 
be of help the treatment of cancer. Figure 5(e), Figure 5(f) portrayed that by 
increasing variable thermal conductivity parameter   and Forchheimer num-
ber fC  the temperature distribution decreases. 

Figures 6(a)-(d) show the influences of the different parameters on the dis-
tribution of nanoparticles concentration. It is seen in Figures 6(a)-(c) the na-
noparticles concentration decreases with the increase of ,eW M  and tN . Fig-
ure 6(d) portrayed that the nanoparticles concentration decreases with the in-
crease of bN . 

5. Conclusions 

In this investigation, which behavior like a mathematical model describing the 
heat and mass transfer of blood flow as a Carreau nanofluid with the peristaltic 
flow conveying gold nanoparticles in an asymmetric channel. The coupled non-
linear governing equations have been modeled and then simplified using long 
wavelength approximations. The governing equations of motion are analytically 
solved through Ms-DTM to obtain the distribution of velocity, temperature and 
concentration. Ms-DTM is applicable to nonlinear models such as Carreau na-
nofluid models which is more complicated and has a higher degree of 
non-linearity, in a direct way without using linearization or restrictive assump-
tions. The main outcomes of the present study are concisely summarized as: 
• Thermophoresis and Brownian motion parameters have an opposite effects 

on pressure gradient and pressure rise. 
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Figure 4. (a)-(e). Effects of embedded parameters on the velocity profile, (a) 0.5eW = , 0.5fC = , 0.8tN = , 0.7bN = ; (b) 1M = , 

0.5eW = , 0.8tN = , 0.7bN = ; (c) 1M = , 0.5fC = , 0.8tN = , 0.7bN = ; (d) 1M = , 0.5eW = , 0.5fC = , 0.8tN = ; (e) 

1M = , 0.5eW = , 0.5fC = , 0.7bN = , the other parameters are chosen as 0x = , 2rP = , 1q = , π
4

ϑ = , 0.4a = , 0.5b = , 

1.5d = , 1rB = , 1n = , 0.2cE = , 1m = , 0.1= , 0.2α = , 1rG = , 0.1L = . 
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Figure 5. (a)-(f). Effects of embedded parameters on the temperature profile, (a) 1M = , 0.1= , 0.5fC = , 0.8tN = , 

0.7bN = ; (b) 1M = , 0.1= , 0.5eW = , 0.5fC = , 0.8tN = ; (c) 1M = , 0.1= , 0.5eW = , 0.5fC = , 0.7bN = ; (d) 

0.1= , 0.5eW = , 0.5fC = , 0.8tN = , 0.7bN = ; (e) 1M = , 0.1= , 0.5eW = , 0.8tN = , 0.7bN = ; (f) 1M = , 0.5eW = , 

0.5fC = , 0.8tN = , 0.7bN = , the other parameters are chosen as 0x = , 2rP = , 1q = , π
4

ϑ = , 0.4a = , 0.5b = , 1.5d = , 

1rB = , 1n = , 0.2cE = , 1m = , 0.2α = , 1rG = , 0.1L = . 
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Figure 6. (a)-(f). Effects of embedded parameters on the concentration profile, (a) 1M = , 0.1= , 0.5fC = , 0.8tN = , 

0.7bN = ; (b) 1M = , 0.1= , 0.5eW = , 0.5fC = , 0.8tN = ; (c) 1M = , 0.1= , 0.5eW = , 0.5fC = , 0.7bN = ; (d) 

0.1= , 0.5eW = , 0.5fC = , 0.8tN = , 0.7bN = ; (e) 1M = , 0.1= , 0.5eW = , 0.8tN = , 0.7bN = ; (f) 1M = , 0.5eW = , 

0.5fC = , 0.8tN = , 0.7bN = , the other parameters are chosen as 0x = , 2rP = , 1q = , π
4

ϑ = , 0.4a = , 0.5b = , 1.5d = , 

1rB = , 1n = , 0.2cE = , 1m = , 0.2α = , 1rG = , 0.1L = . 

 
• The behavior of Weissenberg and Forchheimer number on velocity profile 

are too similar. 
• The behavior of pressure gradient with the increase of local Grash of number 

appears as the dual role phenomenon. 
• The gold particles produce the heat which is helpful for treatment of the tu-

mor glands, because it possesses a large atomic number. 
• Increases in tN  and bN  cause to increase in the temperature profile. 
• On the nanoparticles concentration the behavior of increasing in tN  and M 

are similar. 
Excellent agreement are founded between our results and published results by 

Akbar et al. [8] through Table 1. 
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Table 1. Comparison of velocity, temperature and concentration solutions with exacting published paper Akbar, et al. [8] at the 
same value of parameter and by taking 0fC = , 0= , 0L =  and 0M = . 

y ( )u y  ND 
Solve 

( )u y  
Ms-DTM 

Error ( )yθ  ND 
Solve 

( )yθ  
Ms-DTM 

Error ( )yϕ  ND 
Solve 

( )yϕ  
Ms-DTM 

Error 

−1.85355 −1 −1 0 1 1 1 × 10−8 1 1 0 

−1.5282 −0.08505 −0.08505 1 × 10−8 1.94023 1.94023 4 × 10−8 −0.920409 −0.920409 2 × 10−8 

−1.20284 0.464817 0.464817 4 × 10−9 2.56321 2.56321 9 × 10−8 −2.28562 −2.28562 7 × 10−8 

−0.877487 0.74798 0.74798 5 × 10−9 3.00065 3.00065 1 × 10−7 −3.32613 −3.32613 1 × 10−7 

−0.552132 0.848036 0.848036 6 × 10−9 3.26138 3.26138 1 × 10−7 −4.05741 −4.05741 2 × 10−7 

−0.226777 0.823794 0.823794 3 × 10−8 3.32328 3.32328 1 × 10−7 −4.44074 −4.44074 2 × 10−7 
0.0985786 0.70687 0.70687 8 × 10−8 3.16658 3.16658 1 × 10−7 −4.44151 −4.44151 3 × 10−7 
0.423934 0.501992 0.501992 1 × 10−7 2.78011 2.78011 1 × 10−7 −4.0402 −4.0402 3 × 10−7 

0.749289 0.187037 0.187037 2 × 10−7 2.15477 2.15477 1 × 10−7 −3.22084 −3.22084 3 × 10−7 

1.07464 −0.28777 −0.28769 4 × 10−7 1.26227 1.26277 1 × 10−7 −1.93397 −1.93397 2 × 10−7 

1.4 −1 −1 6 × 10−7 6 × 10−7 3 × 10−7 2 × 10−7 1 × 10−6 1 × 10−6 4 × 10−7 
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