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Abstract 
We use the Brownian dynamics with hydrodynamic interactions simulation in order to describe 
the movement of an elastically coupled dimer Brownian motor in a ratchet potential. The only ex-
ternal forces considered in our system were the load, the random thermal noise and an unbiased 
thermal fluctuation. We observe differences in the dynamic behaviour if hydrodynamic interac-
tions are considered as compared with the case without them. In conclusion, hydrodynamic inte-
ractions influence substantially the dynamics of a ratchet dimer Brownian motor; consequently 
they have to be considered in any theory where the molecular motors are in a liquid medium. 

 
Keywords 
Hydrodynamic Interactions, Motor Proteins, Molecular Dynamics, Brownian Dynamics,  
Fluctuation Phenomena, Random Processes, Noise, Brownian Motion  

 
 

1. Introduction 
Brownian motors are small physical micro- or even nano-machines that operate far from thermal equilibrium by 
extracting the energy from both thermal and non-equilibrium fluctuations in order to generate work against ex-
ternal loads. They present the physical analogue of bio-molecular motors that also work out of equilibrium to 
direct intracellular transport and to control motion in cells. In such bio-molecular motors, proteins such as kine-
sins, myosins and dyneins, move unidirectionally on one-dimensional “tracks” while hydrolysing adenosine tri-
phosphate (ATP). These molecular motors are powered by a ratchet mechanism [1]; they convert the nonequili-
brium fluctuation into directed flow of Brownian particles in an asymmetrical periodic potential (ratchet) with-
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out any net external force or bias. Several authors have studied theoretically the transport of two coupled par-
ticles modeling the two heads of a motor protein [2]-[13]. Nonequilibrium fluctuations, whether generated or by 
a chemical reaction far from equilibrium, can bias the Brownian motion of a particle in an anisotropic medium 
without thermal gradients, a net force such as gravity, or a macroscopic electric field. Fluctuation-driven trans-
port is one mechanism by which chemical energy can directly drive the motion of particles and macromolecules 
and may find application in a wide variety of fields, including particle separation and the design of molecular 
motors and pumps. Zimmermann and Seifert [14] studied the efficiencies of a molecular motor for a generic hy-
brid model applied to the F1-ATPase, and they obtained good quantitative agreement with the experimental data. 
Pinkoviezky and Gov [15] were motivated by the observed pulses of backward-moving myosin-X in the filopo-
dia structure, and they modelled interacting molecular motors with an internal degree of freedom, introducing a 
novel modification to the approximation scheme. 

In the present work, we use the Brownian dynamics with hydrodynamic interactions simulation in order to 
describe the movement of an elastically coupled dimer Brownian motor in a ratchet potential. In Section 2, we 
describe the forces acting on an oscillating dimer in a ratchet potential with a load force and an external un-
biased fluctuation, which acts simultaneously on two particles. In Section 3, we describe the formalism given by 
Ermak and McCammon (1978) [16], which couples the forces described in Section 2 and thermal noise with the 
diffusion tensor. A striking feature of fluid mechanics in the viscously dominated regime, or equivalently, at low 
Reynolds number, is the long range of hydrodynamic interactions. For example, the Stokeslet, or flow field in-
duced by a point force, falls off inversely with distance. Hydrodynamic interactions have been considered by 
several authors to explain different phenomena. Kemps and Bhattacharjee, [17], used a particle tracking model 
for colloid transport near planar surfaces covered with spherical asperities. This model provides a preliminary 
step in investigating how geometrically tractable asperities alter the undisturbed flow field and hydrodynamic 
interactions between the particle and the substrate. Hydrodynamic interactions allow in average for directed mo-
tion of a three-sphere system, and the spheres are connected by two identical active linker arms. Each linker arm 
contains molecular motors and elastic elements and can oscillate spontaneously; see [18]. Microorganisms are 
often subjected to swimming in close proximity to each other as well as other boundaries. The resulting hydro-
dynamic interactions may have puzzling effects on their swimming speed, trajectory, and power dissipation. 
These effects were investigated by Ramia et al. [19]; each microorganism consisted of a sphere propelled by a 
rotating helix. It was found that only a small increase (less than 10%) resulted in the mean swimming speed of 
an organism swimming near and parallel to another identical organism. In a later paper, [20] focused on hydro-
dynamic interactions by considering two rotating rigid helices. They supposed that the helices were driven by 
stationary motors, and obtained complementary results to those of Ramia et al., since the hydrodynamic interac-
tions between their helices were stronger. Recently Fornés, [21], showed that hydrodynamic interactions induced 
movement against an external load in a ratchet dimer Brownian motor. In the present paper, we show that hy-
drodynamic interactions introduce differences in the behaviour of a ratchet dimer Brownian motor as compared 
without them. We report differences in the Peclet number, effective diffusion coefficient, mean x  component 
of the mass center position and velocity and particles positions cross correlations in x  direction. 

2. The Model 
We consider an elastically coupled dimer in 3 dimensions in an asymmetrical potential (ratchet) in the x  direc-
tion, see Figure 1. We considered a linear superposition of three spatial harmonics, following Ref. [22],  

( )rat 0 1 2
2π 4π 6π

sin sin sin .i i i
i

x x x
U x V c c

L L L
      = + +      

      
                        (1) 

The corresponding force on the particles produced by the ratchet potential is given by: 

( ) ( )rat 0
rat 1 2

2π 2π 4π 6π
cos 2 cos 3 cos .i i i i

i
i

U x V x x x
F x c c

x L L L L
∂       = − = − + +      ∂       

            (2) 

In the former equations ix  is the x  coordinate of particle i , 1i =  and 2, to distinguish the dimer par-
ticles. The parameters 1c  and 2c  determine the ratchet profile. We use the parameters from Ref. [22]: 

1 0.245c = , 2 0.04c =  and 0 0.461V = . 
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Figure 1. Dimer in an assymetrical ratchet potential under a constant load 
force, thermal noise and unbiased thermal sinusoidal fluctuation.                  

 
We define ijr  the vector from the center of particle i  to the center of particle j , for particles 1i = , 2j = , 

we have 

12 12 12ij x y z= + +r i j k                                   (3) 

i, j, k are unit vectors in the direction of the cartesian axis, with  

( )

12 1 2

12 1 2

12 1 2
1 22 2 2

12 12 12 12

;
;

;

.
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z z z

r x y z

= −
= −
= −

= + +

                                (4) 

Then the modulus of the harmonic force is, 

( )12 0 12F k l r= −                                     (5) 

where k  is the strength of the harmonic potential and 0l  is the equilibrium position. 
Then the components of the harmonic force are, 

12
1212

12

12
1212

12

12
1212

12

;

;

.

x
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z
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                                     (6) 

The corresponding components of the harmonic force on each dimer particle are, 

( ) ( )

( ) ( )

( ) ( )

12
har 1 12 har 2

12

12
har 1 12 har 2

12

12
har 1 12 har 2

12

;

;

.

xF x F F x
r
yF y F F y
r
zF z F F z
r

= = −

= = −

= = −

                             (7) 

Then the forces acting on the dimer particles are: 
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( ) ( ) ( )
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                        (8) 

The load force, loadF , acts to oppose the motors forward progress, ( ) ( )sinx t A tε ω=  is an external unbiased 
fluctuation, which acts simultaneously on two particles. 

3. Brownian Dynamics with Hydrodynamic Interactions 
Consider a system of N spherical interacting Brownian particles suspended in a hydrodynamic medium, the dis-
placement of particle i  during t∆  is given by Ermak and McCammon (1978) [16], namely 

( )
0 0

0 ij j
i i i

j B

D F
r r t R t

k T
= + ∆ + ∆∑                               (9) 

where the superscript “0” indicates that the variable is to be evaluated at the beginning of the time step. 0
jF  is 

the force acting on particle j . ( )iR t∆  is a random displacement with a Gaussian distribution function whose 
average value is zero and the correlation is ( ) ( ) 02i j ijR t R t D t∆ ∆ = ∆ . 

0
0

0
0 2

,  ,   on the same particle,

3 ,  ,   on different particles.
4

ij ij

ij ij
ij

ij ij

D D i j

r raD D I i j
r r

δ=

 ⊗
 = +
 
 

 

                   (10) 

0 6πD kT aη=  is the diffusion coefficient of a single subunit sphere of a  radius, ij ijr r⊗
 

 is the dyadic 
product, for particles 1i = , 2j = , we have 

[ ]
2

12 12 12 12 12 12
2
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2

12 12 12 12 12 12

.
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  ⊗ = =   
     

 

                  (11) 

In our case of a dimer in three dimensions the tensor 0
ijD  is a 6 6×  matrix. For details on hydrodynamic 

interactions see our recent article [21] [23] [24], also Refs. [25] [26]. 
A first basic quantity of interest, in our case, is the average center of mass velocity in the x  direction, cxv , 

in the long-time limit, i.e., after transients due to initial conditions have died out, is given by 

( )
( ) ( ). 0

lim c c
cx cx t

st

x t x
v r t

t→∞

−
= =                            (12) 

where ( ) ( ) ( )1 2 2cxr t x t x t= +   . 

Another quantity of central interest will be the effective diffusion coefficient, 

( ) ( ) 22 2

eff

0
lim lim

2 2
c

c c r

t t

r t r
D

t t
σ

→∞ →∞

−
= =                            (13) 

where ( )1 22 2 2
c cx cy czr r r r= + + . The means are over the realizations of the stochastic process. 

The competition between the drift v  and diffusivity effD  in advection-diffusion problems is often ex-
pressed by a dimensionless number, the Péclet number, Pe , [27], 

eff

v L
Pe

D
=                                        (14) 



J. A. Fornés 
 

 
85 

here L  is a typical length scale, in our case the length of a single ratchet element, v  is the average stationary 
velocity of the particle, in our case we used cxv . The larger the Péclet number, the more net drift predomi-
nates over diffusion. 

4. Results 
We performed the simulation in dimensionless units. Distance is in units of the separation distance 0l  and time 
is in units of 2

0 0l D , We used in the simulations the following parameters: 0 1l = , 1L = , 100k = , 0.281a = , 
3

0 10D −= , 3.7A = , 4.9ω = , 0.00125t∆ = , the simulation time was 1125t = , which corresponds to 59 10×  
steps. The corresponding dimension units are: 0 8 nml = , 8 nmL = , 6.47 pN nmk = , 2.5a = Å,  

3 13 2
0 10 6π 1.109 10  m /sD kT aη− −= × = × , 1.9 pN1 A = , 8.49 Hz1 kω = , 0.721 μst∆ = . In Brownian dy-

namics simulations with hydrodynamic interactions the size of the physically meaningful time step is restricted 
to values which are sufficiently long 0it m D kT∆  . In our case 0 3.4im D kT =  fs where we have used 

24138 10im −= ×  Kg for the protein dimer unit of 2.5 Å of radius. 
The average velocity of a molecular motor is a function of the load force resisting the motor’s advancement. 

One of the characteristic of a molecular motor is the load force-velocity curve. In Figure 2 we show cxv  as a 
function of the load force loadF . Each point of the curve of Figure 2 is the result of 500 stochastic realizations. 
At the stationary state, the ratio ( ) 610cx cxSE v v −≤ , where ( )cxSE v  is the standard error of the mean 
velocity cxv . 

In the range load4 0F− ≤ ≤  we observe, the motor continue with a positive velocity in spite of the negative 
load force (motor effect). We also observe a substantially increase of the motor velocity in the case with hydro-
dynamic interaction as compared without it. 

In Figure 3, we observe the behaviour of the mass center position variance, ( )( ) ( )( ) ( ) 222
c c cr t r t r tσ = − ,  

as a function of time in the long time limit, i.e., after transients due to initial conditions have died out. The effec-
tive diffusion coefficient is giving by the slope of the linear fitting, eff 0.5D B=  in accordance to Equation (13), 
we observe greater slope for the case with hydrodynamic interactions. 

In Figure 4 is shown the effective diffusion coefficient as a function of the load force, effD  vs loadF , we 
observe that hydrodynamic interactions increase the effective diffusion. 
 

 
Figure 2. Mean x  component of the mass center velocity versus the load force, 

cxv  vs loadF .                                                                     
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Figure 3. Variance of the mass center position, ( )( ) ( )( ) ( ) 222
c c cr t r t r tσ = − , as 

a function of time in the long time limit. The effective duffusion coefficient is 
giving by the slope of the linear fitting, eff 0.5D B= , in accordance to Equation 
(13). load 1F = − .                                                                     

 

 

Figure 4. The effective diffusion coefficient as a function of the load force, effD  
vs loadF .                                                                          

 
In Figure 5 is shown the Péclet number as a function of the load force, Pe  vs loadF , we observe lower 

Péclet numbers for the case with hydrodynamic interactions, meaning that the net drift diminish over diffusion 
as compared with the case without hydrodynamic interactions. 
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Figure 5. Péclet number as a function of the load force, Pe  versus loadF .                   
 

 
Figure 6. Mean x  component of the mass center position as a function of time, 

cxr  versus time. In the long time limit. load 1F = − .                                  
 

In Figure 6 is shown the mean x component of the mass center position as a function of time, cxr  versus  
time, in the long-time limit, for a given load force, load 1F = − . We observe a linear relation, with cxr  in the  
case with hydrodynamic interactions greater than the case without them. 

In Figure 7 we observe the behaviour of the average center of mass velocity in the x  direction, cxr  ver-
sus time, in the long-time limit for a given load force, load 1F = − . The velocity is substantially greater for the 
case with hydrodynamic interactions. 

In Figure 8 is shown the spatial cross correlations in x direction as a function of Lag time, ( ) ( )Corr 1 , 2x xr r   
versus Lag time. We observe that the correlation is higher in the case with hydrodynamic interactions. 
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Figure 7. Mean x  component of the mass center velocity as a function of time, cxv  

versus time. In the long time limit. load 1F = − .                                                 
 

 
Figure 8. Spatial cross correlations in x  direction as a function of lag time, 

( ) ( )Corr 1 , 2x xr r   versus Lag time. ( ) ( ) ( ) ( )
1

0
Corr 1 , 2 1 2

N

x x x xj k kj
k

r r r r
−

+
=

  =  ∑  load 1F = − .              

 
A similar result was found by Houtman et al. [28] who developed a simple 2D-lattice model in order to test 

the influence of hydrodynamic interactions on the collective transport of molecular motors, which is important 
for the understanding of cell growth and development. Houtman et al. showed that long range collective hydro-
dynamic interactions lead to a substantial increase in the effective velocity of motors attached to a filament. 
Their results were also supported by experiments.  
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5. Conclusion 
In conclusion, hydrodynamic interactions influence substantially the dynamics of a ratchet dimer Brownian mo-
tor; consequently they have to be considered in any theory where the molecular motors are in a liquid medium. 
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