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Figure 3. Contour graph of the model for total glucose yield 
from corn stover as a function of pretreatment temperature 
and catalyst loading. 
 

 

Figure 4. Contour graph of the model for total xylose yield 
as function of pretreatment temperature and catalyst load- 
ing. 
 
set of experiments carried out at a temperature of 180˚C, 
were used for statistical analysis. A Bonferroni correction 
was applied for which a P-value of 0.025 was used as 
criteria for significance for this set. At 180˚C, the total 
glucose yield was linearly correlated to the load of cata- 
lyst which was indicated in terms of total sulfur mass 
(Figure 7). A maximum glucose yield of 90% was reach- 
ed when using 0.2 g of PS nanoparticles that had a total 
sulfur content of 6.1%. 

PS nanoparticles could have been done a better job 
pretreating corn stover if they did not aggregate and form 

 

Figure 5. Contour graph of the model for the percentage of 
glucose lost as HMF as a function of pretreatment temper- 
ature and catalyst loading. 
 

 

Figure 6. Contour graph of the model for the percentage of 
xylose lost as furfural as a function of pretreatment tem- 
perature and catalyst loading. 
 
clumps. Aggregation of the nanoparticles hides the cata- 
lytic sites and makes them unavailable for reaction. It is 
also possible that sulfate salts were formed with the ions 
derived from trace minerals in biomass. PS nanoparticles 
seemed to have affinity towards pretreated biomass since 
it was very difficult to remove biomass entirely in order 
to analyze the nanoparticles after pretreatment. This was 
evidenced by the increment in carbon content in the PS 
nanoparticles after pretreatment (Table 2). Even though 
the nanoparticles were present during the enzymatic hy- 
drolysis, inhibitory character of acid-functionalized na- 
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Table 2. Elemental analysis of PS nanoparticles before and 
after cellobiose hydrolysis at 175˚C. 

PS nanoparticle % C % H % N % S 

Before cellobiose hydrolysis 11.86 2.39 - 9.81 

After cellobiose hydrolysis 11.10 2.33 - 9.00 

Before corn stover pretreatment 11.43 2.62 - 9.59 

After corn stover pretreatment 24.67 3.32 2.21 3.13 

 

 

Figure 7. Total glucose yield from corn stover as a function 
of catalyst loading at 180˚C for one hour. 
 
noparticles was not observed. Since complete glucose 
recovery was reached for some of the experiments we 
believe that PS nanoparticles did not block the access of 
the enzyme to the carbohydrate fraction. 

Hydrolysis of cellobiose has been used as model reac- 
tion of the hydrolysis of cellulose into its constituent glu- 
cose units [16,47,48]. In this work, we used the same 
reaction to analyze the stability of the propyl-sulfonic 
acid groups in PS nanoparticles. To assess the loss of 
functional groups during reaction, the sulfur content of 
the nanoparticles was measured before and after cellobi- 
ose hydrolysis (Table 2). The PS nanoparticles lost about 
1% of their sulfonic acid groups after hydrolysis of cel- 
lobiose at 175˚C which is an indicator that PS nanopar- 
ticles kept most of their functional groups, and that these 
groups are stable during catalysis in aqueous media reac- 
tions at high temperatures. Elemental analysis was also 
done upon PS nanoparticles after pretreatment. However, 
it was difficult to separate material left after pretreatment 
entirely. Because the organic content of the nanoparticles 
increased and it was difficult to determine the real per- 
centage of sulfonic groups after pretreatment. An FTIR 
spectrum was also taken after pretreatment with PS na- 
noparticles (Figure 8). The band at 1510 cm–1, characte- 

 

Figure 8. FTIR spectra of PS nanoparticles after 
pretreatment of corn stover at 180˚C for 1 h. 
 
ristic of lignin, [49] was observed, as well as an incre- 
ment in the intensity of the band at 1457 cm–1 associated 
to C-H bonds. Although, the absorption of material, it is 
not a desired condition; it can be an indicator of the af- 
finity of these nanoparticles towards cellulose derived 
materials, which it is necessary to carry out catalysis ef- 
fectively. 

4. Conclusion 

A maximum glucose yield of 90% was reached when 
using 0.2 g of PS nanoparticles that had a total sulfur 
content of 6.1%. The average glucose yield was linearly 
correlated to the load of PS nanoparticles at 180˚C. At 
160˚C, the amount of PS nanoparticles required to in- 
crease the glucose yield above the one obtained without 
catalyst must be higher than 30 mg S/g biomass which 
will be equivalent to using 24 mmol H+/L. At 200˚C, 
complete cellulose hydrolysis to glucose was achieved 
but 96% of corn stover hemicelluloses were lost as de- 
gradation products. PS nanoparticles kept 99% of their 
propyl-sulfonic acid load after hydrolysis of cellobiose at 
175˚C. 
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