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Abstract 
Our overall knowledge of the medicinal uses of plants suggests that natural 
compounds could be useful in the treatment of cutaneous fungal infections in 
tropical regions. Furthermore, the possibilities of treatment using plant ex-
tracts may be even broader than is already known when one considers plants 
that have not been extensively studied in this context, such as the regional 
species Phoenix dactylifera and Ziziphus spina-christi. This study compared 
the antimicrobial activity of Phoenix dactylifera and Ziziphus spina-christi 
extracts in terms of their biochemical and molecular effects on Candida albi-
cans (ATCC CA 10231). These effects included altered levels of intracellular 
sterols, changes in the permeability of the cell membrane, and changes in the 
TEF1: QRTTEF1, CaERG1: ERG1, CdERG12: CdERG1, and ERG25: ERG25 
genes. Scanning electron microscopy (SEM) was used to identify morpholog-
ical characteristics, and energy-dispersive X-ray spectroscopy (EDAX) ana-
lyses were conducted. In treated samples, the SEM and EDAX analyses 
showed cell cavities and shrinkage of the cell wall, and the number of cells 
was reduced to only a few abnormal cells as compared with that in the un-
treated samples. Yttrium was detected in the cells treated with Z. spi-
na-christi, and high levels of osmium were detected in the cells treated with P. 
dactylifera. Compared with control cells, cells exposed to the concentration 
150 µl/ml of Z. spina-christi extract had an average sterol concentration that 
was nearly 3 times higher, while the concentration was 5.5 times higher for 
cells treated with the 150 µl/ml of P. dactylifera extract. The ethanol extracts 
affected the permeability of C. albicans cell membrane. Gene sequencing 
showed gaps and mismatches in the ERG1, ERG12, and ERG25 genes after 
treatment with P. dactylifera and Z. spina-christi extracts compared with that 
in the controls. The results were highly significant (p ≤ 0.01). We conclude 
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that the ethanol extracts of P. dactylifera and Z. spina-christi have antimi-
crobial activity through several mechanisms in the yeast cell. 
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1. Introduction 

Medicinal plants have been used as a source of medicines for many centuries. 
Such plants are reliable sources for the treatment of various health problems. It 
is reasonable to expect that plants will contribute to treating future health chal-
lenges as well [1]. A large proportion of medicinal compounds has been discov-
ered with the aid of ethno-botanical knowledge of their traditional uses. More 
than 35,000 plant species are known to have been used for medical purposes in 
various human cultures around the world [2]. The medicinal properties of plants 
can be attributed to different plant parts including leaves, roots, bark, fruit, 
seeds, and flowers. Our overall knowledge of the medicinal uses of plants sug-
gests that natural compounds could be useful in the treatment of cutaneous 
fungal infections in tropical regions [3] [4].  

The effects of plant extracts on microorganisms have been studied by numer-
ous researchers worldwide [5]-[11]. Furthermore, the possibilities of treatment 
using plant extracts may be even broader than already known when one consid-
ers plants that have not been extensively studied in this context, such as the re-
gional species Phoenix dactylifera and Ziziphus spina-christi. 

In Saudi Arabian folk medicine, plant components such as sidr (Z. spi-
na-christi) and Ajwa date (P. dactylifera) seeds are used to heal wounds and treat 
skin diseases, inflammatory conditions, sores, ringworm, fevers, gonorrhea, and 
ulcers. A decoction of the bark and fresh fruits is used to promote the healing of 
fresh wounds and as a body wash, while the fruits are used to treat dysentery 
[12] [13]. 

The methanol extract of Z. spina-christi showed antifungal activity against 
dermatophytes in Trichophyton rubrum, T. mentagrophytes, Microsporum ca-
nis, and Aspergillus fumigatus when tested by the agar diffusion method [14]. In 
the 2000-2006 period, approximately 50% of the new chemical molecules ex-
tracted from natural products demonstrated an important role in the develop-
ment of drugs in the treatment of infectious diseases [15]. P. dactylifera is known 
to be effective against fungi and yeasts. This activity appears to depend upon the 
total phenolic content and flavonoids present in the fruit [16]. In vitro studies 
have shown that flavonoids possess antifungal activities against Candida albicans 
and their presence in an extract may explain observed antifungal effects [17] 
[18]. Shraideh et al. [19] reported that treatment of C. albicans with Barhi date 
extract caused distortion, weakening, and partial collapse of the cell wall. At high 
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concentrations, cell lysis, leakage of cytoplasmic material, and eventual cell death 
were observed. 

The antifungal activity of P. dactylifera leaves and pits using different solvents 
has also been reported. This research showed that water, acetone, and methanol 
extracts induced varying degrees of growth inhibition in Fusarium spp., Fusa-
rium oxysporum, F. soloni, Alternaria spp., Aspergillos flavus, A. alternate, and 
Trichoderma spp. [20]. These results collectively suggest that phytochemicals in 
date extract may have multiple effects on Candida, and further study could re-
veal therapeutic uses. Doddanna et al. [21] found that plant extracts in alcohol, 
including onion leaves, tea leaves, onion bulb, aloe vera, and mint leaves, inhi-
bited the growth of C. albicans. The ethanolic extract of ginger powder has pro-
nounced inhibitory activities against C. albicans [22]. Pomegranate (Punica gra-
natum) methanol extract also demonstrated an effect against C. albicans [23]. 

Medicinal plants have a promising future owing to the need for new antimi-
crobial drugs due to continuous development of drug resistance; in addition, 
natural antimicrobials are of utmost importance owing to safety issues and 
availability [24] [25]. The aim of new antifungal strategies is to develop drugs 
that combine sustainability, high efficacy, and restricted toxicity, safety for hu-
mans, animals, host plants, and ecosystems while maintaining a low production 
cost. This study was designed to investigate the effect of P. dactylifera seeds and Z. 
spina-christi extracts on several biochemical activities of C. albicans, including 
metabolism of glucose uptake and cell wall permeability, morphology, and struc-
ture; moreover, we studied the molecular characteristics of the TEF1: QRTTEF1, 
CaERG1: ERG1, CdERG12: CdERG1, and ERG25: ERG25 genes. 

2. Material and Methods 
2.1. Test Organism 

An antibiotic-resistant strain of C. albicans (ATCC CA 10231) was obtained 
from American Type Culture Collections (ATCC; Rockville, Md, USA), and 
grown at 27˚C ± 2˚C for 48 h in an aerobic incubator. The yeast was cultured on 
Sabouraud Dextrose Agar medium (SDA), Sabouraud Dextrose Broth (SDB), 
Mueller Hinton Agar (MHA), and Mueller Hinton Broth (MHB); (HiMedia, In-
dia). 

2.2. Study Specimens and Extraction 

Z. spina-christi (sidr) leaves were collected from the Jeddah region in Saudi Ara-
bia during autumn 2013. P. dactylifera (Ajwa date) seeds were collected from 
Almadina Almonawara City, Saudi Arabia during Autumn 2013. Plant identifi-
cation was confirmed in the Department of Biological Sciences, Botany Section 
at King Abdulaziz University, Jeddah KSA. 

Ajwa date seeds and sidr leaves were thoroughly washed and then dried in 
shade at 30˚C ± 2˚C, for 4 days. Specimens were powdered by a grinding ma-
chine (IKA A10 basic); powdered plant samples were placed in ethanol (1:10 w/v) 
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in conical flasks and shaken at 120 rpm at 30˚C for 3 days. Flask contents were 
filtered through Whatman no. 1 filter paper (Whatman No. 1), and the filtrates 
were dried under reduced pressure at 40˚C. The extracts were weighed, and the 
yields were calculated as percentages based on the weight of the initial material 
used for extraction. Each extract was then dissolved in dimethyl sulfoxide (Sig-
ma-Aldrich, USA) at 50 μg/ml and filtered through a 0.22-μm pore filter (Milli-
pore, Billerica, MA, USA). Filtrates were stored in closed vials at 4˚C. 

2.3. Inoculum Preparation  

C. albicans inoculums were prepared by seeding SDA (HiMedia, Mumbai, India) 
with 100 μl of the yeast containing (1 − 5) × 106 colony-forming units (cfu). 

2.4. Cell Wall Sterol Measurement 

Total intracellular sterols were extracted as reported by Breivik and Owades [26] 
with slight modifications. Briefly, a single C. albicans colony from an overnight 
SDA plate culture was used to inoculate 5 ml of SDB (HiMedia) containing 50, 
100, or 150 mg of P. dactylifera and Z. spina-christi extracts per milliliter. The 
cultures were incubated for 48 h with shaking at 27˚C. The stationary-phase cells 
were harvested by centrifugation at 120 rpm (Eppendorf 5424 refrigerated bench 
top centrifuge, USA) for 5 min and washed once with sterile distilled water, and 
the net wet weight of the cell pellet was then determined. Three milliliters of 25% 
potassium hydroxide-alcohol solution (25 g of KOH in 35 ml of sterile distilled 
water brought to 100 ml with 100% ethanol) was added to each pellet. After vor-
tex mixing for 1 min, the resultant cell suspensions were transferred to 16- by 
100-mm sterile borosilicate glass screw-cap tubes and incubated in an 85˚C wa-
ter bath for 1 h. Tubes were allowed to cool to 25˚C ± 2˚C, and sterols were then 
extracted by addition of a mixture of 1 ml of sterile distilled water and 3 ml of 
n-heptane followed by vigorous vortex mixing for 3 min. The n-heptane layer 
containing the sterol fraction was then transferred to a clean borosilicate glass 
screw-cap tube and stored at −20˚C for 24 h. A 20-ml aliquot of this fraction was 
diluted fivefold in 100% ethanol and scanned spectrophotometrically between 
240 and 300 nm with a Genesys 20 spectrophotometer (Thermo Fisher Scientif-
ic) [27]. Each treatment was performed in triplicate. 

2.5. Confocal Scanning Laser Microscopy (CSLM) 

CSLM was used to evaluate the effect of the altered permeability of cell mem-
branes in C. albicans. C. albicans was grown in SDB with 150 µl/ml of P. dactyli-
fera and Z. spina-christi extracts, and cells were then harvested and incubated 
for 45 min at 37˚C in 4 mL of phosphate-buffered saline (PBS) containing the 
fluorescent stain ethidium bromide (10 mM) (excitation wavelength 543 nm and 
560 nm longpass emission filter). This stain attaches to DNA in dead cells, 
forming cylindrical orange-red intravacuolar structures. After incubation, the 
cells were placed in a 35-mm-diameter glass-bottom Petri dish (MatTek Corp., 
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Ashland, MA, USA). Stained cells were observed with a Zeiss LSM510 confocal 
scanning laser microscope equipped with argon and HeNe lasers and mounted 
on a Zeiss Axiovert100 M microscope (Carl Zeiss Inc. Germany). The objective 
used was a water immersion C-Apochromat lens (403; numerical aperture of 
1.2) (Carl Zeiss Inc., Germany). Depth measurements were taken at regular in-
tervals across the width of the device. Confocal images of red (ethidium bro-
mide) fluorescence were obtained simultaneously using a multitrack mode. 
Planktonically grown C. albicans cells were used as comparators in these studies 
[28]. Samples were scanned in the Center of Nanotechnology at King Abdulaziz 
University. 

2.6. Scanning Electron Microscopy (SEM) and Energy-Dispersive  
X-Ray Spectroscopy (EDAX) Analyses 

To assess the morphological characteristics of selected treated yeast, SEM was 
used. Yeast was incubated with ethanol extracts of P. dactylifera and Z. spi-
na-christi (150 μl/ml) for 48 h in MHB as described by Al-Wathnani et al. [29]. 
The treated and control cultures were incubated at 27˚C and then centrifuged at 
120 rpm to separate the yeast cells. A thin film of cells from each group was 
spread on a copper stub. The samples were then coated with gold by cathodic 
spraying (Polaron gold) and dried under a mercury lamp for 5 min. The mor-
phology of the C. albicans cells was observed with a scanning electron micro-
scope (JEOL, JSM-7600F) [30] [31]. Samples were scanned in the Center of Na-
notechnology at King Abdulaziz University. 

2.7. Molecular Characterization 

To determine the effect of P. dactylifera and Z. spina-christi ethanol extracts on 
the TEF1: QRTTEF1, CaERG1: ERG1, CdERG12: CdERG1, and ERG25: ERG25 
genes in C. albicans, yeast DNA was isolated by using a Qiagen DNA extraction 
kit (Germany), following the protocol for yeast by Karthy et al. [32]. 

For genomic DNA isolation a Qiagen kit was applied as described; 10 µl of 
cells from a yeast colony on an overnight agar plate at 27˚C was transferred to a 
1.5-ml Eppendorf tube. After centrifugation the pellet was resuspended in 180 µl 
of ATL (A Tissue Lysis) buffer, and 20 µl of proteinase K was added. The tube 
contents were then thoroughly mixed by vortexing, and the samples were incu-
bated at 56˚C until the tissue was completely lysed. The samples were mixed by 
vortexing for 15 s, 200 µl of ATL buffer was added, and the samples were again 
mixed by vortexing. Then, 200 µl of ethanol (96% - 100%) was added, followed 
by vortex mixing. The mixtures were pipetted into DNeasy Mini spin columns and 
placed in 2-ml collection tubes, which were centrifuged at 9800× g for 1 min. The 
DNeasy Mini spin columns were placed in new 2-ml collection tubes, 500 µl of 
buffer AW1 was added to each, and the mixtures were centrifuged for 1 min at 
9800× g. The DNeasy Mini spin columns were then placed in new 2-ml collec-
tion tubes, 500 µl of buffer AW2 was added to each, and the mixtures were cen-
trifuged for 3 min at 9800× g. The DNeasy Mini spin columns were then placed 
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in clean 2-ml microcentrifuge tubes, 200 µl of buffer AE was pipetted directly 
onto the DNeasy membrane, and the membranes were incubated at 28˚C ± 2˚C 
for 1 min. They were next centrifuged for 1 min at 9800× g to elute. The isolated 
DNA samples were stored at −20˚C as per the manufacturer’s protocol.  

The genes TEF1: QRTTEF1, CaERG1: ERG1, CdERG12: CdERG1 and ERG25: 
ERG25 were amplified by PCR using the following primers: 

 

Forward 

TEF1 QRTTEF1F CCACTGAAGTCAAGTCCGTTGA 

CaERG1 ERG1F ACTAATGTTCCACCATTGGCTCT 

CdERG12 CdERG1F ACTAATGTTCCACCATTGGTTCT 

ERG25 ERG25F GCTCATCCAGTTGAAGTTGCC 

Reverse 

TEF1 QRTTEF1R CACCTTCAGCCAATTGTTCGT 

CaERG1 ERG1R CACATGACCTTTGCCCTTAGCT 

CdERG12 CdERG1R CACATGACCTTTGCCCTTGGCT 

ERG25 ERG25R GCAAGTTACCAGTGATAAGACACCA 

 
The primers for the amplification of the above genes were designed based on 

the conserved regions in the TEF1: QRTTEF1, CaERG1: ERG1, CdERG12: 
CdERG1, and ERG25: ERG25 genes from the C. albicans ATCC 10231 genome 
sequences [33] [34]. The extracted DNA was sequenced by Macrogen  
(https://www.macrogenusa.com/). The sequenced data were analyzed by 
T-COFFEE (http://tcoffee.crg.cat/). 

2.8. Statistical Analysis 

Data on microbial growth and cell counts (cfu/ml) were collected, summarized, 
and tabulated. Statistical analyses were performed using the Statistical Package 
for the Social Sciences, IBM SPSS 20 (SPSS Inc., Chicago, IL, USA). The results 
are expressed as the mean ± standard deviation (mean ± SD). The significance of 
the differences between samples and the homogeneity between groups were de-
termined by analysis of variance (ANOVA). Results were considered significant 
at p ≤ 0.05 and highly significant at p ≤ 0.01. 

2.9. References 

The references were performed by using EndNote Thomson Reuters software 
version X7. References are in APA format. 

3. Results  
3.1. Sterol Levels (Mg/Ml) Increase in the C. albicans Cell Wall  

after Treatment with Z. spina-christi and P. dactylifera  
Extracts 

Table 1 shows the increase in sterol levels in the C. albicans cell wall after treat-
ment with Z. spina-christi and P. dactylifera extracts at various concentrations. 
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The results were highly significant (p < 0.01). C. albicans showed increased ste-
rol levels (0.588% and 1.096%) at the end of the incubation period with Z. spi-
na-christi and P. dactylifera, respectively. The results were highly significant (p < 
0.01). Therefore, in this assay the extract of P. dactylifera had a greater effect on 
the yeast than the Z. spina-christi extract. 

3.2. Confocal Scanning Laser Microscopy 

The results in Table 2 and Figure 1 show increased numbers of dead cells with 
increasing concentrations of Z. spina-christi and P. dactylifera extracts compared 
with that in the untreated cells. After treatment with 150 µl/ml of Z. spina-christi 
and P. dactylifera extracts, the dead cell count was increased to 150.33 cfu/ml and 
348 cfu/ml, respectively, compared with that in the untreated cells at 52 cfu/ml. 
 

 
Figure 1. Confocal scanning laser microscopy of C. albicans shows the effect of the 
150 µl/ml Z. spina-christi (B) and P. dactylifera (C) extracts on cell wall permeability 
and cell vitality, compared with untreated cells (A). 

 
Table 1. Sterol levels (mg/ml) in the Candida albicans cell wall after treatment with Ziziphus spina-christi and Phoenix dactylifera 
extracts (µl/ml) and 48-h incubation (mean ± SD).  

 Treatments 

C. albicans 
Control 

Z. spina-christi P. dactylifera 

50 100 150 50 100 150 

0.198 0.092 ± 0.0049** 0.146 ± 0.0062** 0.588 ± 0.0085** 0.632 ± 0.0049** 0.845 ± 0.0062** 1.096 ± 0.0085** 

**p ≤ 0.01, *p ≤ 0.05. 
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Table 2. Candida albicans cell wall permeability after treatment with 150 µl/ml of Z. spina-christi and P. dactylifera extracts and 
48-h incubation (mean ± SD). 

 Treatments 

 Control Z. spina-christi (150 μl/ml) P. dactylifera (150 μl/ml) 

Dead cells 52 150.33 ± 28.50** 348.00 ± 1.73** 

**p ≤ 0.01. 

3.3. Scanning Electron Microscopy and EDAX Analyses 

Figure 2 shows the SEM results, which reveal changes in the yeast morphology 
and structure in response to the Z. spina-christi and P. dactylifera extracts. 
Treatment with the P. dactylifera extract resulted in cell cavities and shrinkage of 
the cell wall, and the number of cells was greatly reduced to a few abnormal cells 
compared with that in the control samples. C. albicans was more affected by the 
P. dactylifera treatment than the Z. spina-christi extract, to which the cells ap-
peared to have some resistance. However, both treatments reduced cell counts 
compared with the untreated cells. Budding was obvious in the untreated cells 
but was unclear in treated cells.  

EDAX analyses of C. albicans showed differences between the treated and un-
treated cells. As shown in Figure 3, the results clarified the different elemental 
compositions of the ethanol extracts of Z. spina-christi and P. dactylifera. Both 
ethanol-based extracts contained carbon (C) and oxygen (O). Yttrium (Y) was 
detected in the cells treated with Z. spina-christi and high levels of osmium (Os) 
was detected in the cells treated with P. dactylifera. 

3.4. Effect of P. dactylifera and Z. spina-christi Extracts on  
Genes in C. albicans 

The aim of this study was to observe changes in the nucleotide position of the 
translation elongation factor activity (1-alpha) (TEF1) gene and ERG genes, 
which are involved in ergosterol biosynthesis. The results in Figures 4(A)-(E); 
Figures 5(A)-(E); and Figure 6(A-1), Figure 6(A-2), Figure 6(B-1), and Fig-
ure 6(B-2) show changes in the gene sequences of C. albicans treated with P. 
dactylifera and Z. spina-christi extracts in comparison to that in the untreated 
cells. Figure 4; shows the results of C. albicans after treatment with P. dactylifera 
extract. Changes included; ERG1 gene 28 mismatches and 7 gaps (Figure 4A 
and Figure 4B), ERG12 gene 41 mismatches (Figure 4C and Figure 4D), and 
one mismatch and 7 gaps in the ERG25F gene (Figure 4E). Figure 5 shows the 
results for C. albicans after treatment with Z. spina-christi extract, Changes in-
cluded; 43 mismatches in the ERG1 gene (Figure 5A and Figure 5B), 44 mis-
matches in the ERG12 gene (Figure 5C and Figure 5D), and 13 mismatches and 
2 gaps in the ERG25F gene (Figure 5E). The TEF1 gene was more stable, with 
few changes that could cause mutation or change the gene expression. These re-
sults are presented in Figure 6(A-1), Figure 6(A-2), Figure 6(B-1), and Figure 
6(B-2); there were 12 mismatches (Figure 6(A-1) and Figure 6(A-2)), and 15 
mismatches (Figure 6(B-1) and Figure 6(B-2)) in the TEF1 gene after treatment  
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Figure 2. Scanning electron microscopy of C. albicans shows the effect of the 150 µl/ml Z. spina-christi 
(b) and P. dactylifera (c) extracts on cell wall morphology, compared with untreated cells (a). 

 

 
Figure 3. Energy-dispersive X-ray spectroscopy of C. albicans shows the effect of the 150 µl/ml Z. spi-
na-christi (b) and P. dactylifera (c) extracts, compared with untreated cells (a). 
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Figure 4. C. albicans F and R in ERG genes detection after treatment with 150 µl /ml of P. dactylifera ethanol extract. 

 

 
Figure 5. C. albicans F and R in ERG genes detection after treatment with 150 µl/ml of Z. spina-christi ethanol extract.  

 

 
Figure 6. C. albicans F and R in TEF1 genes detection after treatment with 150 µl/ml of P. dactylifera and Z. spina-christi ethanol 
extracts. 

TNATNTTGGCTNGGNTAGAAAGANNNTNCTAGGNTAAAAGANNNGANNNGNNNNNNGGN150401-12_E01_C

-NTN-N---CNNNGNTTNTTCNNNNN--NNN---GNNNNNNNGN-GNNNNNNNNNGNNN150401-12_E03_A

B: ERG1 R treated with P. dactylifera

TTTTTTTTGTCACCNTTTTCTTCTTGTACCGNNNGGNNNGNNANNNGNNTNA150401-12_G01_C

AATAGAGAACCGCTGANANCTNGTCCAANTTCCCGTTGGNCNNNGNAAAGNA150401-12_G03_A

A: ERG1 F treated with P. dactylifera

C: ERG12 F treated with P. dactylifera

NCCCTNAGNTTGTTGNGTCCTTTTTNGAGGGGTTNTCGGGNA150401-12_I01_C

NCCCTNACNTCTTNCTTACTATAATNNTTATCTANTGANNNT150401-12_I03_A

GAGAAGGAGCCCTTCGGGNATTTGNGTGNGTGNTNTCCAATTTTT150401-12_K01_C

NTTTTTTATNNCTCTTACNCTTTCNCTCTCTCNCNTTTAAATTTT150401-12_K03_A

D: ERG12 R treated with P. dactylifera

NCCCTGCCCTTTTTNNAANNTCNTAACCNT150401-12_M01_C

NCNC-------TNGNNANNNNNNTNANNNN150401-12_M03_A

E: ERG25 F treated with P. dactylifera

GAAGGCGAGNNNTNCTAGGNGANTCAAAGCCTTACGGTGGCGGAGGCCATNN150401-12_E01_C

CCTTCCNCGNNNNTATTGATGATTATTAACCATAGCTTCCGGTAAAACAANN150401-12_E05_S

A: ERG1 F treated with Z. spina christi

B: ERG1 R treated with Z. spina christi

TTTTGGCCCTCATTCNTTGGAAATTAAAAGTGTACCGNNNGGNNNGNTNATNNNNNNNNNGATN150401-12_G01_C

GGATGGTTACAATTCCTCNGGGGNTAAAAGTGTTCGGNNNTCNCCTTATTTTCAANANNNGACC150401-12_G05_S

C: ERG12 F treated with Z. spina christi

TTTTTNGANAAGGTTNTCGGGNATACGTGCTCGTNNGTCTTGTTG150401-12_I01_C

TTTCTTCTNTCTCTNNCCGGGNTTCCTTAANAGTTNAAAGACAAG150401-12_I05_S

D: ERG12 R treated with A. indica

GAGAAGGAGCCCTTCGGGNATTTGNGTGNGTGNTNTCCAATTTTT150401-12_K01_C

NTTTTTTATNNCTCTTACNCTTTCNCTCTCTCNCNTTTAAATTTT150401-12_K05_S

E: ERG25 F treated with Z. spina christi
NGGGAGTAAN-NTCNTAACTTTACCTGATTNC-CCCNNGANNCGAT150401-12_M01_C

NNGAAGGGNNANGTNTTTATTNCACTGANTTCGNANNNGCNNGGNT150401-12_M05_S

A-1: TEF1 F treated with P. dactylifera

NNNNNNNNNNNNNNNNNGANGNNNGNANNNNNNNNNNNNNN150401-12_A01_C

ATNTNNNNNNNNNNNNNNNNNNNNNGGNNNNNNNNNNNNNN150401-12_A03_A

B-1: TEF1 R treated with P. dactylifera

NTCATTAAGAAATACTATTCTTNANCCNTANTTGGTTCNAN150401-12_C01_C

TGNANTNNGGAGTNNGATTNTTGGTNNNTCTCTAATTTCGA150401-12_C03_A

A-2: TEF1 F treated with Z. spina christi

NNNNNGNGAAANGNNNGNANNNNNNNNNNNNNN150401-12_A01_C

NANNNGNCAGNNNNNNNNNNNNNNGNGNNNNNT150401-12_A05_S

B-2: TEF1 R treated with Z. spina christi

TCTTCTGGTTCCNTANTTGGTTCCANNANCNCNTTTCNTCCTATTCTTNCNANTC150401-12_A01_C

TCTTCTAGCCACATATCTCCATTCTCTAAAAAATTTCCTCCTGCTCTATCTTATA150401-12_A05_S
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with P. dactylifera and Z. spina-christi respectively. 

4. Discussion  

Bioactive compounds in antifungal agents inhibit fungal and yeast growth. These 
compounds include secondary metabolism components, such as alkaloids, pep-
tides, terpenes, pigments, and sterols [35]. Plant secondary metabolism is influ-
enced by environmental conditions, including temperature, sunlight, and dry-
ness. It is also affected by the presence of organic compounds and essential oils, 
such as flavonoids, sugar alcohols (sorbitol, ribitol, inositol), soluble sugars 
(saccharose, raffinose, stachyose, trehalose), and nitrogenous compounds (pro-
line, glycine, betaine) [36]. 

Extracts of Z. spina-christi and P. dactylifera have previously been shown to 
affect C. albicans biomass, as reflected by the cells’ dry weight and glucose up-
take. The decreased dry weight compared to that of untreated cells and increased 
glucose leakage may be due to the cell wall damage and subsequent sterol lea-
kage from the cell wall [37].  

As cellular energy requires an energy source, when glucose uptake provides 
this energy to the cell, the cell can resist the inhibitory effect of Z. spina-christi 
and P. dactylifera extracts. However, when this energy supply is lost, the cell los-
es the ability to block this inhibition. This explanation is confirmed by the re-
sults indicating sterol leakage following exposure to 150 µl/ml extracts and the 
mismatches found in the ERG1, ERG12, and ERG25 genes as well as the TEF1 
gene. Our results agreed with the findings from previous research [38] [39]. 

Damage to the cell wall could be seen in the electron micrographs in our 
study. The detection of elements in the Z. spina-christi and P. dactylifera ex-
tracts may be attributable to osmotic stress on the cells or failure of cell mem-
brane regulation. The results confirmed those of the EDAX analysis, which re-
vealed a loss of sterols from the treated cells compared with that in the untreated 
cells. Further, yttrium (Y) was detected in the cells treated with Z. spina-christi 
and P. dactylifera extracts, while osmium (OS) was detected in the cells treated 
with P. dactylifera. These results are consistent with those of [40]-[47]. 

The evaluation of the Z. spina-christi and P. dactylifera extracts indicates that 
they may be used to develop novel antibiotics with several mechanisms of action. 
We found that the crude extracts downregulate several areas of the yeast cell, in-
cluding the cell wall, cytoplasmic membrane, and genomic DNA. In addition to 
the development of new drugs, we recommend further study of Z. spina-christi 
and P. dactylifera to determine the fractions of the complex extracts that contain 
the active compounds against C. albicans and yeast in general. 

5. Conclusion 

The results presented in this study demonstrate the importance and promise of 
the antifungal and antimicrobial activities of P. dactylifera and Z. spina-christi 
extracts for novel drug development that inhabited the biochemical activities, 
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SEM and EDAX analyses, and the expression of ERG1, ERG12, and ERG25 
genes of C. albicans. Further research into the properties of these extracts is 
needed to isolate the bioactive compounds, and toxicity testing on mammalian 
cells or higher eukaryotes is another necessary avenue for research. 
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