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Abstract 
Matrix metalloproteinase-9 (MMP-9) is a potent endopeptidase implicated in 
a wide range of inflammatory and neoplastic diseases, including chronic pe-
riodontitis, a persistent oral mucosal inflammation attributed primarily to in-
fection by P. gingivalis. Here, we review the signaling pathways engaged by P. 
gingivalis in controlling the processing and secretion of MMP-9. The induc-
tion in oral mucosal expression of MMP-9 by P. gingivalis relays primarily on 
its key endotoxin, LPS, engagement of TLR4 and the activation of MAPK, 
ERK and p38 cascades implicated in the stimulation of Rac1 and cPLA2. The 
ERK-mediated cPLA2 phosphorylation plays an essential role in its membrane 
translocation with Rac1, while p38 localization with Rac1 promotes cPLA2 ac-
tivation and the induction in MMP-9. Moreover, the induction in MMP-9 se-
cretion by the LPS and the modulatory influence of peptide hormone, ghrelin, 
occur at the level of MMP-9 processing between ER and Golgi, with the in-
volvement of factors that control secretory cargo sorting, Arf1 GTPase and 
PKD2. The secretion of MMP-9, furthermore, occurs in concert with the 
changes in stability dynamics of microtubules (MTs), which affect the Golgi 
localization of Arf1 and the recruitment and activation of PKD2. The induc-
tion in MMP-9 secretion by LPS is accompanied by the enhancement in MT 
stabilization and α-tubulin phosphorylation on Ser, while the MT destabiliza-
tion associated with the modulatory influence of ghrelin, is manifested by 
α-tubulin phosphorylation on Tyr. Thus, the factors capable of affecting MT 
dynamics and MMP-9 secretion present a tempting target for the therapeutic 
intervention in the treatment of chronic periodontitis. 
 

Keywords 
P. gingivalis, Periodontal Disease, Inflammatory Response, LPS,  

How to cite this paper: Slomiany, B.L. and 
Slomiany, A. (2018) Proinflammatory Path- 
ways Engaged by Oral Pathogen Porphy- 
romonas gingivalis in Upregulation of 
Matrix Metalloproteinase-9 Expression in 
Periodontal Disease. Journal of Biosciences 
and Medicines, 6, 77-94. 
https://doi.org/10.4236/jbm.2018.66006  
 
Received: May 20, 2018 
Accepted: June 22, 2018 
Published: June 25, 2018 
 
Copyright © 2018 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

http://www.scirp.org/journal/jbm
https://doi.org/10.4236/jbm.2018.66006
http://www.scirp.org
https://doi.org/10.4236/jbm.2018.66006
http://creativecommons.org/licenses/by/4.0/


B. L. Slomiany, A. Slomiany 
 

 

DOI: 10.4236/jbm.2018.66006 78 Journal of Biosciences and Medicines 
 

TLR4, MMP-9 

 

1. Introduction 

Porphyromonas gingivalis, a rod-shaped, Gram-negative anaerobe together with 
two other oral bacterial species colonizing the oral cavity, Treponema denticola, 
and Tannerella forsythia, form so called “red bacterial complex” recognized as 
the primary etiological cause of periodontitis, a chronic inflammatory disease 
that leads to progressive destruction of teeth-supporting tissue and is the major 
cause of adult tooth loss [1] [2] [3] [4]. A growing body of evidence, moreover, 
indicates that periodontitis affects the course and pathogenesis of a number of 
systemic diseases such as cardiovascular disease, infective endocarditis, atheros-
clerosis, bacterial pneumonia, diabetes mellitus, leukemia, and low birth weight 
[5] [6] [7]. There are also strong supporting data linking periodontitis and P. 
gingivalis infection to rheumatoid arthritis, and the progression and metastasis 
of oral squamous cell carcinoma [8] [9] [10] [11]. 

Indeed, P. gingivalis, by far the most prominent member of the bacterial flora 
found in periodontal packets of people with gum disease [12], has to its disposal 
an impressive array of virulence factors that provoke the inflammatory response 
of the host tissue [13] [14]. These include its cell surface major (FimA) and mi-
nor (Mfa1) fimbriae proteins, elaborated arginine and lysine specific cysteine 
proteinases, referred to as gingipain R and gingipain K [15] [16], collagenases, 
capable of extracellular matrix proteins degradation and activation of the host 
matrix metalloproteinases [17] [18] [19], and the secreted sufatases directed to-
wards cell membrane glycosphingolipids as well as proteoglycans of extracellular 
matrix [3] [20]. However, the virulence factor of particular significance to the 
pathogenic action of P. gingivalis leading to the development of periodontitis is 
its cell-wall lipopolysaccharide (LPS) [21] [22]. 

In general, the bacterial LPS consists of membrane anchored hydrophobic 
domain, referred to as lipid A, non-repeating core oligosaccharide region, and a 
distal polysaccharide structure referred to as O-antigen chain. The lipid A region 
is composed of phosphorylated (1,6)-linked diglucosamine backbone with four 
to seven fatty acyl chains ranging from 10 to 16 carbon units attached to it. Of 
these, four acyl chains are directly linked to the glucosamine backbone, and the 
remaining being attached to the hydroxyl groups of the lipid chains [23] [24]. 
The non-repeating core oligosaccharide region is rich in heptose and KDO (ke-
to-deoxyoctulosonate), and coupled to the O-specific highly heterogeneous set 
of carbohydrate chains extending from the cell surface [23] [24] [25]. The endo-
toxin and the immunological properties of LPS reside mainly in the heteroge-
neous acylation character of lipid A domain, which in different bacterial species 
shows considerable variation in the acylation pattern and the number of phos-
phate groups, while the core and O-specific regions of LPS appear to have only 
minor role in the immune recognition [23] [24] [26] [27] [28]. 
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Investigations into the events associated with oral mucosal responses to P. 
gingivalis LPS demonstrated a marked increase in epithelial cell apoptosis and 
proinflammatory cytokine expression, up-regulation in endothelin-1 (ET-1) and 
TNF-α release, excessive nitric oxide (NO) and prostaglandin (PGE2) genera-
tion, and the elevated levels of matrix metalloproteinase-9 (MMP-9) production 
[18] [21] [29] [30] [31] [32] [33]. Hence, considering that the elevated levels of 
MMP-9, along with the increased proinflammatory cytokine production are im-
plicated in pathogenesis of chronic periodontitis, in this article we review data 
on the signaling pathways engaged by periodontopathogen, P. gingivalis, in con-
trolling the processing and secretion of MMP-9. 

2. P. gingivalis and TLR4 Activation 
2.1. MMP-9 in Inflammatory Responses to Bacterial LPS 

The mechanism underlying the inflammatory processes elicited by P. gingivalis 
in oral mucosa relies on the interaction of its LPS with Toll-like receptor-4 
(TLR4). The LPS triggered stimulation of TLR4 signaling pathways (Figure 1) 
leads to activation of IκB-kinase complex (IKK) and up-regulation in mito-
gen-activated protein kinases (MAPKs), which trigger the activation of tran-
scriptional factors that exert control over a wide range of proinflammatory me-
diators, including MMP-9 [32] [33] [34]. 
 

 
Figure 1. Signaling path ways and transcription factors involved in oral 
mucosal secretion of MMP-9 in responses to P. gingivalis LPS. Ligation of 
TLR4 by the LPS results in the activation of IKK complex and MAP kinases, 
ERK, p38 and JNK, and triggers the nuclear translocation of transcription 
factors, AP-1 and NF-κB, involved in the induction of MMP-9 gene tran-
scription. pY, phosphotyrosine; P, phosphate. 
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Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopep-
tidases implicated in the remodeling of extracellular matrix under normal physi-
ological conditions, as well as during angiogenesis, wound healing, tumor me-
tastasis, and a wide range of degenerative and inflammatory diseases, including 
oral cancer, Sjogren’s syndrome, rheumatoid arthritis, oral lichen planus, and 
chronic periodontitis [3] [19] [34]-[39]. This multidomain enzymes are com-
posed of the active site and the catalytic metal binding domain which is kept in-
active by N-terminal pro-peptide domain (34). The catalytic domain contains 
the zinc binding site, a calcium ion and conserved methionine. These are essen-
tial for maintenance of MMP three-dimensional structure and enzyme activity. 
The unique amino acid sequences within the active site are of importance for the 
enhancing of catalytic efficiency towards gelatin and peptide substrates [34]. The 
pro-peptide domains of MMPs contain the cysteine switch sequence, which li-
gates the catalytic zinc to maintain the enzyme inactive. Activation of the en-
zyme requires either proteolytic processing of the pro-peptide domain or steric 
disruption of the pro-peptide conformation [34]. 

While the main function of MMPs is the regulation of cell matrix composi-
tion, the enhanced production of MMPs, and MMP-9 in particular, is associated 
with host reaction to microbial and fungal infections [40] [41], as well as cha-
racterizes inflammatory response to lipopolysaccharide (LPS) of Gram-negative 
bacteria in several different cell systems [25] [42] [43] [44]. The elevated levels of 
MMP-9, elicited in oral mucosa in response to Porphyromonas gingivalis and its 
key endotoxin, LPS, furthermore, are directly responsible for persistent mucosal 
inflammation that leads to periodontal lesions and progressive destruction of 
teeth-supporting tissue, including bone loss [4] [19] [38] [41] [44]. There are al-
so strong indications that enhanced levels of MMP-9 in serum of periodontal 
disease patients may contribute to extra-oral sequela, such as a decrease in car-
diac function and cardiovascular disease [3] [4] [17]. Interestingly, the associa-
tion between elevated serum content of MMP-9 and the increased risk of cardi-
ovascular disease was also observed in patients with H. pylori-associated gastri-
tisdiseases, and a decrease in the mucosal level of MMP-9 occurred following 
successful H. pylori eradication therapy [45] [46]. There are strong indications 
that the elevated levels of MMP-9 contribute directly to the inflammatory 
process by proteolytic tissue destruction, recruitment of inflammatory cells, 
and the generation of inflammatory signals. Indeed, the induction in MMP-9 
expression is observed in wound healing, whereas the inhibition of MMP-9 has 
been linked to aberrant re-epithelization [9] [34] [35]. Moreover, MMPs, in-
cluding MMP-9, are involved in extracellular matrix and basement membrane 
degradation and the activation of factors that perpetuate the inflammatory 
process [35]. 

Although the rate-limiting step in MMP-9 regulation is gene transcription, the 
expression and activity of this heavily glycosylated, 92 kDa, endopeptidase re-
mains also under the influence of posttranslational processing, proenzyme acti-
vation, and the inhibition by the family of endogenous tissue inhibitors of me-
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talloproteinases (TIMPs) [34] [42]. This multifaceted control assures the low 
MMP-9 expression in normal tissue, and its rapid release and activation in re-
sponse to inflammatory stimulus such as LPS [43]. Therefore, therapies aimed at 
decreasing the MMP-9 expression and its enzymatic activity by the use of spe-
cific MMP inhibitors could provide much needed options in the treatment of in-
flammatory diseases, including chronic periodontitis. A positive development 
along these lines is the successful use of modified tetracycline derivative in the 
treatment of periodontitis [34]. 

2.2. LPS-Induced TLR4 Activation and MMP-9 Expression 

Studies into the processing of MMP-9 in response to LPS stimulation indicate 
that MMP-9 expression is tightly controlled at the transcriptional level by 
MAPK cascade, including ERK, JNK, and p38, which along with IKK exert their 
influence over transcriptional factors AP-1 and NF-kB activation [47] [48]. 
Moreover, these responses to P. gingivalis are mediated through the LPS trig-
gered TLR4 activation [18] [33]. 

Indeed, the available data, suggests that MAPK cascade activation upon LPS 
stimulation plays an important role in the regulation of intracellular trafficking, 
membrane translocation, and the release of secretory products [43] [49] [50]. 
The LPS-induced p38 activation and its recruitment to the cytosolic aspect of the 
membrane-localized Rac1 GTPase has been linked to disintegrin-metalloprotease 
ADAM17 activation [32] [49], and the up-regulation in MAPK and Rac activa-
tion was observed in association with LPS-induced pulmonary inflammation 
and TLR4-stimulated phagocytosis [51] [52]. There are also strong indications 
that ERK activation upon LPS stimulation plays an important role in the phos-
phorylation of cytosolic phospholipase A2 (cPLA2) that facilitates the enzyme 
translocation from cytosol to membrane to gain access to phospholipid sub-
strates [33] [50]. Moreover, further up-regulation in cPLA2 activation has been 
reported to occur with the involvement of Rac1/p38 complex [53] [54]. Consis-
tent with these facts are the data pointing to the role of MAPK signaling in tar-
geting of cPLA2 to intracellular membranes involved in secretory cargo processing, 
such as the Golgi vesicle formation and the membrane-vesicle fusion events that 
affect the secretory cargo release [53] [55] [56]. 

Therefore, taking into account the evidence that MMP-9 undergoes extensive 
processing in the Golgi network and the fact that oral mucosal inflammatory 
responses to P. gingivalis are characterized by the rapid rise in MMP-9 release, 
we investigated the nature of factors involved in the processing of signaling cas-
cade initiated by the LPS [18]. As summarized in Figure 2, our findings demon-
strated that P. gingivalis LPS-elicited induction in the salivary gland acinar cell 
MMP-9 release is associated with MAPK, ERK and p38 activation, and occurs 
with the involvement of Rac1 and cPLA2). Moreover, the release of MMP-9 in-
volves ERK-mediated phosphorylation of cPLA2 on Ser505 that is essential for its 
membrane translocation with Rac1, and that this process requires p38 activation. 
Apparently, the activation and membrane localization of p38 with Rac1-GTP  
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Figure 2. Diagram of the pathways involved in P. gingivalis LPS-elicited induction in salivary gland acinar cell MMP-9 release. 
Binding of the LPS to TLR4 triggers up-regulation in ERK and p38 MAPK activation, as well as induces the pathway of GEF, 
Dock180-mediated GTP-Rac1 formation and its membrane translocation. This in turn, promotes the membrane localization of 
pp38 with the Rac1-GTP, while pERK is involved in the phosphorylation of cPLA2 on Ser505, which prompts its recruitment to the 
Rac1/p38 complex, and the induction in cPLA2 activation. The cPLA2, by acting on membrane phospholipids, affects the mem-
brane fusion events, and leads to the induction in MMP-9 release. P phosphate, pS phosphoserine, pY phosphotyrosine. 

 
plays a pivotal role in cPLA2-dependent induction in MMP-9 release [18]. Col-
lectively, the findings infer that P. gingivalis LPS-induced up-regulation in the 
acinar cell MMP-9 release requires ERK-dependent recruitment of cPLA2 to the 
membrane localized Rac1/p38 complex. 

3. Factors Affecting MMP-9 Processing 
3.1. ADP-Ribosylation Factors 

MMP-9 is a highly glycosylated endopeptidase, consisting of both N- and 
O-linked carbohydrate chains, and hence its processing along the secretory 
pathway relies heavily on the co- and posttranslational modifications acquired 
during the protein transit between the endoplasmic reticulum (ER), Golgi, and 
trans-Golgi network (TGN) [34] [57]. Like secretion of other salivary proteins 
and glycoproteins, the trafficking of MMP-9 cargo remains under a strict control 
of factors that affect the membrane recruitment and activation of various coat 
and cargo proteins [58] [59] [60]. 

Of particular significance to the secretory cargo trafficking and sorting 
through Golgi-trans-Golgi (TGN) is the role of small GTP-binding proteins of 
the ADP-ribosylation factor (Arf) family [60] [61]. Arfs are small 20 kDa 
GDP/GTP-binding proteins belonging to the Ras superfamily of GTPases that 
control protein transport and recycling between different cellular compartments, 
and cytoskeleton remodeling [60]. The Arfs are active when bound to GTP and 
inactive when bound to GDP, and the activation status is controlled by the gua-
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nine nucleotide exchange factors (GEFs) [61] [62]. All six members of the Arf 
family are characterized by presence the N-terminal myristoylate tail, which al-
lows their association with membranes, and based on their amino acid sequence 
homology are grouped into three classes. Of these, class I and class II Arfs are 
associated with the Golgi apparatus and implicated in the regulation of cell se-
cretory function, while class III Arf, Arf6, functions in the endocytic system [59] 
[63]. While inactive Arfs are cytosolic, the stimulus activated GTP-bound class I 
Arfs (Arf1, Arf2, and Arf3) rapidly translocate to the Golgi membrane com-
partments and assume the principal role in the recruitment of various cytosolic 
coat and cargo adaptor proteins, exchange factors, and lipid modifying enzymes, 
including phospholipase D, phosphatidylinositol 4-kinase and protein kinase D 
(PKD), that are essential for regulation of ER-to-Golgi traffic [58] [60] [63] [64]. 

3.2. Protein Kinase D 

PKD is a family of serine/threonine kinases consisting of three closely related 
calmodulin-dependent members (PKD1, PKD2, and PKD3), that play a crucial 
role in the regulation of Golgi structure and function by phosphorylation of the 
TGN-localized substrates required for subsequent shedding of cargo-containing 
vesicles [58] [65]. Upon stimulation, the members of PKD family are first re-
cruited from the cytosol to the diacylglycerol-rich membrane environment, in-
cluding the Golgi complex, via interaction with Arf-GTP and then undergo ac-
tivation by PKC-mediated transphosphorylation of their activation loop on 
Ser744, followed by autophosphorylation on Ser748 [58] [66]. Therefore, PKD 
along with PKC form a key convergence and integration node for signals trig-
gered by Toll-like receptor (TLR) activation as well as those arising through G 
protein-coupled receptor (GPCR) stimulation. 

Thus, it is becoming apparent that PKD/PKC axis is not only the signaling 
target of LPS-induced TLR4 activation that defines the extent of inflammatory 
response, but also plays a major role in modulation of inflammation by a peptide 
hormone, ghrelin [67] [68] [69]. This endogenous ligand for the growth hor-
mone secretagoguereceptor type 1a (GHS-R1a), initially isolated from the sto-
mach, and later identified in saliva and the acinar cells of salivary glands, has 
emerged recently as a principal modulator of the local inflammatory responses 
to bacterial infection, including that to P. gingivalis and H. pylori [25] [70] [71] 
[72]. Remarkably, the anti-inflammatory effect of ghrelin observed during pro-
gressive heart failure, associated with periodontal disease, has been linked to the 
suppression in MMP-9 expression [3] [4] [73]. Moreover, we revealed that P. 
gingivalis LPS-elicited induction in MMP-9 secretion and the modulatory influ-
ence of ghrelin occur at the level of MMP-9 processing between the endoplasmic 
reticulum (ER) and Golgi [74], and is associated with GEF-mediated Arf1 acti-
vation and the TGN recruitment of PKD2, followed by its activation by phos-
phorylation on Ser by the PKCδ. Whereas the modulatory effect of ghrelin is 
manifested by the SFK-PTKs-dependent phosphorylation of PKD2 on Tyr 
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(Figure 3). Hence, Arf1/PKD2 junction could represent a novel target for de-
velopment of more effective treatments of periodontal disease. 

4. Changes in Microtubule Dynamics and MMP-9 

Investigations into the processing of MMP-9 along the ER, Golgi and TGN in-
dicate that, in addition to factors that affect the membrane recruitment and ac-
tivation of various coat and payload proteins, the trafficking of MMP-9 cargo 
occurs in concert with the changes in stability dynamics of the major cytoskele-
ton polymeric structures, microtubules (MTs) [56] [75] [76] [77]. Indeed, the li-
terature data provide an ample evidence that cytoskeleton plays an important 
role not only in cell division and motility, but also is involved in the intracellular 
transport and positioning of organelles and vesicles, and the MTs have been di-
rectly implicated in the regulation of MMP-9 secretion in several different cell 
systems [56] [76] [78] [79]. The MTs polymers, assembled from heterodimers of 
α- and β-tubulin proteins in a head-to-tail manner, form a dense network of 
 

 
Figure 3. Schematic representation of the role of Arf1/PKD2 in mediation of salivary gland acinar cell MMP-9 secretion in re-
sponse to P. gingivalis LPS stimulation, and the modulatory influence of ghrelin. Engagement of TLR4 by the LPS triggers 
Arf-GEF-mediated Arf activation and its translocation to the Golgi. This promotes the localization of PKD2 with Arf1-GTP at the 
TGN, and its activation by phosphorylation on Ser by the PKCδ. The activated PKD2, by acting on the TGN-localized substrates, 
affects the vesicle fission events and thus enhances the secretion of MMP-9. Ligation by ghrelin of GHS-R1a, on the other hand, 
leads to Arf-GEF-mediated Arf1 activation and PKD2-to-TGN localization, followed by the SFK-PTKs-mediated phosphorylation 
of PKD2 on Tyr that maintains the PKD2 activity at its normal regulatory level. G heterotrimeric G protein, pS phosphoserine, pY 
phosphotyrosine. 
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filamentous tubes that undergo frequent alternating periods of growth (polyme-
rization) and shortening (depolymerization) termed “dynamic instability” [77] 
[78]. Interestingly, the changes in tumor cell stability dynamics are associated 
with malignant transformation, and the enhancement in MT stabilization along 
with the increase in MMP-9 production has been observed during inflammation 
and wound healing [34] [80]. 

The diverse aspects of MT dynamics arise from accumulation of a variety of 
posttranslational modifications on the tubulin subunits, including acetylation, 
detyrosination, polyglutamylation, polyglycylation and phosphorylation, and are 
further tuned and refined through binding of MT-associated proteins [78] [81] 
[82] [83]. The changes in MT stability dynamics and the increase in α-tubulin 
acetylation have been directly linked to the increase in MMP-9 secretion elicited 
by MT stabilizing agents [56], and we have shown recently that MT destabilizing 
agents that inhibit microtubule polymerization exert the inhibitory effect on the 
increase in salivary gland acinar cell MMP-9 secretion elicited by P. gingivalis 
LPS [74]. There are also reports pointing to the role of tubulin phosphorylation 
in MT stabilization, and the evidence suggests the involvement of PKC and Src 
family tyrosine kinase (SFK) in this process [80] [84] [85]. The role of tubulin 
phosphorylation in MT stabilization is furthermore, supported the results indi-
cating that phosphorylation of α-tubulin on Ser prolongs the duration of MT 
growth, while the phosphorylation on Tyr promotes MT dynamic instability [80] 
[84] [85]. 

Therefore, considering that PKC and SFKs play a major role in propagation of 
oral mucosal inflammatory response to P. gingivalis associated with the en-
hancement in MMP-9 production, as well as are the targets of modulatory in-
fluence of a peptide hormone, ghrelin [33] [74] [86], we assessed the influence of 
P. gingivalis LPS and ghrelin on tubulin phosphorylation in salivary gland acinar 
cells and the MMP-9 secretory processes affected by the changes in MT dynam-
ics [87]. The findings revealed that P. gingivalis LPS-elicited induction in the 
acinar cell MMP-9 secretion is accompanied by the enhancement in MT stabili-
zation, while the modulatory influence of peptide hormone, ghrelin, is associated 
with MT destabilization Further, we found that the changes in MT dynamics 
induced by the LPS and ghrelin occur through signal-regulated α-tubulin phos-
phorylation on Ser/Tyr [87]. The LPS-induced TLR4 activation and subsequent 
up-regulation in MMP-9 secretion was reflected in a marked increase in 
PKCδ-mediated α-tubulin phosphorylation on Ser, while the modulatory influ-
ence of ghrelin,an endogenous ligand of the growth hormone secretagogue re-
ceptor type 1a (GHS-R1a, a G protein-coupled receptor (GPCR), was manifested 
in by SFK-PTKs-dependent phosphorylation of α-tubulin on Tyr (Figure 4). 
Moreover, the changes in MT dynamics, conferred by the LPS and ghrelin, were 
found to affect the Golgi localization of GTP-Arf1 and the recruitment and acti-
vation of PKD2. 

As the elevated levels of MMP-9 are found in gingival tissue of patients with 
periodontitis, the above findings suggest that factors affecting MT dynamics and  
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Figure 4. Schematic illustration of the role of α-tubulin phosphorylation and the changes in MT dynamics in modulation of sali-
vary gland acinar cell MMP-9 secretion in response to P. gingivalis LPS and ghrelin. Engagement of TLR4 by the LPS triggers 
PKCδ-dependent α-tubulin phosphorylation on Ser and the enhancement in MT stabilization, that leads to the up-regulation in 
Arf-GEF-mediated translocation of Arf1-GTP to the Golgi, and promotes the recruitment and activation of PKD2. The activated 
PKD2, by acting on the TGN-localized substrates, affects the vesicle fission events and thus enhances the secretion of MMP-9. 
Ligation by ghrelin of GHS-R1a, on the other hand, leads to SFK-PTKs-mediated phosphorylation of α-tubulin on Tyr that main-
tains MT dynamics at its normal regulatory level. G heterotrimeric G protein, GEF guanine nucleotide exchange factor, MT mi-
crotubule, Tb tubulin, pS phosphoserine, pY phosphotyrosine. 

 
MMP-9 secretion present a tempting target for the therapeutic intervention in 
the treatment of chronic periodontitis. An interesting application of this new 
type of therapeutic intervention was reported recently the use of spleen tyrosine 
kinase (Syk) inhibitors to affect MT stability in order to enhance ovarian cell 
susceptibility to paclitaxel [80]. 

5. Conclusions 

MMP-9 is a highly glycosylated zinc-dependent endopeptidase implicated in a 
wide range of inflammatory and neoplastic diseases, including oral cancer, Sjo-
gren’s syndrome, rheumatoid arthritis, and chronic periodontitis, a persistent 
oral mucosal inflammation attributed primarily to infection by periodontopathic 
oral pathogen, P. gingivalis [5] [6] [7]. Moreover, the elevated levels of MMP-9 
in serum of periodontal disease patients have been directly linked to the increase 
in risk of autoimmune and cardiovascular diseases [5] [9] [35] [88] [89]. Hence, 
revealing the insights of the signaling cascades involved in the regulation of 
MMP-9 expression could provide new and innovative options for the treatment 
of chronic periodontitis and systemic diseases caused by oral infection with P. 
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gingivalis. 
Based on the presented literature data, it is evident that the induction by P. 

gingivalis in oral mucosal release and activation of MMP-9 relays primarily on 
its key endotoxin, LPS, engagement of TLR4 and the ensuing activation of 
MAPK signaling cascades. Indeed, the LPS-induced and TLR4-mediated up-re- 
gulation in ERK and p38 activation has been demonstrated to trigger the path-
way of GEF-regulated Rac-1-GTP membrane translocation that promotes mem-
brane localization of p38, while ERK was shown to be involved in cPLA2 phos-
phorylation, its recruitment to the Rac1/p38 complex, and up-regulation in the 
activation. Apparently, the activated cPLA2 by acting on membrane phospholi-
pids affects the membrane fusion events that result in the induction in MMP-9 
release. The role of Rac1/p38 complex in cPLA2 activation is not yet totally clear. 
There are, however, indications that the complex may be required for the en-
hancement in cPLA2 activation by p38-mediated phosphorylation of the phos-
pholipase on the additional Ser sites. 

Moreover, it has been established that P. gingivalis LPS-elicited induction in 
MMP-9 secretion, as well as the modulatory influence of peptide hormone, ghre-
lin, occurs at the level of MMP-9 processing between ER and Golgi, and requires 
the involvement of factors that control secretory cargo processing, including 
Arf1 and PKD2. Interestingly, the recent findings indicate that the LPS-induced 
upregulation in MMP-9 secretion occurs in concert with the changes in stability 
dynamics of the major cytoskeleton polymeric structures, MTs, which are 
known to influence the secretory cargo processing and sorting by affecting the 
Golgi localization of Arf1 and the recruitment and activation of PKD2. 

While LPS-induced changes in MT stability dynamics are known to arise 
through a range of posttranslational modifications of the tubulin subunit of MT, 
including acetylation and phosphorylation, the P. gingivalis LPS-elicited up- 
regulation in MT stability and MMP-9 secretion has been clearly linked to the 
increase in α-tubulin acetylation, while MT destabilizing pharmacological agents 
were shown to exert the inhibitory effect on the LPS-induced MMP-9 secretion. 
Interestingly, the modulatory influence of ghrelin on P. gingivalis LPS-elicited 
increase in MMP-9 is associated with MT destabilization. Further dissection of 
the changes in MT stability dynamics associated with tubulin phosphorylation 
indicates that the up-regulation in MMP-9 secretion by the LPS is reflected in 
PKCδ-mediated α-tubulin phosphorylation on Ser, while the modulatory effect 
of ghrelin on MMP-9 secretion is manifested by SFK-PTKs-dependent phos-
phorylation of α-tubulin on Tyr. Therefore, the development of new pharmaco-
logical agents selectively targeting MT stability dynamics as well as the pro- 
cessing of MMP-9 between ER and Golgi could provide additional arsenal of 
therapeutic agents of value in the treatment of chronic periodontitis. 
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