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Abstract 
Complex breast cancer network constructed from experimentally verified se-
venty genes, by coordinating standard seven human protein and genome da-
tabases, follows hierarchical scale free features. Centrality based method of 
identification of inferred genes is implemented to this network and has pre-
dicted forty nine breast cancer genes, and nineteen non-breast cancer genes. 
As predicting good candidate genes before experimental analysis will save 
time and effort both. Fourteen genes out of nineteen are found to involve in 
various types of cancer and diseases, and five genes are engaged in non-cancer 
diseases. Some of the inferred genes need proper experimental investigation to 
understand fundamental roles of these genes in regulating breast cancer net-
work. 
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1. Introduction 

Breast cancer is the most common cancer in women world-wide and it has the 
ability to get inherited [1]. This inheritance is propelled by various common in-
variants which renders lifetime risk [2]. The possible curative approach of this 
disease is tumor surgery, while chemotherapy still poses a high risk for initiating 
metastasis [3] [4]. Further, depending on the hormonal dependency of the breast 
carcinoma, there are few chemoprevention strategies, such as, employment of 
selective estrogen receptor modulators (SERMs), anti-estrogen drugs and mi-
cronutrients, which have been tested for anticancer activity [2]. There are few 
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developments in the curative approaches of breast cancer, due to various systems 
approaches like network theory, development in omics, availability of gene ex-
pression data and integrative techniques of mapping genes of specific functions 
[5]. In this type of cancer, mutation plays an important role in compelling key 
gene(s) to cause defective protein(s) translation in regulating normal cell func-
tioning [6]. The process involves complicated interaction of few thousand of 
genes in various complex biological processes of large number of molecular 
functions [7], and the molecular functional organization of this network is very 
complicated to understand [8]. This complex network involves organization of 
functional molecules and modules at various system levels associating the prin-
ciple of disease progression [9]. The organization of diverse modules in this type 
of network could be the potential source of various domains of activities [10]. 
Structural and functional properties of complex biological systems have been 
studied within the formalism of network theory [11]. 

It has been reported that most of the existing networks in nature fall in one of 
the following nature, namely, scale-free, small world, random and hierarchical, 
and their combinations [12] [13]. Hierarchical network is of special interest be-
cause of its important topological properties (distribution of diverse modules/ 
communities and sparsely distributed hubs) [12] [13] and systems level working 
mechanisms [12]. The emerging modules in this network type are of particular 
attention because they may correspond to independent functions obeying their 
own laws and their complicated organization [12] exhibiting nonlinear activities 
and emergent behavior [11]. The sparsely distributed hubs generally regulate the 
system along with modules to maintain network stability, or help to adapt to a 
new fit change [14]. The present study focuses on the possibility of finding im-
portant inferred genes in breast cancer network constructed from standard can-
cer databases available using network theoretical approach. The newly predicting 
genes could be of rigorous experimental situation for important target genes of 
this disease. 

2. Methods 

Integration of breast cancer data: We have incorporated six standard data-
bases of cancer, namely, KEGG (Kyoto Encyclopedia of Genes and Genomes), 
CGC (Cancer Gene Census), BCGD (Breast Cancer Gene Database), CGAP 
(Cancer Genome Anatomy Project), GAD (Genetic Association Database) and 
NCG (Network of Cancer Genes), to obtain a comprehensive list of breast can-
cer genes. We extracted 2050 genes from these databases, out of which 1332 were 
found to be unique (Figure 1). Then we follow a simple work flow stared with 
the mining of the list of genes (associated with breast cancer) from all the six de-
fined storehouses. These lists were subjected to CGI-Perl codes (developed lo-
cally) for the removal of duplication both in terms of redundancy of names and 
use of synonymic (multiple names for the same gene) gene names. The method 
of removal involves pattern matching and searching globally in Gene card  
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Figure 1. Schematic diagram of work flow of the methodology implemented in this work. 

 
(http://www.genecards.com/) database. Following this method, we could arrive 
at unique 1332 genes. Now, data is further curated using Agilent literature sear- 
ch, a plugin of cytoscape. Finally, from the whole process we possessed the list of 
70 genes out of 1332 unique. Now, the details of the genes extracted by mapping 
these genes to Uni Prot (January 2016). 

Construction of primary network: The breast cancer network is constructed 
following simple rule of one gene one protein concept. The network was con-
structed using APID2NET plug-in implemented in cytoscape version 2.8.3, 
which was used to retrieve all the possible information from seven main re-
sources namely the DIP (Database of Interacting Proteins), BIND (Bio- molecu-
lar Interaction Network Database), IntAct, MINT (Molecular Interactions Da-
tabase), UniProt, BioGRID (The General Repository of Interaction Datasets) and 
HPRD (Human Protein Reference Database) [15]. The integrative and analytical 
effort done in APID provided an efficient open access repository where all the 
curated as well as experimentally verified PPIs (protein-protein interaction) are 
amalgamated into an exclusive web application. On combining all the informa-
tion finally, we got a network of 1732 nodes harboring 55,444 interactions from 
which we only selected the first neighbors of selected 70 genes (discarding self- 
loops and isolated nodes) ending up with network of 1476 nodes defining 22,314 
connections between them. 

Characterization of network compactness: LCP-DP approach: The LCP- 
decomposition-plot (LCP-DP) is two-dimensional representation of common 
neighbors ( )CN  index of interacting nodes and local community links ( )LCL  
to characterize the topological properties of a network. It provides information 
on number, size, and compactness of communities in a network [16]. The CN  
index between two nodes x  and y  can be calculated from the measure of 
overlapping between their sets of first-node-neighbors ( )S x  and ( )S y  given 
by, ( ) ( )CN S x S y= ∩ . The possible likelihood of interaction of these two 
nodes could happen if there is significant amount of overlapping between the 
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sets ( )S x  and ( )S y  (large value of CN ). The increase in CN  is due to the 
increase in compactness in the network, indicating faster information processing 
in the network. The LCLs  between two nodes x and y, whose upper  

bound is defined by, ( ) ( )1 1
2

max LCL CN CN= − , is the number of internal  

links in local-community ( )LC . These two nodes most probably link together if 
CN  of these two nodes are members of LC  [16]. 

The LCP correlation ( )-LCP corr  is the Pearson correlation co-efficient  

of CN  and LCL  defined by 
( )cov ,

-
CN LCL

CN LVL
LCP corr

σ σ
=  with 1CN > ,  

where ( )cov ,CN LVL  is the covariance between CN  and LCL , CNσ  and 

LCLσ  are standard deviations of CN  and LCL  respectively. 
Constant pott’s model: energy distribution in a network. The state of a per-

sisting system can be estimated by calculating the difference in the HE (Hamil-
tonian Energy) between two ensemble states of the system. HE based calculation 
was done for a network or module by considering hub influencing modules. We 
then identified the modules where particular hub is present at each level. HE of 
the system having these modules were calculated according to the formalism 
built by Constant Potts Model [17] [18] given by 1 that consider the contribu-
tion of nodes (N) and edges (E) in a competitive manner. HE behaves as a win-
dow to look into the variation in the network components. 

[ ] 2s
C C

C
H e nγ= − −∑  

where Ce  and Cn  number of edges and nodes in a community (“C”) and γ  
is the resolution parameter acting as edge density thresh hold. in general, γ   

should be 
( )2

1

Cn
≤ . 

Centrality based link prediction: Since centrality measurements can charac-
terize the most influencing candidates in a network, which are capable of fast 
information propagation, reception, and sensitivity to the local and global per-
turbations, it can be used as a method to identify important fundamental regu-
lators. For each of the centrality Degree, Betweenness, Closeness and Eigenvec-
tor, we computed the centrality score (using CytoNCA) for each node in the 
breast cancer network [19]. According to the scores of the nodes for each indi-
vidual matrix in the network, we rank them in a descending order and compute 
the percentage of the known breast cancer-associated genes. Among the top 20 
ranked genes the percentages of the known breast cancer-associated genes were 
85% (Closseness), 75% (Betweeness), 55% (Degree) and 40% (Eigenvector). Fr- 
om these four centralities, betweeness and closeness centrality measures out 
performed as they are able to capture high percentage of genes (associated with 
breast cancer) for the present study. 

3. Results and Discussion 
The complex breast cancer network constructed from experimentally verified 
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seventy genes obeys hierarchical characteristics [12] in the properties of topo-
logical parameters of it (Figure 2), and scale free behavior because of the power 
law nature in these parameters [20] [21]. The calculated data distributions of the 
probability of degree distributions ( )P , clustering co-efficient ( )C  and con-
nectivity ( )NC  exhibit power law nature with respect to degree k (fitted lines 
on the data distributions in Figure 2). The fitted lines on the data distributions 
are confirmed and verified by following a standard statistical fitting procedure 
due to Clauset et al. [22], where we considered the 2500 random sampling of 
each data set and found the p-value in each case larger than 0.1 which is the pre-
dicted threshold value. Hence, we found that, ~P k γ− , ~C k α−  and  

~NC k β− , and the power exponents are found to be,  
( ) ( )T T, , ~ 1.28,0.31,0.15d γ α β= , where T is the transpose of the vector. If 

( ) ( )T, , , ~ ii d

i

F ak
F P C CN a

F
= , where a is a constant scale factor with id  as the  

fractal dimension of the thi  component of F. Hence, the network properties in-
dicate that the breast cancer network follows hierarchical scale free fractal net-
work [12] [21] [23] [24] [25] [26]. The negative value in β of connectivity para-
meter shows non-assortive nature of the network, and possibility of rich-club 
formation among the leading hubsis unlikely [24]. 

Similarly, the centrality parameters, namely, betweenness ( )BC , closeness 
( )CC  and eigen-vector ( )EC  centralities of the network also exhibit fractal 
behavior (Figure 2) given by, ( )T, ,B C EG C C C= , such that ~BC k  , ~BC kδ , 

~BC kδ  and ( ) ( )T T, , ~ 2.13,0.077,1.14q δ η=  . The positive values of q com-
ponents of these centrality parameters indicate the strong regulatory role of the 
leading hubs in the breast cancer network [27] [28]. Then the topological  
 

 
Figure 2. Topological properties of the breast cancer network. The lines are fitted lines 
with powerlaws in the data sets. 
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properties of the breast cancer network can be represented by, ( )TΓ ,F G= ,  
( )
( )

Γ
Γ

jDj

j

ck
C

k
=  where, ( )T,D d q=  maintaining fractal properties. 

Now following the centrality measurements based methodology (see in Me-
thods), we examined the first top twenty genes each identified by each centrality 
and degree measurements (Figure 3 left four panels), and could able to identify 
eighty genes from all measurements. The repeated occurrence of some genes 
(EF1A1, HS90B, CTNB1, KU70, 1433Z) in the four lists of measurements draws 
our attention to visualize their neighbours as shown in Figure 4(a)-(e). Among 
these 80 central genes, 49 genes are the known breast cancer-associated genes 
and 31 genes are inferred genes whose relationships with cancers are needed to 
be further investigated. We then manually searched the evidence of their rela-
tionships with cancers from various resources such as databases and published 
papers, and found that among 19 out of 31 (after removing repetitions) inferred 
genes 14 genes are cancer-associated (but not breast cancer), which suggests that 
these four centralities are effective in identifying cancer-associated genes (Table 
1). Further, 4 out of 19 identified genes are found to be non-cancer associated 
genes which are needed further experimental investigation for their importance 
in the study of breast cancer genome (Table 1). We now review the detailed in-
formation about the 19 identified inferred genes as follows: 

Cancer associated genes: This category holds two sub-categories depending 
upon the source. Thus, 14 genes include 10 genes that acquired association to 
cancer from literature while the other 4 genes from NCG database (Table 1) [29].  
 

 
Figure 3. Plots of the degree and centrality based identification of first top twenty 
genes in each measurement. The percentage of common overlapping of the identi-
fied genes by the four measurements. 
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(a) 

 
(b)                                       (c) 

 
(d)                                         (e) 

 
(f) 
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(g) 

Figure 4. Sub-networks constructed corresponding to most frequently repeated non- 
breast cancer genes (a)-(e) and their compactness characterized by two dimensional plots 
between p (LCL) versus CN (f). Plots of PH and PLCP for frequently repeated five non- 
breast cancer genes (g). 
 
These 4 genes, namely, CTNNB1, HS90B, NMP, and PAPB1 are obtained after 
verification from NCG (Table 1) [29]. The other 10 genes, namely, 1433Z, TF- 
65, CSK1, KU70, SF3B3, RL11, RS3A, HNRPU, RL6, RL26 were verified for the 
association to cancer from extensive literature survey (using Pubmed, scholar 
etc). Out of these 10 genes the expressions of KU70 and SF3B3 were recently 
been correlated to resist the prognosis of ER+ breast cancer [30]. 

Non-cancer associated genes: This category holds only 5 genes that were 
found associated to other diseases but not cancer (neither in NCG nor in Litera-
ture). Out of these five genes EF1A1, 1433G, RL23, RL24 and RS26, RS26 is cor-
related to the conjunctival cancer. 

Further, after removing breast cancer related genes from the list, the highly 
repeated genes (EF1A1, HS90B, CTNB1, KU70, 1433Z) in the four measure-
ments are most probably important inferred genes which help in regulating bre- 
ast cancer regulatory network and their regulating roles should be significant 
other than other inferred genes. Hence, we further study the topological proper-
ties of the sub-networks associated with these genes for understanding their ac-
tivities (Figures 4(a)-(e)). These sub-networks still follow hierarchical scale free 
characteristics, may be inherited from the main network obeying fractal proper-
ty of the network. These sub-networks are compact (all - 0.8LCP corrs > ) where 
nodes are tightly bound (see Method), their sizes are in the range (26 - 170) and 
the points in the LCP-DP plots indicating strong linkage of the nodes in each 
sub-network [16]. These properties reveal that these five important inferred 
genes might have strong regulating activities to breast cancer network. The 
compactness or how strongly the nodes are interconnected in each sub-network 
can be characterized by defining a relative LCP-correlation given by,  

; 1, ,5,i
LCP

N

x
P i

x
= = �  where ix  is the value of LCP-correlation of thi   

sub-network and Nx  is the LCP-correlation of the complete breast cancer net-
work. Since the calculated PLCP values of EF1A1 and 1433 Z are largest, the 
sub-networks corresponding to these inferred genes strongly correlate with the 
breast cancer network, and actively regulate it. Whereas, CTNB1 has lowest  
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Table 1. List of non-breast cancer inferred genes identified by centrality based method of identification of inferred genes. 

Genes Cancer type involved Disease other than cancer Reference 

1433Z (Cc) Prostrate; Lung 
Creutzfeldt-Jakob Disease; Prion Disease; Gerstmann-Straussler 
Disease; Post-Vaccinal Encephalitis etc. 

[34] 

CTNB1 (Cc) 
Colorectal cancer, somatic; Hepatocellular 
carcinoma, somatic; Ovarian cancer, somatic; 

Pilomatricoma, somatic; Mental retardation, autosomal  
dominant 19 

[35] 

TF65 (uCb) Lung cancer; Prostrate cancer; Leukemia; HIV-1 [36] 

CKS1 (uCb) 
Multiple Myeloma; Hepatocellular Carcinoma; 
Cervical Squamous Cell Carcinoma; Oral 
Squa-mous Cell Carcinoma 

Clear Cell Adenofibroma; [37] 

EF1A1 (*)  
BardetBiedl Syndrome; Fusariosis; Cutaneous Anthrax; Tinea 
Nigra; Hepatitis 

[38] 

1433G (uCb)  Intellectual dissablity [39] 

KU70 (d) 
Renal Cell Carcinoma; Hepatocellular  
Carcinoma; Lung Cancer. 

Post encephalitic Parkinson Disease; DNA Ligase Iv Deficiency; 
Middle Cerebral Artery Infarction; Systemic Lupus  
Erythematosus; Lupus Erythematosus; Neuroblastoma 

[40] 

HS90B (d) multiple cancer types  [41] 

SF3B3 (Ce) Breast (ER+ cells)  [42] 

RL11 (Ce) Gastric cancer 
DiamondBlackfan Anemia 1; Pierre Robin Syndrome;  
Congenital Hypoplastic Anemia; Macrocytic Anemia; 

[43] 

RS3A (Ce) Lung; Hepatocellular Carcinoma; Diamond Blackfan Anemia; Huntington Disease [43] 

HNRPU (Ce) 
Renal Cancer; Pancreatic Ductal  
Adenocarcinoma; Cervical Cancer (somatic); 

Myotonic Dystrophy 1; Becker Muscular Dystrophy [44] 

RL6 (Ce) Gastric Cancer; TCell Leukemia Noonan Syndrome 1 [45] 

RL23 (Ce)  Neuroblastoma; Myelodysplastic Syndrome [46] 

NPM (uCe) Leukemia, acute myeloid, somatic  [47] 

RL26 (uCe) Conjunctival Cancer; 
Diamondback Anemia; Macrocytic Anemia; Pierre Robin  
Syndrome; Rpl26 Related Diamond Blackfan Anemia; 

[48] 

RL24 (u)  
Bone Remodeling Disease; Bone Resorption Disease; Cauda 
Equina Neoplasm; Diamond Blackfan anemia. 

[43] 

RS26 (u) Conjunctival 
Macrocytic Anemia; Pierre Robin Syndrome; Diamond  
Blackfan Anemia 

[43] 

PABP1 (u) Lymphoma; Gastric cancer  [49] 

Literature (cancerous genes): green; NCG (cancerous genes): yellow; not cancer white: white; (*): Commonly appeared in all (i.e. four) centralities(Cc); (Cc): 
Gene appeared in both Betweeness (Cb) and Closeness centralities (Cc); (uCb): Gene unique Betweeness (Cb); (d): Gene appeared in both Degree (d) and 
Closenesscentralities (Cc); (Ce): Gene appeared in both Degree (d) and Eigenvector centralities (Ce); (uCe): Gene unique to Eigenvector centralities (Ce). 

 

LCPP  value indicating weak correlation and regulation of corresponding 
sub-network to the breast cancer network (Figure 4(g)). Again, relative energy 
distributions in these sub-networks of the inferred genes can be estimated using 
Hamiltonian function within the formalism of constant potts model (see Me-
thod), by defining the energy distribution per node, which is the ratio of Hamil-
tonian energy of a sub-network “j” Hj to the size ofthe corresponding sub- 

network jH  given by, ; 1, ,5s
LCP

s

H
P i

N
= = � . The calculated HP  of sub- 
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networks corresponding to EF1A1 and HS90B show largest values, and those of 
CTNB1 and 1433 Z show smallest values indicating strong and weak distribution 
of energies in their respective sub-networks. 

4. Conclusion 

Complex breast cancer network constructed from experimentally verified se-
venty genes follows hierarchical scale free network which involves interaction of 
emergent diverse modules and sparsely distributed hubs in regulating the net-
work. Regulation of this network is done by various breast and non-breast can-
cer genes. These genes can be identified by centrality based measurements which 
is an important method for identifying inferred genes [19]. As betweenness and 
closeness centrality predicted more genes whose relation to the disease is cur-
rently unknown and that are candidates for experimental study. This method 
could able to recognize 49 breast cancer genes verified by standard database and 
literature reports, and nineteen genes are non-breast cancer genes. Out of nine-
teen inferred genes, fourteen genes are involved in other types of cancers other 
than breast cancer and other diseases. The other five genes are involved in other 
non-cancer diseases. The identified inferred non-breast cancer genes should be 
addressed for important experimental attention in order to understand their di-
rect and indirect roles of regulation of these genes in breast cancer network. The 
highly repeating genes in the centrality based identification of inferred genes 
could be of significantly important regulating activities in breast cancer network. 
Because the sub-network associated with each inferred gene is compact and 
strongly interlinked, and follows hierarchical features. The energy distributions 
in these sub-networks are also strong for some genes indicating their significant 
roles in regulating breast cancer network. We strongly propose for immediately 
rigorous experimental investigation like on p. 53 [31] [32] [33], these inferred 
genes for possible proper understanding of how this particular disease network 
works. The proper attention to these genes may open up new understanding and 
preventive mechanisms of this disease. 
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