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Abstract 
A simplified PCM wallboard model is coupled to an existing design-oriented model of multi-zone 
buildings. Using a reference model and a basic simulation configuration, the accuracy of the re- 
sulting PCM wallboard-building thermal design tool is evaluated. A new performance indicator, 
called PCM utilization factor, is then proposed in order to estimate the thermal efficiency of using 
PCM wallboards in buildings. Using this PCM Utilization factor and a degrees-hours indicator, the 
ability of the PCM wallboard-building thermal design tool to evaluate the effect of PCM wallboards 
on heating loads and summer thermal comfort in the early design phase of a project is examined 
in two real case studies: a family house project and an existing office building. The user-friendli- 
ness of this design tool, and the short calculation times it leads to when performing a year-long 
simulation using a standard office computer, make it a well-adapted tool for sensibility studies or 
multi-criterion optimization for buildings that contain PCM wallboards. 
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1. Introduction 
Phase Change Materials (PCM) have been widely studied in building applications [1]. They are able to influence 
the thermal comfort and the energy performance of buildings [2]-[4]. They lead to alternative and passive ways 
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to store energy in buildings: a PCM material captures or releases heat (more specifically latent heat) when it un- 
dergoes a phase change from solid to liquid, liquid to gas or vice versa. The phase change occurs at a constant 
temperature (or over a limited range of temperature values), which is the temperature that corresponds to the 
phase transition temperature of the material. This latent heat storage is attractive since it provides a high energy 
storage density. Any material can potentially achieve a change phase. Concerning the industrial applications, 
one can distinguish inorganic PCMs (salthydrates for instance) and organic (parafines for instance). The order of 
magnitude of the melting latent heat of parafines is about 200 kJ/kg. 

Many authors have studied the thermal effect of PCM in specific systems, for instance PCM integrated in a 
storage tank [5], PCM integrated in ventilation systems [6] or in active walls [7]. This paper focuses on PCM 
wallboards used as internal building finishes. Such kinds of industrial products have recently been developed, 
but it is likely that they will be widely used in the near future [8]. This use of PCM has already been adopted by 
several architects as a promising solution to balancing the lack of thermal inertia in lightweight constructions. 
Professionals (architects and engineers) therefore need appropriate tools to evaluate the actual benefits of this 
material, especially in the early design phase of projects.  

The integration of PCM wallboards into simulation tools has mainly been carried out in two kinds of building 
thermal model. Several studies deal with thermal models solved by the finite difference method [9]-[11]. How- 
ever, as explained by Ibanez et al. [12] or Schranzhofer et al. [13], it is also possible to couple a PCM model 
with a thermal model based on the transfer functions method. 

As noted by Dutil et al. [14], the enthalpy method and the heat capacity method are the two main approaches 
when modelling heat transfers with phase change. The enthalpy method has been used by Dauvergne [15] and 
Dauvergne and Palomo Del Barrio [16] to model plasterboards with micro-encapsulated PCM. Some authors 
have used the effective heat capacity method, assuming that this heat capacity is temperature dependent: Borre- 
guero et al. [17] fitted the heat capacity model according to the experiment, and Chen et al. [18] or Ahmad et al. 
[19] chose a rectangular function. In the case of research by Athienitis et al. [20], the approach is different again: 
the heat flux due to phase change is modelled by a triangular function, and is injected as a source term in the 
heat balance equation. 

The aforementioned studies concentrated for the most part on the accuracy of the calculations, but did not 
necessarily target the application to the real needs of architects and engineers. For instance, whether or not PCM 
wallboards are suitable to ensure a satisfying level of comfort in summer is a question that has to be considered 
at the early design phase, because the answer can strongly influence the design of the building. Indeed, profes- 
sionals need simulation tools which are accurate, but quick and easy to use, and able to help them during the 
whole building design process, especially in the early phase. 

This paper proposes a consistent response to this professional requirement. The basic principle consists in 
coupling a straightforward model of PCM wallboards with an existing thermal model of buildings (implemented 
in professional software) reduced by modal analysis, the aim being to ensure both fairly good accuracy and short 
computation times. First, both models are described, then the coupling methodology is explained. The simula- 
tion tool is then applied to two real case studies to illustrate the ability of the methodology and the resulting 
coupled models simulation tool to evaluate easily the performance of PCM wallboards: a project for a timber 
frame family house, and an existing lightweight office building. 

2. Modelling 
Adding the possibility of taking PCM wallboards into account in thermal simulation tools for buildings requires 
a specific methodological and numerical treatment. One of the main reasons is that integrating the phase change 
phenomenon into the heat balance equation necessarily leads to a non-linear differential equation. It is generally 
assumed that heat conduction occurs in materials with isotropic, homogeneous and constant properties. With the 
phase change phenomenon, the last assumption must be revised as the thermo-physical properties of the PCM 
are temperature-dependent. 

This section describes the existing building thermal design tools used in this paper (COMFIE), then the PCM 
wallboards model adopted, and finally the coupling of these two models to obtain a PCM wallboard-building 
thermal design tool.  

2.1. Building Thermal Model and Calculation Algorithm 
This section gives a brief description of the model and the whole calculation algorithm which has been devel- 
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oped and applied in the thermal simulation tool for multi-zone buildings. This simulation tool is called COMFIE 
and is linked to the Pleiades professional interface, widely used in France by architects and engineers, which 
gives fast and accurate results on heating and cooling loads and thermal comfort [21]. It focuses on the prelimi- 
nary design of buildings, and uses a standard (or user-defined) library containing different physical objects (e.g. 
materials, walls or windows).  

In this model, a wall is made of different material layers, with constant and homogeneous physical properties 
(e.g. conductivity or heat capacity). Surface heat transfer coefficients (convection and long wave radiation) are 
also assumed to be time independent. Convection heat transfer coefficients depend on the inclination of the wall 
and, for external surfaces, a mean building wind exposure. Long wave radiation heat transfer coefficients de- 
pend on surface emissivity.  

This model is a finite volume model. It is especially useful for building designers, who have to perform simu- 
lations within a short computation time. For this reason, heat transfer in walls is assumed to be one-dimensional. 
The building is decomposed into small volumes, or “nodes”, assumed to be at a uniform temperature. Actually, 
the smaller the nodes are, the more realistic is this assumption of uniform temperature. Nevertheless, a limited 
number of nodes are imposed. The chosen compromise consists in placing this limited number of nodes so that 
temperature uniformity is maximal in each one. This strategy leads to a simulation tool which is able to perform 
year-long simulations within a computation time of between 10 s and few minutes, depending on the number of 
thermal zones and the CPU [21]. 

For example, Figure 1 illustrates the discretization procedure on a wall composed of an 11.5 cm concrete wall 
and a 1.5 cm plasterboard placed on its internal surface. The wall is divided into n nodes, whose thicknesses 
follow a geometrical sequence with a common ratio r. The internal layer (finite volume) is the thinnest because 
this side of the wall has more influence on the indoor temperature than the external side of the wall.  

The discretization method creates thermal building models with varying degrees of accuracy, depending on 
the values of n and r. Several values of n and r have been tested, for various types of walls and simple building 
configurations. Simulation results, performed on real case studies of buildings with simple geometries, showed 
that three nodes are sufficient to obtain discrepancies of less than 0.1˚C on zone temperatures, when compared 
to results obtained with twenty nodes reference simulations; furthermore, the effect of the r value on these dis- 
crepancies was very small (less than 10% of the aforementioned discrepancy). Thus three was finally chosen as 
a default value for both n and r.  

Because the numbers and positions of nodes in a wall is a consequence of the n and r values, (see Figure 1, 
where n = 3 and r = 3), the model layers (bounded by dotted lines in Figure 1) do not necessarily match the ma- 
terial layers. As a result, the thermo-physical properties of the materials that constitute a layer are combined  
 

 
Figure 1. Example of the spatial discretization of a multi-layer wall (composed 
of an 11.5 cm concrete wall and a 1.5 cm plasterboard placed on its internal 
surface). Number of nodes: n = 3; common ratio of the geometrical sequence 
of the node thicknesses: r = 3.                                         
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(thermal masses and thermal resistances are added together). This discretization methodology is applicable to all 
types of wall. The complete methodology is described by Peuportier [21].  

An energy balance is written for each node. The building is divided into thermal zones, and for each zone a 
matrix equation system is built: 

C = C + E
= J +G





T T U
Y T U

                                   (1) 

in which T is the discrete temperature field vector, U is a vector made of the driving forces (external temperature, 
solar irradiation, internal heat source), Y is the output vector, C is the diagonal matrix of the capacities of the 
discrete elements of the node grid, A is the matrix containing all exchange terms between the nodes, E is the ma- 
trix containing the exchange terms between the nodes and the driving forces, J is the matrix relating the outputs 
to the nodes , and G is the matrix relating the outputs to the driving forces. A particular output within the vector 
Y is the zone temperature Tz of a given thermal zone, which is an equivalent temperature taking into account the 
air temperature and the surface temperature of the different walls [21]. 

The temperature vector T is divided into a steady and a dynamic term, and a diagonalization step transforms 
the system into the equivalent in the eigenbase, composed of the eigenvectors:  

= F + B
= H + S





 X X U
Y X U

                                   (2) 

in which X is the modal state vector, F is the diagonal matrix of the eigenvalues of the system. 
A reduction step selects the preponderant eigenvectors: only the largest time constants are considered, and 

multiple eigenvalues are eliminated (this happens if a zone has several identical walls). Only a few eigenvectors 
are kept, and therefore the order of the model is reduced.  

The modal models of the different zones are combined, in order to build the global reduced matrix system of 
the multi-zone building: 

r r r r

r r

= F + B
= H + S





 X X U
Y X U

                                 (3) 

The simulation algorithm includes a controller which calculates the heating power in each zone, according to 
the temporal scenario concerning the set point temperatures. The time step is typically half an hour, with the 
possibility of reducing it to a few minutes. 

The complete modelling and simulation procedure is described by Peuportier [21]. The reliability of the 
model and of the resulting simulation tool has been demonstrated in several validation procedures [22] [23]. 

The aim of this work is to integrate a PCM wallboard model into the existing building thermal design tool 
described briefly in this section. As pointed out above, in order to ensure short computation times, this building 
thermal design tool considers restrictive assumptions, for example constant and homogeneous values for ther- 
mo-physical properties. For this reason, the PCM wallboard model proposed in the next sub-section has been 
developed to be associated with this existing building thermal design tool, but without producing any major 
modifications in this software solver. Thus, an enthalpy method has been chosen and the PCM phase change 
thermal effect is described as an external heat source term for the heat balance equations that takes place in the 
building thermal design tool. 

2.2. PCM Wallboard Model 
In this sub-section, a simple expression of the PCM wallboard enthalpy is proposed, assuming the usual restric- 
tions retained in the literature: one-dimensional heat transfer, isotropic and homogeneous material properties and 
negligible natural convection of the PCM liquid phase [11] [12], identical thermo-physical properties for PCM 
liquid and solid phases [9] [20], no consideration of a possible hysteresis and sub-cooling phenomena for the 
PCM [10] [17] [18]. Note that the last assumption is in accordance with the level of precision of the usual PCM 
wallboard manufacturers’ commercial data, as used by architects and engineers. 

The PCM is associated with a structuring material to enhance its mechanical properties (e.g. plaster). The re- 
sulting product is considered to be a homogeneous medium, namely the PCM wallboard, whose thermal con- 
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ductivity, mass density and heat capacity can be written as follows:  

( )

( )
( )

1

1

1

w pcm m

m pcm
w

m pcm

w pcm mCp Cp Cp

ελ ε λ
ρ ρ

ρ
ερ ε ρ

ε

λ

ε

= + −

=
+ −

= + −

                              (4) 

where ε is the ratio between the mass of PCM and the total mass of the PCM wallboard. In the previous equation, 
the subscripts “m”, “pcm”, and “w” refer respectively to “structuring material”, “Phase Change Material (PCM)” 
and “PCM wallboard”. 

The main characteristics of the PCM are its latent heat of fusion L, and its enthalpy variation on its melting 
temperature range (PCM temperature range over which the phase change occurs); this range may reduce to a 
single temperature if the PCM is pure or eutectic. These characteristics are commonly obtained by using a DSC 
(Differential Scanning Calorimeter). Given these experimental data, the PCM wallboard mass enthalpy is then 
written as follows: 

wh Cp T Lfε= +                                    (5) 

where f is the mass fraction of the melted PCM over the total PCM mass. As already mentioned above, for im- 
pure materials, the phase change takes place over a given temperature range; the melted PCM mass fraction 
versus PCM temperature curves usually have the same shape as the one shown in Figure 2. As suggested by 
Ahmad et al. [19], for instance, these curves can be approximated by a linear function (Figure 2) and expressed 
as follows:  
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−

= ≤

= ≥

                           (6) 

where Tlow and Tup are the limit temperatures of the PCM phase change temperature range.  

2.3. Coupling the PCM Wallboard Model and the Building Thermal Model 
A simple and efficient coupling methodology is used to integrate a non-linearity (the PCM wallboard enthalpy 
model described above) into the existing thermal simulation tool (the building thermal model described above) 
without modifying its intrinsic calculation algorithm. The thermal effect of the PCM wallboard enthalpy modi-
fication (due to the PCM phase change) is considered as an external heat source term in the heat balance equa-
tion. This integration strategy, using a heat source term, has already been considered by Athienitis et al. [20]. 
Note that a method based on the enthalpy formulation is well adapted to this context, compared to the variable  
 

 
Figure 2. Mass fraction of melted PCM (paraffin) versus temperature (experi- 
mental data: square dots; linear approximation: solid line).                  
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heat capacity formulation. In the present paper, the modelling originality lies in the fact that this heat source 
term is not calculated by the building thermal model, but is calculated independently and then injected into the 
building thermal model.  

As pointed out earlier, the building thermal model is one-dimensional. Thus, the heat balance equation in a 
wall is written as follows: 

H T
t

ρ λ∂
= ∆

∂
                                      (7) 

where Δ is the Laplace operator and 𝐻𝐻 is the enthalpy of the wall. If this wall is made of PCM wallboards, the 
enthalpy expression is that proposed in Equations (5) and (6). In this case, the heat balance is:  

w
TCp T q
t

ρ λ∂
= ∆ −

∂
                                    (8) 

where 𝑞̇𝑞, the rate of energy generation per unit volume, expresses the heat stored or released due to PCM melt- 
ing or solidification: 

d
d

f Tq L
T t

ρε ∂
= ×

∂
                                     (9) 

Thus, the heat transfer generated by the PCM phase change can be considered as a heat source in the heat 
balance equation. Here, the resolution of this equation is performed by coupling a PCM model that calculates the 
rate of energy generation q  given the local temperature T in the PCM wallboard, with the existing building 
thermal model which calculates the temperature T according to this local rate of energy q ; this iterative proce- 
dure is illustrated in Figure 3. According to this algorithm, the interaction between the PCM phase change and 
the building thermal evolution is dynamically taken into account: at each time step, given the discrete tempera- 
ture field vector in the building at the beginning of this time step Tn, an iterative procedure that couples the PCM 
model and the Building model leads to a convergence at the temperature vector at the end of this time step Tn+1. 
This algorithm has been implemented using an object oriented approach (in a Delphi language environment): 
both PCM and building thermal models are objects that exchange variables (vectors q  and Tn) during the itera- 
tion procedure. For a traditional building thermal simulation, a half hour time step is often sufficient to ensure 
the convergence of this iterative procedure.  

3. Numerical Comparisons between the PCM Wallboard-Building Coupled Model  
and a Reference Model 

The aim of this section is to verify the reliability of the PCM wallboard-building model resulting from the cou- 
pling presented in Figure 3. Numerical results from the PCM wallboard-building coupled model are compared 
with numerical results from a reference model which has recently been experimentally validated by Dauvergne 
[15] and Dauvergne and Palomo Del Barrio [16]. This reference model assumes unidirectional heat transfers, 
constant thermo-physical properties, no convection in the liquid PCM and no hysteresis or sub-cooling effect. 

A simple configuration is considered: a wall made of 15 cm gypsum (the matrix), in which PCM (paraffin) is 
homogeneously mixed. The PCM mass fraction is ε = 0.15 and its latent heat of fusion is L = 112 kJ/kg. The 
phase change temperature range is defined from Tlow = 17˚C to Tup = 28˚C (see Figure 2). Other material 
thermo-physical parameters are given in Table 1. Newton boundary conditions are considered on each side of 
the wall. The air temperature on the interior side is 24˚C, and the external side is subjected to climatic driving 
forces corresponding to a meteorological station located in the south of France (city of Agen). The simulation 
time step is 1 hour, and the simulation is run for a whole year.  

In order to compare numerical results from these two models, a mean wall temperature is considered. Note 
that the interior surface wall temperature would probably have been more appropriate for making this compari- 
son, because this surface exchanges both with the thermal zone and with the PCM wallboard; however, as 
pointed out in Section 2.1 (see Figure 1), this interior wall surface temperature is not calculated directly by the 
building simulation tool. As a consequence, instead of extrapolating node temperatures to obtain an internal wall 
surface temperature, the spatial averaged wall temperature has been considered as a reasonable quantity to com- 
pare those model outputs. 
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Table 1. Thermo-physical properties of materials used to compare the coupled PCM-Building model with the reference 
model developed by Dauvergne [15].                                                                        

 Matrix (gypsum) PCM (paraffin) PCM wallboard 

λ (W∙m−1∙K−1) 0.35 0.2 0.33 

ρ (kg∙m−3) 1000 640 920 

Cp (J∙kg−1∙K−1) 800 1150 1100 

 

 
Figure 3. PCM model—Building model coupling procedure.                 

 
Figure 4 deals with the influence of the number of nodes retained for the simulations with the PCM wall- 

board-building coupled model on the reliability of the corresponding simulated results. Results obtained with 
three nodes appear to be quite close to those obtained with the reference model from Dauvergne and Palomo Del 
Barrio [16]. This number of nodes requires a compromise between accuracy and computation time, in accor- 
dance with building design objectives and with the level of precision of the usual PCM wallboard manufacturer 
commercial data: the mean discrepancy between the 3-node model and the reference model is 0.08˚C for the 
whole period (1 year), with a maximum discrepancy of 0.48˚C. This difference may be in part a consequence of 
the approximation, using a linear function, of the PCM enthalpy-temperature curve (see Figure 2). Simulations 
for the simplified model with fifteen nodes have also been performed, and the temperature results in this case are 
quite close to those obtained with the 3-node model [24]. As a consequence, the PCM wallboard-building cou- 
pled model, which contains the discretization procedure described in Section 2.1, is considered to be a reliable 
model.  

One objective of this paper is to point out that using a building-PCM wallboard coupled design tool of this 
kind, architects and engineers will be able to evaluate the thermal performance (or non-performance) of PCM 
wallboards (through the professional interface Pleiades) in the early design phase of building projects. Such an 
evaluation is performed next using two indicators: a PCM Utilization Factor UF defined specifically in this pa- 
per, and degrees∙hours of discomfort DH. Consideration is mainly given to thermal comfort in summer, but 
some focuses on winter heating load are also briefly considered. With this objective in mind, the PCM wall- 
board-building simulation tool is applied in the next section to two real case studies to illustrate this evaluation 
procedure for using PCM wallboard in buildings.  

4. PCM Wallboards Performance Indicators 
To evaluate quantitatively the influence of the PCM on thermal comfort, two indicators are used. The first, 
commonly used to evaluate the summer comfort in buildings, is the degrees hours of discomfort DH: this is the 
sum, over a given simulation period (July and August in this paper) and for each hour h in this period, of the 
hourly average value of the over-temperature in a considered building zone, relative to a reference temperature 
Tref (26˚C in our case). 

( )sup 0; h refh periodDH T T
∈

 = − ∑                            (10) 

The second indicator is the PCM utilization factor UF. It is proposed and defined in this paper in order to  
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Figure 4. Mean wall temperature versus time. Dashed line: PCM wallboard- 
building coupled model with one node, dotted line: PCM wallboard-building 
coupled model with three nodes, body line: reference model [15].                 

 
evaluate the performance of the melting/solidification process. It is the ratio between the energy stored and re- 
leased by the PCM over a given simulation period (July and August in this paper), and the maximum energy 
which would have been stored and released by the PCM if it had completely melted and solidified each day 
during this period: 

period
day
period

d

2 w

q t

L
UF

Nρ
=
∫ 

                                 (11) 

In the preceding equation day
periodN  is the number of days over the considered period. This indicator has been 

proposed to help to assess the efficiency of the PCM wallboards and their interaction with the building envelope: 
a unit value for the UF indicator means that the PCM melts and solidifies completely every day (24 hours), 
which gives a maximum thermal storage performance. If UF is lower than unity, either the sizing (for instance 
the area covered with PCM wallboards, or the number of layers) or the management of the building (windows 
opening during the night) is not appropriate. 

5. Using PCM Wallboard-Building Coupled Model on Two Case Studies 
Two different and complementary case studies are considered: a timber frame family house project and an ex- 
isting office building. The PCM wallboard characteristics which are considered in both cases are given in Table 
2. In order not to overload the present paper, the descriptions of the building envelopes are concise and focus on 
the main significant parameters.  

5.1. Case Studies: A Short Description 
The first case study is a timber frame family house project (see Figures 5 and 6). This is a two-storey building 
with a useful area of 84 m2, and a south oriented main facade. The external walls and the first floor are timber 
framed. The ground floor, made of concrete, is the main contributor to the thermal mass of the house. The ex- 
ternal envelope is well insulated: 23 cm insulation on the external walls, 8 cm on the floor, and 35 cm on the 
ceiling (all insulation layers are placed in the external side of the walls). The thermal bridges are treated, and the 
double glazed windows are filled with argon and coated with a low emissivity surface. 

This timber frame house is occupied by a single family (4 persons). The heating set point temperature is con- 
stant at 20˚C. The house is empty from 9 am to 6 pm from Monday to Friday. The air change rate acr (given by 
the ratio between the ventilation flow rate and the volume of the zone) during the day is fixed at 0.5 h−1 and the 
nominal efficiency of the heat recovery ventilation system is 80%. During summer, the air change rate is sup- 
posed to be 6 h−1 at night (when family members are sleeping), achieved by appropriately opening the windows; 
furthermore, it is assumed that during the day the occupants use the external manual roller blinds, that 75% of 
the window areas are covered by these blinds, and that these blinds are completely opaque to solar radiation  
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Table 2. PCM wallboard thermo-physical properties considered for both case studies.                                  

e (cm) 1.5 

λw (W∙m−1∙K−1) 0.18 

ρw (kg∙m−3) 767 

Cpw (J∙kg−1∙K−1) 1200 

L (kJ∙kg−1) 330 

Melting range lower temperature Tlow (˚C) 20˚C 

Melting range upper temperature Tup (˚C) 26˚C 

 

 
Figure 5. Photograph of the family house project (south facade) under con- 
struction.                                                          

 
(solar factor equal to 0). The building is situated in an oceanic and hot climate (Agen, south of France). Accord- 
ing to the simulation results, the annual heating load of this building, with no PCM use, is 1686 kWh (18 
kWh/m2). 

In this timber frame house, PCM wallboards are incorporated into the internal finishes in order to lower the 
heating load and improve thermal comfort in summer. The PCM wallboards are integrated into the ceiling (47 
m2) and one wall (20.5 m2) of both floors, replacing plasterboards without PCM. The PCM wallboard area ratio 
(ar), i.e. the ratio between the PCM wallboards surface area and the useful surface area (floor area) of the con- 
sidered thermal zone, is 1.6 and the latent heat per unit useful surface area is 147 Wh/m2.  

The second case study is an existing office building. As illustrated in Figure 7, this is a two-storey building, 
with a useful area of 1700 m2. The envelope structure is made of steel, and the ground and first floor slabs are 20 
cm thick concrete paving. The level of insulation is rather low: 5 cm of mineral wool in the external walls and 8 
cm in the roof.  

The offices are occupied from 9 am to 6 pm from Monday to Friday. The heating set point temperature is 
20˚C during occupation and 15˚C the remaining time. The air change rate during the day is fixed at 1 h−1 during 
occupation, and 0.1 h−1 at other times. During summer, at night, it is assumed that it can reach 8 h−1 by natural 
ventilation (low and high window openings). As with the house project, the meteorological location for the ref-
erence case is an oceanic and hot climate (Agen, south of France). Because of a need of some natural lighting, it 
is assumed that in summer external blinds shade a fixed percentage of the surface of the windows during the day 
(50%). According to the simulation, the annual heating load for the whole building is 63 kWh/m2 with no PCM 
use.  

In this office building, PCM wallboards are only installed in the south oriented office, as shown in Figure 8. 
This thermal zone covers a useful area of 170 m2. 
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Figure 6. Ground floor plan of the timber frame house project.               

 

 
Figure 7. Photograph of existing office building (west facade).               

 
The thermal behaviour of the two cases is studied according to the following main parameters: the windows 

shading coefficient, the air change rate at night in summer (acr) and the PCM wallboard area ratio (ar). 

5.2. Case Studies Simulation: Results and Discussion  
5.2.1. Timber Frame House 
In the first case study (timber frame family house), the PCM plasterboard reduces the annual heating load (1406 
kWh) by 17%: the use of PCM wallboard leads to more solar energy storage during the day and energy release 
during the evening and the night to heat the house. Thermal comfort is also improved: according to Figure 9, the 
peak temperature on the first floor during the afternoon in summer is reduced by approximately 2˚C when PCM 
plasterboards are used. Note that in this figure, no time lag occurs between zone temperature curves obtained  
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Figure 8. Multi-zone partitioning of the existing office building. Dashed sur- 
face: zone with wallboards (south facing office).                          

 

 
Figure 9. Zone temperature on the first floor of the timber frame house, for a 
few summer days. Meteorological location: Agen (south of France). Dashed 
line: without PCM wallboards. Solid line: with PCM wallboards.             

 
with or without the use of PCM wallboards. This established fact is a consequence of the high air change rate (6 
h−1 at night) which strongly influences the zone temperature: this temperature decreases considerably after 
opening the windows at night. In order to point out an existing time lag between simulations with and without 
PCM wallboards, the temperature evolution inside one PCM wallboard is shown in Figure 10: here, a shift in 
time is noticeable as is to be expected between two buildings with different thermal masses.  

Simulation results in terms of degrees∙hours of discomfort and PCM utilization factor are summarised in Ta- 
ble 3. DH values, for the house with or without PCM, and UF values are presented for low and high air change 
rates and for low and high daytime window shading.  

Note that the influence of the PCM on summer comfort depends heavily on the occupants’ behaviour. For in- 
stance, in the case of high night ventilation, the PCM has a greater influence on the DH of discomfort if the 
blinds are not used: with 75% window shading, DH drops from 26˚C∙hours without PCM to 0˚C∙hours with 
PCM, whereas with 0% window shading, DH falls from 215˚C∙hours to 25˚C∙hours. The main reason for this is 
that with 75% shading and high night ventilation, thermal comfort is intrinsically rather good, and the use of 
PCM is not entirely appropriate. On the other hand, if the occupants do not use the external blinds, the PCM be- 
comes more useful: in this case the UF value of the PCM is 0.29, meaning that the PCM operates at 29% of its 
potentiality (it is 0.15 with 75% shading).  
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Table 3. Degrees∙hours of discomfort (DH) and PCM utilization factor (UF) for the timber frame house (first floor) in terms 
of the night air change rate and the day window shading.                                                         

 

High night ventilation (acr = 6 h−1) Low night ventilation (acr = 0.5 h−1) 

Windows shading coefficient Windows shading coefficient 

75% 0% 75% 0% 

Without PCM DH (˚C∙hours) 26 215 389 4375 

With PCM 
DH (˚C∙hours) 0 25 268 4085 

UF 0.15 0.29 0.12 0.10 

 

 
Figure 10. Temperature inside one wallboard on the first floor of the timber 
frame house, for a few summer days. Meteorological location: Agen (south of 
France). Dashed line: wallboards without PCM. Solid line: wallboards with 
PCM.                                                             

 
In addition, it can be noted that the PCM is really ineffective when there is no night ventilation or when this is 

low: both for low and high window shading, the influence of the PCM wallboards on DH is not significant, and 
UF for this material is low. This is mainly a consequence of the low PCM regeneration during the night because 
of this low air renewal and circulation. This non-regeneration is more pronounced if the windows are not shaded: 
the temperature during the whole 24 h cycle is then often too high to allow any PCM regeneration. 

5.2.2. Office Building 
Concerning the second case study (office building), the PCM wallboards do not significantly reduce the heating 
load. For instance, if the PCM wallboards are installed on the ceiling and the external wall of the south-facing 
office, the heating load of this thermal zone is 8066 kWh without PCM and 7898 kWh with PCM: as the heating 
set point temperature drops to 15˚C at 6 pm, the solar energy that could have been stored during the day is not 
used during the evening.  

One thermal zone of the building has been selected for analysis of summer comfort, the south-facing office 
(see Figure 8). Simulation results in terms of degrees∙hours of discomfort DH and PCM utilization factor UF 
are shown in Figure 11 plotted against the PCM wallboard area ratio ar (the ratio between the surface area of 
the installed PCM wallboards and the surface of the selected office). Each PCM wallboard that has been in- 
stalled replaces plasterboard without PCM. The surface covered with PCM wallboards is, from partial to total 
coverage, 1) the ceiling, 2) the ceiling and the external walls, 3) the ceiling, the external walls and the internal 
walls, 4) the ceiling, the external walls and the internal walls with 2 layers of PCM wallboards. In Figure 11, 
vertical dashed lines define the transitions between these different configurations. Figure 12 shows the time 
evolution of the zone temperature in the office for the following configurations: plasterboards without PCM, and 
1 or 2 layers of PCM plasterboard on the ceiling, on the external and internal walls, and Figure 13 shows the 
time evolution of the temperature inside one of the first wallboard layer (from inside) for the same configura- 
tions. Figure 14 shows the degrees∙hours of discomfort DH and the PCM utilization factor UF versus the night 
air change rate acr, for 1 layer of PCM plasterboard on the ceiling and on the external walls. 
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Figure 11. Degrees∙hours of discomfort (diamond dots) and PCM utilization 
factor (square dots) versus PCM wallboard area ratio, for the south-facing zone 
of the office building. Meteorological location: Agen (south of France). Night 
air change rate: 5 h−1.                                                

 

 
Figure 12. Zone temperature of the south-facing zone of the office building 
for four consecutive summer days (meteorological location: Agen, south of 
France). Dotted line: without PCM; dashed line: one layer of PCM wallboard; 
Body line: two layers of PCM wallboard. The PCM wallboards cover the ceil-
ing and the external and internal walls.                                  

 
In Figure 11, one can see that DH decreases linearly with the PCM wallboard area ratio ar, from almost 

2000˚C∙h to around 700˚C∙h, until the ceiling and the external and internal walls are covered with 1 PCM wall- 
board layer. It then decreases more slowly when a second layer of PCM wallboard is added (from 700˚C∙h to 
300˚C∙h approximately). UF decreases from almost 0.85 to 0.72 for the first PCM wallboard layer, and from 
0.72 to almost 0.45 for the second layer. The second layer of PCM is indeed useful, but because it covers the 
first one and reduces its thermal accessibility, it contributes strongly to the decrease in PCM wallboard utiliza- 
tion factor UF. 

In order to illustrate the ability of PCM wallboards to reduce the temperature peaks in the office, Figure 12 
shows the time evolution, over 4 summer days, of the zone temperature for the whole available surface (ceiling, 
external and internal walls) covered by 1 layer and 2 layers of PCM wallboard respectively. The simulation re- 
sults without PCM use are also given. Note that the influence of the number of layers depends on the change in  
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Figure 13. Temperature inside one of the first wallboard layer (from inside) of 
the south-facing zone of the office building for four consecutive summer days 
(meteorological location: Agen, south of France). Meteorological location: Agen 
(south of France). Dotted line: two layers of wallboards without PCM. Solid 
line: two layers of wallboards with PCM.                           

 

 
Figure 14. Degrees∙hours of discomfort DH without (square dots) and with 
PCM wallboards (triangle dots) and utilization factor UF (cross dots) in terms 
of the night air change rate; south-facing zone of the office building. 1 layer of 
PCM wallboard on the ceiling and external walls.                         

 
the zone temperature: for the third day, for example, (hours between 44 and 68) the peak temperature reduction 
with one layer is around 2˚C and the over reduction caused by the second layer is 1.3˚C (total reduction being 
3.3˚C), and for the fourth day (hours between 68 and 92) the peak temperature reduction with one layer is 1.0˚C 
and the over reduction caused by the second layer is 2.8˚C (total reduction being 3.8˚C). The fourth day is 
warmer than the previous ones (the second day is relatively cold) and the zone temperature tends to get too high 
during the daytime. Thus, the first layer of PCM wallboard melts quickly and most of it is melted by the end of 
the morning making it quite ineffective during the afternoon. In this case the second layer is useful as it can sig- 
nificantly impact the energy balance in the thermal zone. This analysis is confirmed by Figure 13 which gives 
the temperature inside the first wallboard layer (from inside). The first and the third days, on the other hand, are 
cooler than the fourth day and the first layer of PCM is sufficient to significantly impact the energy balance 
during the whole day. Thus, although for the whole summer period, the second PCM wallboard layer is globally 
less efficient than the first one, for the warmest days of summer it does become quite necessary. 

Results presented in Figure 14 show that the PCM utilization factor UF and the degrees∙hours of discomfort 
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DH depend strongly on the night ventilation (i.e. on the air change rate acr). Such simulation results are useful 
for engineers and architects for reaching a good compromise between DH and UF and the air change rate when 
designing a building renovation project with PCM wallboard. Indeed, in the present case, an acr of 4 h−1 leads to 
a large reduction in DH (from around 2000˚C∙h to about 1200˚C), whereas UF is 0.75, very close to its maxi- 
mum value of 0.8 which is reached for an acr of 8 h−1. 

5.3. Discussion 
The results for the two case studies do not provide any general rules on integrating PCM wallboards in buildings. 
They do, however, illustrate the possibilities that the PCM wallboard-building coupled model can offer in pre- 
dicting performance when using PCM wallboards in two real case studies. This performance depends very much 
on building use and its intrinsic properties (mainly insulation, thermal mass, window surface and shading).  

For example, according to the results given above concerning the heating load, the use of PCM wallboards is 
more successful in the timber frame family house than in the office building, but this result is mainly a conse- 
quence of the heating set point temperature in the office building being set to 15˚C after 6 pm, thus preventing 
the solar energy stored by the PCM during the daytime from being used effectively in the evening.  

Conversely, concerning summer comfort, the use of PCM wallboards is more successful in the office building 
than in the timber frame family house because the internal gains (due to occupants, lighting and other equip- 
ments) are higher in the office building during the day; the temperature during the day tends to be higher in the 
office than in the house, leading to a higher temperature difference between daytime and night-time for the of- 
fice than for the house, i.e. conditions that are more favourable for the PCM wallboards to achieve their com- 
plete melting/solidification cycles. 

The two case studies highlight the fact that the PCM thermal effect interacts strongly with the night ventila- 
tion or the use of the window shading device, hence the influence of the PCM wallboards on summer comfort 
depends strongly on occupant behaviour. As already pointed out, the PCM wallboards need a sufficient tem- 
perature difference between daytime and night-time to be efficient, thus the occupants who shade the windows 
during the day and open the windows during the night have a strong impact on the level of utility of the PCM 
wallboards. For instance, concerning the south zone of the office building, DH dropped from almost 2000˚C∙hours 
to 1200˚C∙hours when the night air change rate varied from 1 h−1 to 4 h−1: the night air change has a significant 
influence on the temperature inside the office, thus increasing the night air change rate facilitates PCM solidifi- 
cation and beyond its complete melting/solidification process, and consequently contributes to increasing the 
potential for using the PCM wallboards. 

By varying the number of PCM wallboard layers from 1 to 2, the question of the PCM wallboard thickness 
was considered for the second case study (the office building). Although when considering DH and UF, the 
beneficial effect of a second layer of PCM wallboards is less than that of the first layer, this second layer be- 
comes particularly useful when the days are extremely hot: the first layer then only has an influence in the 
morning when the PCM melts almost completely, with the second layer providing additional PCM for cooling 
the building in the afternoon (with the reduction in the peak temperature reaching almost 4˚C on the warmest 
days). 

6. Conclusion 
In this paper we have coupled the modelling of a PCM wallboard with an existing building thermal design tool 
(“Comfie”). For this purpose, the PCM phase change thermal effect has been described as an external heat 
source term for the heat balance equation. The reliability of the resulting PCM wallboards-building tool has been 
verified by comparing numerical results with reference modelling which has been recently validated experimen- 
tally. Using two global indicators (a PCM utilization factor UF defined in this paper, and the more traditional 
degrees∙hours of discomfort DH), this PCM wallboards-building tool has then been used for two real case stud- 
ies (via the professional interface “Pleiades”) to indicate its utility in the early phase of building design, as a de- 
cision-making support for the use (or not) of PCM wallboards. Furthermore, for these two real case studies, 
computation times are approximately 1.5 times higher when PCM wallboards coupled calculations are activated 
(compared with the original building tool, i.e. for calculations without PCM wallboards), but remain lower than 
1 mn using a standard office computer for a year-long simulation for the two real case studies. Finally, even if 
the PCM wallboard model is independent of the “Comfie” building thermal model tool, for a user accessing the 
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“Pleiades” ergonomic interface, it seems to be completely integrated into it. For these reasons of user-friendli- 
ness and short calculation times, once building and PCM wallboard design parameters have been chosen and a 
corresponding experimental design has been fixed, the building-PCM wallboard design tool developed in this 
paper is well adapted to sensibility studies or multi-criterion optimization for buildings that contain PCM wall- 
boards. This tool (a PCM module included in the software Pleiades-Comfie, downloadable from www.izuba.fr) 
is widely distributed in France (more than 2000 active licenses) and in some other European countries, and of- 
fers a high level of dissemination and use of the scientific developments described in this paper. 
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Nomenclature 
acr   air change rate (h−1) 
ar   PCM wallboard area ratio 
A, C, E, J, G matrices of the state-space physical model 
B, F, H, S matrices of the modal model 
Cp   heat capacity (J∙kg−1∙K−1) 
DH  degrees∙hours of discomfort (˚C∙h) 
e   thickness (m) 
f   liquid fraction 
h   mass enthalpy (J∙kg−1) 
L   latent heat of fusion (J∙kg−1) 
n   number of nodes  

dayN   number of days  
q    rate of energy generation per unit volume (W∙m−3)  
q    rate of energy generation per unit volume vector (W∙m−3)  
r   geometrical ratio 
T   temperature (˚C) 
T   temperature vector (˚C) 
t   time (h) 
U   driving forces vector 
UF  PCM utilization factor 
X   modal state vector 
Y   output vector 

Greek Letters 
ε   mass ratio of PCM 
λ   thermal conductivity (W∙m−1∙K−1) 
ρ   density (kg∙m−3) 

Subscripts 
low  lower limit 
m   matrix material 
period  period of time 
pcm  PCM material 
up   upper limit 
r   reduced 
ref   reference 
w   PCM wallboard 
z   thermal zone 
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