
Journal of Behavioral and Brain Science, 2012, 2, 445-453 
http://dx.doi.org/10.4236/jbbs.2012.24052 Published Online November 2012 (http://www.SciRP.org/journal/jbbs) 

Assessing Brain Pathophysiology through  
Non-Linear Analysis of MEG in Ιdiopathic  

Generalized Epilepsy Cases 

Panagiotis E. Antoniou1, Adam Adamopoulos1, Photios A. Anninos1, Haritomeni Piperidou2,  
Athanasia Kotini1* 

1Lab of Medical Physics, Medical School, Democritus University of Thrace, Alexadroupolis, Greece 
2Department of Neurology, Medical School, Democritus University of Thrace, Alexadroupolis, Greece 

Email: *akotini@med.duth.gr 
 

Received June 1, 2012; revised June 22, 2012; accepted August 6, 2012 

ABSTRACT 

Background: Non-linear signal analysis has proven to be a technique that is capable of revealing qualitative and quan- 
titative differentiations between different dynamical systems (biological or otherwise). In the present work it has been 
demonstrated that this capability reveals quantitative differences in the Magnetoencephalograms (MEG) received from 
patients with Idiopathic Generalized Epilepsy (IGE) and from healthy volunteers. Method: We present MEG record- 
ings of 10 epileptic patients with IGE and the corresponding ones from 10 healthy volunteers. A 122-channel SQUID 
biomagnetometer in an electromagnetically shielded room was used to record the MEG signals and the Grassber- 
ger-Procaccia method for the estimation of the correlation dimension was applied in the phase space reconstruction of 
the recorded signal from each patient. Results: The aforementioned analysis demonstrates the existence of spatially 
diffused low dimensionality in the MEG signals of patients with IGE. Conclusion: The obtained results provide support 
for the hypothesis that low dimensionality in MEG signals is linked to functional brain pathogeny. 
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1. Introduction 

Non-linear analysis has been used in the past to assess 
magnetoencephalographic recordings (MEG) from patients 
with schizophrenia [1], Parkinson’s disease [2] and mali- 
gnant tumours of the brain [3]. This paper provides evi- 
dence for a link between Idiopathic Generalized Epi- 
lepsy (IGE) and the characteristics of the strange attrac- 
tor derived from the MEG recordings of the patients suf- 
fering from it. 

The recorded MEG activity is caused by ionic move- 
ments across the plasma membrane [4]. This activity is 
weak as it is (≈10−8 of the earth’s magnetic field which is 
equivalent to 50 μT), can be measured by means of a 
Superconducting Quantum Interference Device (SQUID) 
[4]. The SQUID is one of the few devices which are 
capable of measuring the exceedingly weak magnetic 
fields emitted by living tissues. The method is non-in- 
vasive because the SQUID is a passive electromagnetic 
receiver and not a transmitter of any kind of radiation 
[5,6]. 

Chaos theory [7] provides us with measurable quan- 

tities of the complexity of dynamical systems. In the case 
of a time series obtained through a MEG measurement of 
the brain, these measurable quantities refer to the un- 
derlying dynamical system, namely the brain. In that con- 
text, chaos theory provides us with quantitative markers 
of the dynamical complexity of the brain. There are in- 
dications that the healthy brain, due to the statistical na- 
ture of its neuronal discharges, is a very highly, theore- 
tically infinitely complex system [8]. 

On the other hand despite the lack of understanding 
regarding the underlying pathogeny, IGE is a condition 
that is characterized by abnormal, rhythmic, electro-che- 
mical brain activity without a single spatially determined 
epileptogenic focus [9]. 

According to the theory of nonlinear dynamical sys- 
tems and chaos [10,11] the dynamics of any physical or 
biological system can be quantified and described by 
means of some new terms and concepts, such as the cha- 
otic attractor and the correlation dimension of the recon- 
structed phase space. Of vital importance in the chaotic 
analysis of a dynamical system is the evidence for the 
existence of low dimension chaotic attractors and the 
estimation of the correlation dimension D of the attractor. *Corresponding author. 
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The purpose of this study is to explore the diagnostic po- 
tential of this method [10,11] in the cases of IGE. 

2. Patients and Methods 

Magnetic recordings were obtained from 10 patients 
with IGE and 10 healthy volunteers. The 10 patients ,4 
male (32 - 82 years old) and 6 female (20 - 55 years old) 
were classified as IGE according to the International 
League Against Epilepsy (ILAE) classifications. The 
selection of the IGE patients was random so the two 
gender groups (4 male and 6 female) were heterogeneous 
in their ages and clinical forms. This was our choice 
because in this preliminary study we wanted to explore 
the existence of correlation between low dimensionality 
chaos in MEG signals and the existence of IGE in the 
patients. In that context any demographic exclusion 
criteria would be a hindrance in sampling. The diagnoses 
were based on clinical manifestations, electroencepha- 
lography findings and brain MRI when it was necessary. 
All patients underwent an MEG examination. The 10 
control subjects were volunteers with similar demogra 
phics with the patients. All the participants came from 
the county of Evros, Thrace, Greece. All controls under- 
went a standard neurological examination that, in all of 
them, resulted as normal. Informed consent was obtained 
from patients and volunteers prior to the procedure. 

The method used for the recording of magnetic activity 
has been described in detail elsewhere [12,13]. In brief, 
we used a 122-channel SQUID gradiometer device and 
specifically the Neuromag-122 (Neuromag Ltd. Helsinki 
Finland). The 122 orthogonal thin-film planar gradio- 
meters operate at low liquid helium temperatures (40 K) 
on the basis of the Josephson effect of superconductivity 
[14] with a broadband gradient noise 5 fT/(cm Hz ) 
and max noise 10 fT/(cm Hz ) for the 95% of the 
channels for f > 10 Hz and a broadband gradient noise 15 
fT/(cm ) and max noise 20 fT/(cm 

of interest in our MEG recordings thus avoiding aliasing 
artifacts. The MEG signal was filtered with cut-off 
frequencies between 0.3 to 40 Hz. The time taken for 
each recording was in the range of 1 min after all tran- 
sients (due to patient placement and motion) have died 
off. The duration of the above records is the routinely 
chosen time interval that has proven long enough, in past 
studies [1,3], to cancel out, on average, all random events 
and to allow for only the persistent ones to remain. 

Nonlinear MEG signal analysis utilizes advanced ma- 
thematical methods to quantitatively correlate the cha- 
racteristics of a given MEG signal with the underlying 
brain dynamics that produced this signal. The analysis 
method of this study was first proposed by Grassberger 
and Procaccia [10,11], based on the theorem of the re- 
construction of the phase space introduced by Takens [15]. 

This method uses the observed MEG time series, in 
order to construct an appropriate geometrical represen- 
tation of the dynamical properties of that signal. From 
this representation it is possible to derive geometrical 
parameters that are linked to the dynamical properties of 
the system that produced the given signal, in our case the 
human brain. One such geometrical parameter is the 
minimum saturation dimension (mminsat). This parameter 
(mminsat) is an index of the complexity of the dynamical 
system which produced the MEG signal. A more rigorous, 
although brief, overview of the mathematics of the 
method is presented in the Appendix. 

Using the aforementioned method the correlation in- 
tegrals were calculated according to Equation 2 (cf. 
Appendix) for all the MEG channels of both the patients 
and the volunteers. From these the slopes were derived 
and according to Equation 3 (cf. Appendix) the correla- 
tion dimensions were calculated for different embedding 
dimensions m. 

The minimum saturation dimension (mminsat) was the 
parameter that was estimated in our study for each MEG 
channel of each participant as a quantitative marker of 
the complexity of the MEG signal. It is worth noting that 
since the signal from each channel (sensor) was analyzed 
independently, no spatial sensor grouping was necessary. 

Hz Hz )for 95% 
of the channels for 1 Hz < f < 10 Hz. The helmet-shaped 
sensor array contains 122 planar gradiometers that detect 
the MEG signals just above the local current sources. 
Figure 1 shows the channels in stereographic projection 
seen from above. The arrows indicate the direction of the 
gradient at which the sensor is sensitive. Each subject 
was comfortably seated on a non-magnetic chair in a 
magnetically shielded room. During the recordings the 
subject’s head was covered with the helmet-shaped 
dewar. All recordings were taken with the patients con- 
scious and relaxed. There were no recordings taken from 
patients demonstrating either clinical or MEG signs of 
seizure. The aim is to avoid the known trivial MEG sig- 
nal morphology that is associated with active seizure neu- 
ronal discharges. The MEG sampling frequency was 256 
Hz and the associated Nyquist frequency was 128 Hz, 
which was well above constituent frequency components  

3. Results 

An example of these correlation dimensions is plotted in 
Figure 2 both for a patient (solid line) and a healthy 
volunteer (dashed line). From Figure 2 it becomes clear 
that the assessed correlation dimension of the signal from 
the healthy volunteer rises according to the embedding 
dimension. Since the correlation dimension is an in- 
variant of the underlying system’s dynamic, the fact that 
it scales according to the embedding dimension indicates 
that the underlying dynamic is not embedded in a suf- 
ficiently high vector space to reveal its true invariant cor- 
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Figure 1. Scan order of the channels; the order into which the channels are read into the memory of the computer. (Neuro-
mag-122 User’s Manual: System Hardware). 
 

 

Figure 2. Correlation dimension assessment for different embedding dimensions. The saturated solid line corresponds to an 
IGE patient whereas the non-saturated dashed line to a healthy volunteer. 
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relation dimension thus providing these (varying by para- 
meter variation) values. On the other hand, for the 
patient’s signal it is shown that a plateau of constant 
dimension reveals itself for mminsat ≥ 7. This signifies that 
an adequate embedding of the underlying system’s dyna- 
mic has been achieved in a vector space of 7 dimensions. 
It is worth noting that while an adequate embedding is 
achieved only at 7 dimensional vector space, the cal- 
culated correalation dimension is approx. D = 5.07. This 
deceptively low correlation dimension could be attri- 
buted to some, unavoidable in realistic time series, tem- 
poral correlation of the delay vectors. Even though the 
delay parameter τ was chosen as the first zero crossing of 
the autocorrelation function which excluded any linear 
correlation of the delay vectors, and (as discussed in the 
appendix) the parameter k of the closest neighbors was 
chosen so as to maximize the assessed correlation di- 
mension, it appears unavoidable that realistic data would 
maintain some temporal correlation. For that reason we 
have chosen not the Correlation Dimension as the in- 
variant of choice for our results but the minimum em- 
bedding dimension beyond which saturation occurs  
(mminsat). 

Using the aforementioned methods, MEG channel maps 
were derived for all the patients. These maps are pre- 
sented in Figures 3 and 4 for the normal volunteers and 
the patients respectively. For each patient or volunteer a 
spatial layout presentation of the MEG channels was 
drawn with each channel color coded according to the 
mminsat value. Details of the color scheme are presented in 
the legend of the figures. 

Figure 3 shows no low dimensionality signals in 
healthy volunteers. Figure 4 exhibits low dimensionality 
signals diffused throughout the whole of the brain. In 
order to quantify these results we assumed a worse case 
scenario that for all the channels not exhibiting saturation 
the mminsat = 24 since m = 23 was the maximum embed- 
ding dimension that our algorithm utilized. Additionally 
we have averaged the mminsat for all channels of both pa- 
tients and volunteers summarizing the results to Table 1. 
A paired samples Student’s t-test was performed result- 
ing in t = −7.42 and p = 0.0002 thus proving that there is 
a statistically significant difference between the patient 
sample and the normal sample. 

4. Discussion 

The data presented in this study add some interesting 
insights into the dynamics of the MEG signals in differ- 
ent cases of brain pathophysiology and also reinforce the 
need for further research. From previous works it has 
been shown that the normal neuronal discharges are of a 
statistical nature and thus they present no saturation; their 
fractal dimension is infinite [8]. Further work [3] indi- 
cated that in the case of malignant tumors of the brain, 

the signals from the area of the tumor are more organized 
and have low dimensionality which increases gradually 
as the signals are acquired further away from the lesion.  

Stam et al. [16] calculated Kolmogorov entropy (K2), 
the largest Lyapunov exponent (L1) and the correlation 
dimension (D2), of original EEG epochs and surrogate 
(phase randomized) data in control subjects, demented 
patients and Parkinson patients. They found that de- 
mented patients had significantly lower D2 and L1 com- 
pared to controls. 

Lee et al. [17] detected non-linearity in the EEG of 
schizophrenia with a modified method of surrogate data. 
EEGs were recorded with electrodes in healthy male 
subjects and male schizophrenic patients during a resting 
eye-closed state. A decrease of dimension complexity 
was found in the EEG of schizophrenia patients com- 
pared with controls. 

Gomez et al. [18] analyzed MEG background activity 
in patients with Alzheimer’s disease (AD) using the 
Lempel-Ziv (LZ) complexity. The MEGs were recorded 
with a 148-channel whole-head magnetometer in patients 
with AD and in age-matched control subjects. Results 
showed that MEG signals from AD patients had lower 
complexity than control subjects’ MEGs. 

Gomez et al. [19] analyzed MEG background activity 
from AD patients and elderly control subjects using Hi- 
guchi’s fractal dimension (HFD). This non-linear meas- 
ure can be used in biomedical time series to estimate 
their dimensional complexity. Results showed that MEG 
signals from AD patients had lower HFD values than 
control subjects’ recordings. 

The above findings are in accordance with our MEG 
results in IGE patients because they concluded that an 
underlying pathogeny presented lower complexity in the 
measured MEG or EEG signals than in those of a normal 
state. In our study, the abnormal phenomena of the MEG 
activity in IGE reduce the dimensionality of the patients’ 
data. 

Bob et al. [20] used nonlinear analysis of bilateral 
electrodermal activity (EDA) during resting state in 
schizophrenic patients and healthy participants. The re- 
sults show that quantitative indices of chaotic dynamics 
(the largest Lyapunov exponents) calculated from EDA 
signals recorded during rest and the association test are 
significantly higher in schizophrenia patients than in the 
control group and increase during the test in comparison 
to the resting state. 

Bob et al. [21] measured bilateral dynamic changes of 
EDA in rest conditions in schizophrenic patients and 
healthy subjects. Results of nonlinear and statistical 
analysis indicate left-side significant differences of posi- 
tive largest Lyapunov exponents in schizophrenia pa- 
tients compared to the control group. These data suggest 
that increased neural chaos in atients with schizophrenia p 
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Figure 3. Distribution of mminsat on the MEG channels for the 10 healthy volunteers. 
 
may influence brain processes that can cause random-like 
disorganization of mental processes. 

Kernick [22] reviews an approach to physiological 
systems with non-linear systems and chaos theory and 
outlines how these concepts can be applied to the study 

of migraine. Chaos theory offers a new approach to the 
study of migraine that complements existing frameworks 
but may more accurately reflect underlying physiological 
mechanisms.  

Bentzen et al. [23] presented a detailed computer 
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Figure 4. Distribution of mminsat on the MEG channels for the 10 patients. 
 
model, which supports the hypothesis that temporal lobe 
epilepsy may be caused by failure of glutamate reuptake 
from the extracellular space. They identified, by chaos 
analysis, a surprising possibility that muscarinergic re- 
ceptors can help the system out of a chaotic regime. 

The chaos theory suggests that a strong perturbation 
will cause a rapid transition from the stable attractor of 
refractory status epilepticus (SE) to the stable attractor 
representing normal consciousness. In certain ways, SE 
is analogous to ventricular tachycardia, where the cardiac 
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muscle has an abnormally fast rhythm incompatible with 
proper cardiac function. Therefore, a brain perturbation, 
analogous to defibrillation, may be even more useful than 
anesthesia in refractory SE [24]. 

Pritchard et al. [25] demonstrated for actual EEG data, 
a high negative correlation between spatial correlation 
dimension and the average amount of lag-zero cross- 
correlation between “nearest-neighbor” embedding chan- 
nels (the greater the cross-correlation, the lower the di- 
mension). 

Stefan et al. [26] suggested that IGE are generalizing 
epilepsies predominantly in the frontal lobes regionally 
accentuated and connected with thalamic network sys- 
tems. IGE activates a highly specific cortical network, 
consisting of predominantly mesial and bilateral frontal 
areas, which are sustained by oscillating thalamo-cortical 
circuits and in some cases propagate to connected cortex 
areas. This is, possibly, one of the reasons for the low 
dimensional complexity of the MEG signals. 

Through this current work it has been shown that in 
the case of IGE the MEG signals acquired from the pa- 
tients present non localized low dimensionality. The fact 
that this low dimensionality is demonstrated while the 
patient is relaxed and conscious (as opposed to the time 
of a seizure) provides additional support to the hypothe- 
sis, that this low dimensionality is correlated with neu- 
rophysiological causes and not with transitory neuronal 
discharge effects. It is true that there are still several 
clinical and methodological avenues of research before 
this hypothesis can be clearly substantiated. First of all a 
larger patient base will reinforce these results, while a 
more diverse sample, spanning different functional and 
anatomical brain disorders would provide more solid 
foundations for this hypothesis. Additionally the refine- 
ment of the method and the combination of many differ- 
ent mathematical tools are required to create a robust 
 
Table 1. Distribution of the averaged minimum saturation 
dimensions for the IGE patients and the controls. 

IGE patients’ averaged mminsat 
Control group’s averaged 

mminsat 

analysis procedure that would have definitive and spe- 
cific diagnostic results. 

Nevertheless, through this discussion a pattern emerges. 
Although the Chaos hypothesis of Brain dynamics (i.e. 
The hypothesis that the brain is a dynamical system of 
very high complexity and that instances of pathogeny in 
the brain lead it to become a low complexity-high or- 
ganization system) is still a hypothesis, the results pre- 
sented in this work along with others [1,3,27] are advo- 
cates of this hypothesis. 

Furthermore the similarities between the physiological 
characteristics of the underlying pathophysiology and the 
mathematical characteristics of the acquired MEG signal 
(as analyzed by nonlinear methods) suggest that this 
method, with the necessary refinements has significant 
diagnostic potential. 
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Appendix 

The mathematical framework upon which the results of 
this paper are based has its foundations on the work of 
Grassberger and Procaccia. According to their work 
[10,11], it is possible to explore the underlying dynamics 
of a non-linear deterministic system from an experi- 
mental time series of observations of it. Specifically, for 
example, for a discrete time series Bi = B(ti) (i = 1,2,···,N) 
of the MEG, which is measured experimentally, delay 
vectors Vi as given by the following equation can be 
constructed in the following fashion: 

( ) ( )( ){ }Bi, Bi 1 , , BiiV k τ= + + ⋅⋅⋅ + 1 1m k τ− +

( ),C r m

    (1) 

It has been proven [10,11] that the topological proper- 
ties of these vectors when properly constructed give a 
smooth embedding of the dynamics in a m-dimensional 
space, and the resulting phase trajectory in the phase 
space, is the topological equivalent of the original phase 
space. “Properly constructed” specifically refers to the 
correct choice of both the delay parameter τ and the pa- 
rameter k. The reconstruction time τ is a suitable delay 
parameter, which may be chosen arbitrarily. In our case 
it was chosen as the first zero crossing of the autocorrela- 
tion function which ensures that no linear correlation 
between the vectors is maintained. The parameter k is 
chosen by taking into consideration Theilert’s correction 
[28] of rejecting the k closest neighbors, that are tempo- 
rally but not dynamically correlated. If the dynamics of 
the physical system are deterministic but non-linear, the 
evolution of the Vi, once transients die out, settles on a 
submanifold which is a fractal set, called the strange at- 
tractor. The concept of strange attractors is of great im- 
portance in nonlinear dynamics, since its existence or 
absence is related to the behavior of the system as 
nonlinearly or linearly deterministic. If a strange attractor 
exists, it is characterized by several invariant topological 
parameters. One of these is the correlation dimension D. 
This parameter is related to the number of variables re- 
quired to define the space of the attractor within the 
phase space. The Grassberger-Procaccia method [10,11] 
is essentially a computational mathematical method of 
estimating the Correlation Dimension D from an experi- 
mental time series by means of the correlation integrals 

 defined as: 
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where Θ(u) is the Heaviside function defined as (Θ(u) = 
1 for u > 0 and Θ(u) = 0 for u ≤ 0), m is the embedding 
dimension and n is the number of vectors constructed 
from a time series with N samples, given by the formula 

 The resulting correlation integral 
 is a measure of the spatial correlation of the 

points on the attractor and it is calculated for different 
values of r in the range from 0 to rmax, where rmax is the 
maximum possible distance of two random selected 
points of the attractor of the selected time series. The rmax 
is equal to m1/2(xmax−xmin), (assuming that xmax and xmin 

are the maximum and the minimum recorded values in 
the time series). For a nonlinear deterministic system the 
correlation integrals should scale as  
Thus, the correlation dimension D of the attracting sub- 
manifold in the reconstruction phase space is given by: 
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In the case of a signal coming from a nonlinear de- 
terministic dynamical system exhibiting a strange attract- 
tor, there is a saturation value, indicated as a plateau in a 

graph of these slopes 
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which remains constant, although the signal is embedded 
in successively higher-dimensioned phase spaces. The 
saturation value of the slopes, gives an estimation of the 
correlation dimension of the attractor, while the mini-
mum value of the embedding dimension above which the 
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provides us with an estimate of the minimum saturation 
dimension defined as mminsat. 

Specifically the correlation integrals (or, more appro- 
priately in computational practice, consecutive correla- 
tion sums) are used to determine whether or not a space 
of sufficient dimensions, the aforementioned m-dimen- 
sional space, exists so that a geometrical area can be de- 
fined to smoothly embed the full dynamics that produce 
the measured signal. It has been proven [15] that if such 
an m-dimensional space exists then the value of this em- 
bedding dimension m, along with the Correlation Di- 
mension D are characteristic invariants of the underlying 
dynamical system. 
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