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Abstract 
In order to solve the fault tolerance and reliability problems of quantum cir-
cuit, a series of structural equivalence rules and optimization operation strat-
egies of quantum circuit are proposed to minimize the number of T gates, in-
crease T gate depth, minimize circuit level, reduce fault tolerance implemen-
tation costs and increase circuit reliability. In order to satisfy the nearest 
neighbor constraints of some quantum systems, a LNN (linear nearest 
neighbor) arrangement algorithm based on Clifford + T gate quantum circuit 
is presented. Experiments are done on some benchmarks of RevLib, the re-
sults show that the optimization rate of most functions and the running time 
of the algorithm are better than those of the existing literature.  
 

Keywords 
Quantum Circuit, Clifford + T Circuit, Quantum Cost 

 

1. Introduction 

Quantum circuits are an important model of quantum computing. The integra-
tion and optimization of quantum circuits is of great significance [1] [2] [3]. In 
recent years, the Clifford + T gates [4] [5] [6] have been used in some typical 
quantum circuits. Due to the importance of fault tolerance in quantum compu-
ting [7] [8], and the fault-tolerant implementation cost of T gates may exceed 
the implementation cost of Clifford Gate by 100 times or more [4]. Therefore, 
minimizing the number of T gates is critical to optimizing the T depth of a 
quantum circuit. 

Due to the limitation of quantum techniques, it is required that the control bit 
and target bit of the 2-qubit gates are physically adjacent, that is the Linear 
Nearest Neighbor (LNN) constraint required to be considered [9] [10] [11]. This 

How to cite this paper: He, X.Y., Guan, 
Z.J. and Ding, F. (2019) The Mapping and 
Optimization Method of Quantum Circuits 
for Clifford + T Gate. Journal of Applied 
Mathematics and Physics, 7, 2796-2810. 
https://doi.org/10.4236/jamp.2019.711192 
 
Received: October 15, 2019 
Accepted: November 10, 2019 
Published: November 13, 2019 

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2019.711192
https://www.scirp.org/
https://doi.org/10.4236/jamp.2019.711192


X. Y. He et al. 
 

 

DOI: 10.4236/jamp.2019.711192 2797 Journal of Applied Mathematics and Physics 
 

paper considers the mapping of NCV circuits to equivalent circuits composed of 
Clifford + T gates, especially optimizing T-count and T-depth, reducing circuit 
depth, satisfying the constraints of certain quantum architecture, reducing the 
cost of fault tolerance quantum circuit, and increasing circuit reliability. 

2. Background 
2.1. Quantum Gate and Quantum Circuit 

The basic unit of operation in a quantum system is a qubit, which is similar to a 
bit in classical computer system. Qubits can represent states 0 and 1, represented 
by the symbols |0> and |1> respectively. Qubits can also represent an infinite 
number of state vectors |φ> (called quantum superposition states) between 0 and 
1, expressed as: 

0 1ϕ α β= +                        (1) 

where α  and β  are complex numbers and satisfy the condition  
2 2 1α β+ = . 

The operation of the qubit is equivalent to superimposing a unitary matrix U 
on the state vector of the qubit. The logic gates that operate on qubits in quan-
tum circuits are called quantum gates [12], and each quantum gate can be 
represented by a 2n-order unitary matrix, where n represents the number of qu-
bits. 

A quantum circuit cascaded by quantum gates is called a quantum circuit. 
Some specific quantum gates that make up a quantum circuit are called quantum 
gate libraries [13]. The NCV gate library contains quantum gates such as NOT, 
CNOT, V, and V+ [9]. The Clifford + T gate library includes quantum gates such 
as NOT, CNOT, H, S, S+, T, and T+ which is shown in Table 1. The circuit cas-
caded only by Clifford + T quantum gates is called Clifford + T circuit. The Clif-
ford + T gate libraries are adopted by many quantum physics architectures [14]. 

The one-dimensional n-qubit circuit has n horizontal lines, respectively 
representing n quantum bit lines, which are sequentially recorded as  

1 2{ , , , }nl l l l= …  from top to bottom. The position of the left to right quantum 
gate in the line (can be regarded as a vertical line from left to right) indicates the 
time sequence of the line execution, which is recorded as 1 2{ , , , }mh h h h= … . 
Figure 1 is an example of representation of quantum circuit. There {1,2,3,4}l =  
and {1,2,3, , 21}h = … . 

2.2. Quantum Gate Decomposition 

In general, quantum algorithms can be described by reversible circuits of MCT 
reversible logic gate cascades of multiple (single) control bit(s)/multiple (single) 
target bit(s). In order to map a reversible circuit to a quantum system for com-
putation, it is necessary to decompose the logic gates in the reversible circuit. It 
can be seen from the literature [15] and [16] that a two control bits Toffoli gate 
is decomposed into a circuit composed of NCV gate library quantum gates as 
shown in Figure 2. AV gate can be decomposed into seven gates as shown in  
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Figure 1. A example of representation of quantum circuit. 
 
Table 1. Clifford + T gate library. 

type symbol graph matrix 

NOT N  
0 1
1 0
 
 
 

 

CNOT C 
 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 
 
 
 
 
 

 

Hadamard H 
 

1 11
1 12
 
 − 

 

T gate T 
 4

1 0

0
i

e
π

 
 
  

 

T gate−1 T+ 
 4

1 0

0
i

e
π−

 
 
  

 

Phase S 
 

1 0
0 i
 
 
 

 

Phase−1 S+ 
 

1 0
0 i
 
 − 

 

 
Figure 3(a). A V+ gate can be decomposed into seven gates as shown in Figure 
3(b), and the equivalent circuit can be obtained by further simplification as 
shown in Figure 3(c). 

2.3. Clifford + T Circuit Structure 

Definition 1: In a one-dimensional quantum circuit, a sequence of quantum 
gates that can be operated in parallel is called a circuit level. If two or more 
quantum gates can be combined together in a circuit, their qubits can operate in 
parallel without disjoint, and these quantum gates are said to form a grouped. 

Definition 2: In a one-dimensional circuit, the circuit depth is the number of 
levels in the circuit. 

Definition 3: The T-depth of the Clifford + T circuit is the number of T or T+ 
gates contained on different qubit lines in one level of the circuit. 

Definition 4: A “CNOT + T(T+) + CNOT” structure is a gate group by the 
consisting of two CNOT gates and one T or T+ gate, called the CTC-structure.  

https://doi.org/10.4236/jamp.2019.711192


X. Y. He et al. 
 

 

DOI: 10.4236/jamp.2019.711192 2799 Journal of Applied Mathematics and Physics 
 

 
Figure 2. Decomposition of Toffoli gate. 

 

 
Figure 3. Decomposition of V gate and V+ gate. (a) Decomposition of V gate; (b) De-
composition of V+ gate; (c) Equivalent circuit for the (b) reduction. 
 
The two control bits and the two target bits of the two CNOT gates are on the 
same qubit line, and the T (or T+) gate is between the two target bits.  

Figure 4(a) and Figure 4(b) are represented as CTC (T) and CTC (T+) re-
spectively for ease of use. Where line al  is called the control bit line of the 
CTC-structure, and line bl  is called the target bit line of CTC-structure. If the 
control bit line of the CTC-structure is line i, the target bit line is line j, and the 
two CNOT gates are located on 1h  and 2h  respectively ( 1 2 2h h= − ), then the 
CTC-structure can be expressed as 

1 2, ( , )h hCTC i j . 
Definition 5: The depth of the CTC-structure refers to the number of T (or 

T+) gates that can be operated in parallel in the CTC-structure.  
Definition 6: If the depth of the CTC-structure is equal to the number of the 

circuit input/output qubits, then this CTC-structure is said to be full.  

3. Decomposition and Optimization of the Quantum Circuits 

In order to optimize quantum circuits, the quantum gates and related sub-line 
structures in the Clifford + T circuit are analyzed and discussed in this section. 

3.1. Relevant Properties 

The following properties 1 - 3 [5] can be verified by the matrix representation of 
the quantum gates, which are multiplied by matrices to obtain the results of their 
interactions. 

Property 1: (a) Two adjacent T-gates are equivalent to a S-gate. Two adjacent 
T+-gates are equivalent to a S+-gate. 

Property 2: A CNOT gate is equivalent to two consecutive V-gates which 
have same control bit line and target bit line. A CNOT gate is also equivalent to 
two consecutive V+-gates which have same control bit line and target bit line. 

Property 3: 1) Two adjacent CNOT gates with control bits on the same qubit 
line and target bits on the same qubit line can cancel each other out. 2) Two ad-
jacent H-gates can cancel each other out. 3) Two adjacent T and T+-gates can 
cancel each other out. 4) Two adjacent S and S+-gates can cancel each other out.  

Property 4: The combinations of two adjacent 2-qubit gates are equivalent, if 
the control bits are on the same qubit line, and their combinations are switched 
[5]. Analogously, the combinations of two adjacent 2-qubit gates are equivalent,  
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Figure 4. Two forms of CTC-structure. (a) CTC(T) structure; (b) CTC (T+) structure. 
 
if the target bits are on the same qubit line, and their combinations are switched.  

Property 5: If the T-gate (or T+-gate) and the 2-qubit gate control bit are on 
the same qubit line and adjacent to each other, then the combination of the 
T-gate (or T+-gate) and the 2-qubit gate on the left and right sides of the control 
bit of the 2-qubit gate are equivalent [5]. 

Property 6 [5]: For two CTC(T) structures, if the control line of a CTC(T) 
structure is the target line of the other CTC(T) structure, then the two CTC(T) 
structures are equivalent. Analogously, For two CTC(T+) structures, if the con-
trol line of a CTC(T+) structure is the target line of the other CTC(T+) structure, 
then the two CTC(T+) structures are equivalent.  

Property 7 [5]: The combination of the 2-qubit gate and the CTC(T) struc-
ture are equivalent for the right and the left of CTC(T) structure, if the control 
bit of the 2-qubit gate is on the target bit line of the CTC(T) structure and the 
target bit of the 2-qubit gate is not on the line crossed by CTC(T). The combina-
tion of the 2-qubit gate and the CTC(T+) structure are equivalent for the right 
and the left of CTC(T+) structure, if the control bit of the 2-qubit gate is on the 
target bit line of the CTC(T+) structure and the target bit of the 2-qubit gate are 
not on the line crossed by CTC(T+).  

Property 8: The subcircuit of the CNOT gate combination is equivalent as 
shown in Figures 5(a)-(c). 

The equivalence of the above subcircuits can be easily verified by the truth ta-
ble. 

Conclusion 1: The combination of two adjacent T-gates and 2-qubit gate are 
equivalent on the right and the left of control bit of this 2-qubit gate. 

The combination of two adjacent T+-gates and 2-qubit gate are equivalent on 
the right and the left of control bit of 2-qubit gate. 

The above inferences are readily available based on property 5. 
Generally, the arbitrary combination of m (m ≥ 1) 2-qubit gates and n (n ≥ 1) 

T-gates (or T+-gates) are equivalent, if the control bits of m (m ≥ 1) 2-qubit gates 
and n (n ≥ 1) T-gates (or T+-gates) are on the same qubit line. 

Conclusion 2: According to property 1, the S-gate (or S+-gate) distributed on 
the left and right sides of the control bit is equivalent for a combination of an 
S-gate (or S+-gate) on the control bit line of a two-qubit gate and the two-qubit 
gate. It can be seen from the conclusion 1.  

Conclusion 3: The combination of single quantum gate (T, T+, S, S+) located 
on the left and right side of CTC structure is equivalent if the single quantum 
gate is on the same quantum bit line of CTC-structure. 

Theorem 1: 1) Any combinations of the CTC-structure with the T-gates on  
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(a) 

 
(b) 

 
(c) 

Figure 5. Equivalent variations of CNOT gate sequence. (a) The first equivalent case; (b) 
The second equivalent case; (c) The third equivalent case. 
 
its control bit line and target bit line are equivalent. 2) Any combinations of the 
CTC-structure with the T+-gates on its control bit line and target bit line are 
equivalent. 

Proof: As long as proof 1), then 2) is available as the same. 
1) According to the Property 6, the CTC-structure interchange control bit line 

with target bit line is equivalent, so the combination of a T gate and a 
CTC-structure on the same qubit line is also equivalent. As show in Figure 6 
that Figure 6(a) is equivalent to Figure 6(b);  

2) According to the Property 5, the T gate of Figure 6(b) can be moved to the 
right side of the first CNOT gate. Similarly, it can be moved to the right side of 
the second CNOT gate to get Figure 6(c). As show in Figure 6 that Figure 6(b) 
is equivalent to Figure 6(c); 

3) According to the Property 6, the CTC-structure interchange control bit line 
with target bit line is equivalent, therefore, the combination of the CTC-structure 
and the T gate on the same bit line is also equivalent. As show in Figure 6 that 
Figure 6(c) and Figure 6(d) are equivalent. 

QED ■ 
Corollary 1: The combination of S-gate (or S+-gate) and CTC-structure is 

equivalent when S-gate (or S+-gate) is on the left or right sides of the target posi-
tion of the CTC-structure according to property 1 and theorem 1.  

Theorem 2: In an 1-dimensional quantum circuit, let { , }V VV +′ = , if there 
are consecutive mV-gates and nV+-gates, the control bit line of V' and the target 
bit line of V' are same respectively, then the target bit line of the m + nV'-gates 
can decompose into sub-circuit structure and the number of quantum gates are: 

,

,

H H m n is even

H T H m n is odd

 + Σ + −
 ′+ Σ + + −

                  (2) 

the control bit line of this m + nV'-gates can decompose into sub-circuit struc-
ture and the number of quantum gates are: 
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Figure 6. Equivalent exchange of T and CTC-structures. (a) Original circuit; (b) Circuit 
after CTC-structure flip; (c) Circuit after T gate movement; (d) Final circuit. 
 

,

,

m n is even

T m n is odd

Σ −
 ′Σ + −

　
                      (3) 

where { , }T T T +′ = , { , }S S S +′ = , 

( ) ( )CTC CTC
2

m T n T
m

S
n+ ′Σ =

 − 
∗ 

 
∗ + ∗ + . 

Proof: In an 1-dimensional quantum circuit, it is assumed that there are k 
quantum bit lines l (i.e. the input/output of the quantum line is k), that is, 

1 1 2{ , , , }kL l l l= … . If there are consecutive m target bits of V-gates and n target 
bits of 𝑉𝑉+-gates on the i-th quantum bit line, {1,2, , }i k∈ … . Let  

1 2 1, ,{ , ,} , ,, m m m nV V V VV V V V +
+

+′ ′ ′ ′ ′ ′< … …= = > , then: 
The target bit line of V-gate in V ′  can be decomposed into: 

( )CTCH T T H++ + +                        (4) 

The target bit line of V+-gate in V ′  can be decomposed into: 

( )CTCH T T H++ + +                      (5) 

It can be seen that when m, n ≥ 1, continuous m + n V'-gates are decomposed, 
and m + n − 1 pair of H-gates are adjacent on the target bit line of 
CTC-structure. In (1) and (2), the first H-gate and the last H-gate are the re-
maining, and there are m + n CTC-structures and m T-gates and nT+-gates be-
tween this two H-gates. By the theorem 1, these mT-gates and nT+-gates can be 
moved so that they are adjacent. So there have: 

1) When m>n, there are n T-gates and nT+-gates are eliminated and ⌊(m − 
n)/2⌋ pairs of T-gates are replaced by ⌊(m − n)/2⌋ S-gates. If m-n is an even 
number, all T gates are replaced; if m-n is an odd number, then remain a T-gate. 
The target bit line of V ′ -gate can eventually be decomposed into: 

( ) ( )

( ) ( )

CTC CTC ,
2

CTC CTC ,
2

H m T n T S H m n is even

H

m n

m nm T n T S T H m n is odd

+

+

  + ∗ + ∗ + ∗ + −    




−

−  + ∗ + ∗ + ∗ + + −   

   (6) 

2) When m = n, all T-gates and T+-gates are eliminated. The target bit line of 
V ′ -gate can eventually be decomposed into: 

( ) ( )CTC CTCH m T n T H++ ∗ + ∗ +                  (7) 

3) When m < n, there are m T-gates and m T+-gates are eliminated, and 
) / 2(n m−    pairs of T+-gates are replaced by ) / 2(n m−    S+-gates. If n-m is 

an even number, all T+-gates are replaced and if n-m is an odd number then re-
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maining a T+-gate. The target bit line of the V ′ -gate can be eventually decom-
posed into: 

( ) ( )

( ) ( )

CTC CTC ,
2

CTC CTC ,
2

n mH m T n T S H n m is even

n mH m T n T S T H n m is odd

+ +

+ + +

 − + ∗ + ∗ + ∗ + −    


−  + ∗ + ∗ + ∗ + −  
+

 (8) 

The control bit of V-gate and V+-gate in V ′  can be decomposed into the 
form of ( )CTC T T+ +  and ( )CTC T T ++  respectively at the control bit line. 

The control bit of mV-gates and nV+-gates in V ′  may be distributed on the 
{ }2 1 1 1, , , , ,i i kL l l l l− += … … . When m, n ≥ 1, after successive m + nV' gates are de-

composed, there are a total of m + n CTC-structures, mT-gates and nT+-gates on 
all control bit lines. Among them, the 2( )j jl l L∈  qubit line has jm T -gates, 

jn T + -gates and j jm n+  CTC-structures, where 1
k

jjm m
=

= ∑ , 1
k

jjn n
=

= ∑ , 
j i≠ .  

By theorem 1, these jm T -gates and jn T + -gates can be moved to be adjacent, 
so: 

1) When j jm n> , there are jn T -gates and jn T + -gates are eliminated; 
) /( 2j jm n−    pairs of T-gates are replaced by ) /( 2j jm n−    S-gates. If 

j jm n−  is an even number, all T-gates are replaced, and if j jm n−  is an odd 
number, then remain a T-gate. The control bit line of the V ′ -gate can be finally 
decomposed into:  

( ) ( )

( ) ( )

CTC CTC ,
2

CTC CTC ,
2

j j
j j j j

j j
j j j j

m n
m T n T S m n is even

m n
m T n T S T m n is odd

+

+

 − 
+ + −  

  


−  + + + − 

∗ ∗ ∗

∗ ∗
 

∗

     (9) 

2) When j jm n= , all jm T -gates and jm T + -gates are eliminated. The con-
trol bit line of V ′ -gate can be finally decomposed into: 

( ) ( )CTC CTCj jm T n T+∗ + ∗                   (10) 

3) When j jm n< , jm T  gates and jm T + -gates are eliminated, and 
) /( 2j jn m−    pairs of T+-gates are replaced by ) /( 2j jn m−    S+-gates. If 

j jn m−  is an even number, all T+-gates are replaced and if j jn m−  is an odd 
number, then remain a T+-gate. The control bit line of the V ′ -gate can be final-
ly decomposed into: 

( ) ( )

( ) ( )

CTC CTC
2

CTC CTC
2

,

,

j j
j j

j j
j j

n m
m T n T S n m is even

n m
m T n T S T n m is odd

+ +

+ + +

 − 
+ + −  

  


−  + + + − 


∗

∗ ∗


∗



∗

∗

   (11) 

QED■ 
As shown in Figure 7(a), the circuit has eight 2-qubit gates (G1 to G8 from left 

to right), where G1, G3, G5, G8 are V ′  ( { , }V V V +′∈ ) gates whose target bits are  
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(a) 

 
(b) 

Figure 7. Quantum circuit Clifford + T gate decomposition example. (a) Original NCV 
circuit; (b) Decomposed Clifford + T circuit. 
 
on the same qubit line cl . The circuit after decomposition is shown in Figure 
7(b) where the second H gate and cT  gate generated by G1 are eliminated re-
spectively with the first H gate and cT +  gate generated by G3, the second H gate 
and cT +  gate generated by G3 are eliminated respectively with the first H gate 
and cT  gate generated by G5, while the H gate generated by G8 cannot cancel 
out with the H gate generated by G5 because of the blocking of the G6 target bit. 
The aT  generated by G5 and G8 respectively can be merged into aS .  

3.2. Algorithm for Decomposition of NCV Circuit 

In order to obtain the quantum circuit composed of Clifford + T gate, using the 
equivalent circuit given in Figure 3 and the related theory of theorem 2 to de-
compose NCV circuit.  

The circuit is initially optimized with the relevant properties in the decompo-
sition process. The decomposition algorithm is shown in Algorithm 1. 

3.3. Depth Maximization of the CTC-Structure 

In order to deepen the depth of the CTC-structure, reduce the depth of the cir-
cuit, improve the parallelism of the circuit, the decomposed Clifford + T circuit 
need to be structured and the main goal is to make the depth of each 
CTC-structure equal to the number of qubits (That is to say, make the 
CTC-structure to be fully occupied). The CTC-structure depth deepening algo-
rithm is shown in Algorithm 2. 

3.4. Depth Optimization of Circuit 

After deepening the depth of the CTC-structure of the circuit, there will be many 
adjacent CNOT gates. The optimization of continuous CNOT gates can reduce 
the number of gates. Algorithm 3 is CNOT optimization algorithm. 

4. Quantum Circuit Synthesis Satisfying Constraints 
4.1. Some Constraints on Quantum Circuits 

In some practical quantum techniques, quantum bit interactions of quantum  
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Algorithm 1. NCV decomposition algorithm. 

 

 
Algorithm 2. CTC-structure depth deepening algorithm. 
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Algorithm 3. CNOT optimization algorithm. 

 
gates are required to satisfy linear nearest neighbor constraints. In a quantum 
logic circuit, to exchange the logic values of certain two circuits, it can generally 
be realized by inserting a SWAP-gate. The SWAP-gate also needs to satisfy the 
linear nearest neighbor in the nearest neighbor constrained quantum circuit, it is 
called the nearest neighbor SWAP gate (NNS gate) [7]. An NNS gate is equiva-
lent to three cascades of CNOT gates that satisfy the linear nearest neighbor ar-
chitecture, as shown in Figure 8(a). Some quantum circuit physical structures 
require even stronger constraints. For example, IBM QX [17] [18] requires that 
the CONT gates in different directions be flipped through the H gate to be in the 
same direction (control bits and target bits are on two qubits), as shown in Fig-
ure 8(b). Converting a non-LNN Clifford + T circuit into an LNN Clifford + T 
circuit is usually done by inserting several NNS gates, as shown in Figure 9. 
Figure 9(a) is a non-LNN circuit, Figure 9(b) is equivalent LNN circuit by in-
sert SWAP gates, Figure 9(c) is equivalent form of NNS gate.  

4.2. Synthesis Algorithm 

It can be seen from the literature [1] that the linear nearest neighbor cost of the 
2-qubit gate G in a quantum circuit is: 

1nnc C TG l l= − −                         (12) 

where Cl  and Tl  are the number of the control bit line and the target bit line 
of G, respectively, the nearest neighbor cost of a Clifford + T circuit is: 
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Figure 8. Equivalent form of NNS gate. (a) Equivalent form of a SWAP gate; (b) CNOT 
flips to the same direction. 
 

 
Figure 9. (a) Non-LNN circuit; (b) Equivalent LNN circuit by inserting SWAP gates; (c) 
Equivalent LNN circuit by rearranging the quantum lines. 
 

1

1, (1 )
K

nnc
i

N iCC G K N
N=

− +′ = × < ≤∑               (13) 

where N is the number of quantum gates in the Clifford + T circuit and K is the 
linear nearest neighbor cost calculation coefficient of the circuit. 

This paper presents an adaptive Clifford + T circuit neighborhood optimiza-
tion algorithm, such as Algorithm 4. The optimized Clifford + T circuit is 
scanned from left to right, and all LNN schemes are listed for the first non-LNN 
2-qubit gate is encountered. Calculate the CC′  of the remaining circuit after 
each scheme is executed, select the scheme with the smallest CC′ , insert the 
NNS gates into the circuit one after the other, then continue to scan the remain-
ing circuits, and iteratively execute the above steps until all the quantum gates 
reached LNN. The algorithm is executed for all coefficients K, and the scheme 
with the least number of inserted switching gates is recorded for output. 

The time complexity of the algorithm is ( )O L N K× × , where L is the quan-
tum number. For small-scale circuits, try all the coefficients K to find the optim-
al solution. For large-scale circuits, K can be reduced to a constant term in order 
to reduce algorithm runtime. 

5. Experiment and Result Analysis 

According to all the considerations and methods discussed above, based on Rev-
Lib [19] benchmark and the decomposition tool designed by the research team 
[6], use Intel (R) 64 - 3.2 GHz bit processor, 8 GB RAM, windows 10 operating 
environment, C++ programming language. Decompose NCV gate library circuit 
into basic quantum gate circuit of Clifford + T structure, then through neigh-
boring and CNOT gate flipping the relevant constraints comparable to the lite-
rature [14] are satisfied, so use the experimental results to compare with the re-
sults in [14] (Table 2). In order to more fully evaluate the effectiveness of the 
proposed method, the benchmark function selected in this paper is more exten-
sive. Since the literature [14] only targets the 10 - 16 qubit part of the benchmark  
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Table 2. Experimental results comparison. 

Name n 
Ref. [14] Proposed approach Gate optimization  

rate (%) 

Depth  
optimization  

rate (%) gate1 deep1 time gate2 deep2 time 

mini_alu_305 10 474 225 1.25 518 372 0.05 −9.28 −65.33 

rd73_141 10 656 301 1.52 478 328 0.04 27.13 −8.97 

sys6−v0_144 10 613 250 1.36 476 326 0.04 22.35 −30.4 

dc1_220 11 5946 3378 12.38 3460 2622 1.14 41.81 22.38 

wim_266 11 2985 1711 6.3 1738 1294 0.29 41.78 24.37 

sqrt8_260 12 9744 5501 19.66 5108 3909 2.52 47.58 28.94 

sym9_147 12 955 425 2.08 748 518 0.10 21.68 −21.88 

adr4_197 13 11,301 6205 23.17 6332 4799 3.65 43.97 22.66 

squar5_261 13 6267 3448 12.96 3699 2764 1.63 40.98 19.84 

pm1_249 14 5431 3013 11.1 3221 2437 0.92 40.69 19.12 

0410184_169 14 758 366 1.48 572 379 0.03 24.54 −3.55 

cm42a_207 14 5431 3013 11.95 3221 2437 1.08 40.69 19.12 

sym6_316 14 852 456 1.84 1015 720 0.26 −19.13 −57.89 

ham15_108 15 28,310 
 

68.75 4756 3528 3.24 83.20 77.80 

misex1_241 15 15,185 8729 33.11 8103 6239 5.81 46.64 28.53 

average value 
 

6327.2 3527.47 
 

2896.33 2178.13  32.97 4.98 

 

 
Algorithm 4. LNN arrangement algorithm based on quantum weight. 
 
function, the comparison results only compare the partial functions of 10 - 16 
qubits. For each benchmark function, the function name (Name), the number of 
qubits (n), the number of quantum gates (g) of the circuit, the depth of the cir-
cuit (d), and the operation time (in seconds) in the corresponding operating en-
vironment are provided. 
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6. Conclusion 

Due to the limitations of some quantum techniques, there are special require-
ments for the use of quantum gates in quantum circuits, and the linear nearest 
neighbor constraints are required for the physical positions of the control bits 
and target bits of the 2-qubit gates. The main work of this paper is to map the 
NCV circuit to the equivalent circuit composed of Clifford + T gate, optimize 
the quantum gate number and T depth, reduce the circuit depth, propose a se-
ries of circuit structure equivalence rules and optimization operation strategies. 
The CNOT gate neighbor algorithm of the Clifford + T gate quantum circuit sa-
tisfies the CNOT constraint imposed by the architecture. In the related proper-
ties and operation methods proposed in this paper, due to the limitation of H 
gate, the optimization of the circuit will have a great impact. How to lay out the 
position of the H gate is an important part of future work research. 
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