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Abstract 
Anopheles funestus and Anopheles gambiae are malaria vector mosquitoes. 
Knowing their resting behavior is important for implementing control me-
thods. The aim of this study was to investigate the resting behaviour of the 
two malaria mosquitoes. The study was conducted in Kilombero River Val-
ley and mosquitoes were collected using indoor and outdoor traps from 
2012-2015. Poisson mixed models were used to quantify the impact of envi-
ronment variables on resting behaviour. A log ratio rate between the type of 
trap and its interaction with environmental variables was used to determine if 
there was a change over time in the resting behaviour. A total of 4696 mos-
quitoes were resting indoors of which 57% were A. funestus and 43% were A. 
gambiae. Similarly, a total of 12,028 mosquitoes were resting outdoor of 
which 13% were A. funestus and 87% were A. gambiae. Temperature was sig-
nificant and affected the resting behaviour of A. funestus. Humidity, satura-
tion deficit and temperature were significant variables influencing the resting 
behaviour of A. gambiae. A. funestus was resting indoor while A. gambiae 
was resting outdoor over time generally. The findings of this study on the ef-
fects of environmental variables and the variations in the resting behaviour of 
A. gambiae and A. funestus could be used as a guide to implementing appro-
priate intervention measures such as indoor residential spraying (IRS), 
insecticide treated nets (ITNs) and mosquito repellents. 
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1. Introduction 

Mosquitoes are insects that can cause morbidity and mortality through the dis-
eases they can carry. Beck-Johnson et al. [1] point out that mosquitoes not only 
carry diseases that affect humans but are also very efficient vectors of these dis-
eases. Mosquitoes are responsible for transmitting some of the most devastating 
diseases today. For instance, they may cause several problems affecting activities 
that have a massive economic impact such as loss of economic productivity in 
the workforce through mortality of staff and also pose a threat to livestock [2]. 
Consequently, the cumulative effect in the long term may cause a decrease in na-
tional economic capacity and development. According to the World Health Or-
ganization (WHO) estimates, the number of cases and related deaths recorded in 
2017 were 219 million and 435,000, respectively [3]. 

Mosquitoes feed on a range of different host vertebrates and some species 
have developed a characteristic host preference, feeding preferentially from hu-
mans, mammals other than human and birds [4]. In Africa, A. gambiae and A. 
funestus are found together in many areas of the continent [5]. Mboera et al. [2] 
observe that in Sub-Saharan Africa, there are variations in anopheline mosquito 
composition and malaria transmission which are within districts and between 
seasons. But, Smith and others cited in [3] argue that the differences in mi-
cro-ecological and socio-economic factors included vector density heterogeneity, 
mosquito survival, vector host contact and their innate feeding preference are 
likely to have contributed to these variations. The survival of Anopheles mos-
quitoes is dependent on climatic conditions such as rainfall pattern, temperature 
and humidity. 

Understanding the biology and behavior of Anopheles mosquitoes can help 
understand how malaria is transmitted [3]. The abundance of Anopheles mos-
quitoes poses a threat to the population since they are vectors that transmit some 
deadly diseases of public health concern, of which one notorious example is ma-
laria. Thus, knowing where they rest is important to assess the impact of existing 
control methods and develop new methods to eliminate them. Hence, under-
standing the distribution of Anopheles mosquitoes, how they interact or differ 
could give a guide for a critical aspect of our future ability to control malaria. 
Research in this area will provide the critical scientific base for the development 
of strategic planning in malaria control programmes and ensure that the most 
effective vector control intervention tools are used. 

Kreppel et al. [6] used generalized linear mixed effects models (GLMM) in 
investigating the variation in proportion of malaria vectors. They considered A. 
gambiae and A. funestus within the total catch, fitted trap type as fixed effect and 
night, date and house as random effects. They found that A. gambiae (which 
they took as Anopheles arabiensis) was caught resting mainly outdoors while A. 
funestus was primarily caught resting inside. 

In the study of Mayagaya et al. [7], the daily abundance variations of mosquito 
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vectors caught using different traps and resting collections, were analysed using 
generalized linear mixed models. Two separate analyses were carried out for A. 
gambiae and A. funestus, using the presence of livestock as a covariate. They 
found that the rate of A. funestus and A. gambiae resting indoor was lower and 
no significant association with the presence of livestock. They found that the 
proximity of livestock was associated with the abundance of A. gambiae but not 
with A. funestus. 

Kabula et al. [4] argue that little is known about the distribution of Anopheles 
mosquitoes that are vectors of the disease that kills millions of people, how the 
species interact and differ across the country. Therefore, the abundance of the 
malaria vector (mosquito) would be a key determining factor for malaria risk 
which is a life-threatening disease. Thus, knowing their resting behavior is im-
portant for implementing control methods. The aim of this study was to investi-
gate and determine if there was a change over time in the resting behaviour of A. 
gambiae and A. funestus and examine the effects of environmental variables. 
The remaining parts of this paper are organized as follows. We discuss the me-
thodology considered in Section 2. The results and discussion are contained in 
Section 3 and lastly, we conclude the paper in Section 4. 

2. Modelling Count Data 

Count data refers to observations that can potentially take any non-negative in-
teger value [8]. The aim of count data models is to explain the number of occur-
rences of an event. In this section, we review some of the most widely used sta-
tistical models for count data. 

2.1. Poisson Model 

The Poisson model can be considered as the standard model for count data [9]. 
The probability function of a Poisson variable iY  is given by, 

( ) e
,

!

i iy
i

i i
i

f y
y

µµ
µ

−

= , 0y ≥  y is an integer,               (1) 

where ( )i iE Y µ=  and ( )i iVar Y µ= . 
Hence, the Poisson distribution is characterized by a linear relationship be-

tween its variance and mean. To model iµ  using explanatory variables rx , the 
log link function is used, although other choices are also available. More specifi-
cally, we write 

( ) 10log p
ri ir rxµ β β
=

= +∑ ,                       (2) 

where; 
 0β  is the model intercept. 
 rβ  are the regression coefficients which regulate the effects of the explana-

tory variables rx . 
 ( ) ( )log . log .e=  computes the natural logarithm. 
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If the variance of the data is greater than the mean, the Poisson assumption is 
questionable. We refer to this case as over-dispersion. Ignoring over-dispersion 
can lead to invalid inferences on the regression relationship [10]. Probabilistic 
models that account for over-dispersion are the following. 

2.2. Quasi Poisson Model 

These models are only defined by specification of their mean, variance and a 
dispersion parameter k [4], that is; ( )i iE Y µ=  and ( )i iVar Y kµ= . 

We point out that a distributional form for the variable iY  is not required for 
fitting of the model and making inference on iµ . If k = 1, we recover the iden-
tity relationship between the mean and the variance of the Poisson model. An-
other advantage of the quasi Poisson model is it can be fitted using the same al-
gorithms for the Poisson model [11]. 

2.3. Negative Binomial Model 

The negative binomial model is obtained by assuming that the mean iµ  of the 
Poisson model is Gamma distributed [8]. The density function of the negative 
binomial is given by, 

( ) ( )
( ) ( )

; , 1
1

ik y
i

i i
i i i

y k k kf y k
k y k k

µ
µ µ

Γ +    
= × × −   Γ ×Γ + + +   

      (3) 

where k is the dispersion parameter. The symbol Γ  denotes the gamma func-
tion and is defined as ( )1 !y yΓ + = . The mean and variance of iY  are now  

( )i iE Y µ=  and ( )
2
i

i iVar Y
k
µ

µ= + . The Poisson model is recovered as a limit-

ing case for k →∞ . 

2.4. Poisson Mixed Model 

This model is an extension of the standard Poisson model by the inclusion of the 
random effects in the linear predictor. One example is given by the random in-
tercept model which is obtained as follows. Let iZ  for 1,2,3, ,i n=   denote 
random variables, having joint multivariate Gaussian distribution with mean 0 
and covariance matrix ZΣ . We then assume that iY , conditionally on iZ  are 
mutually independent Poisson variables with mean iµ  such that, 

( ) 0 1log i ir r i
p
r x Zµ β β
=

= + +∑ ,                    (4) 

It can be shown that this model has larger variance than the standard Poisson 
model. This model can also be further extended by allowing the regression coef-
ficients rβ  to vary across the observations. In Equation (4), rβ  would then be 
replaced by irβ  (assumed to follow a Guassian distribution with some appro-
priate mean and variance). More importantly, this model assumes that the effect 
of rx  on the response is not homogeneous but might depend on both meas-
ured and unmeasured variables. 
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The main difference of the outlined modelling approach with respect to the 
previous models, is that over-dispersion is accounted for by specification of the 
conditional mean of iY  for given latent variables (or random effects) iZ  
and/or irβ . Quasi-poisson and negative binomial models, instead, allow for 
over-dispersion through the parameter k which regulate the relationship be-
tween the marginal mean and variance of iY . These two different approaches 
are then used to answer substantially different research questions. The former 
approach is useful when it is of interest to model the different sources of hetero-
geneity inherent to the data. The latter techniques are instead more appropriate 
when inference should be drawn on the general population. For these reasons, 
we consider Poisson mixed models to be more suitable to address the specific 
objectives of the present analysis. 

3. Methodology 

The collection of the malaria vector, A. funestus and A. gambiae mosquitoes 
were collected in four villages of Kilombero River Valley by the use of indoor 
and outdoor traps over four years from 2012 to 2015. Each village was visited 
several times over the four years and each time, mosquitoes were trapped inside 
and outside the houses. Different houses were chosen each time a visit was made 
to the villages and collected mosquitoes over four (4) nights in each house. In-
formation on temperature, humidity and saturation deficit were also collected 
from each visited household. To catch mosquitoes inside required a different 
trap than to catch them outside. Traps were set in the evening at 6 pm and emp-
tied in the morning at 6 am. For every inside trap there are 10 outside traps. 

3.1. Description of Variables 

The variables of interest used in this study were determined according to the 
study objectives and are shown in Table 1. 

3.2. Model Formulation 

The collected data were subjected to verification for consistency, uniformity and 
accuracy with the researcher in charge. Data were then exported and analyzed in 
the R software environment [12]. The mixed effects model was used to quantify 
the association of mosquito abundance with environmental factors. 

Let ( )20,t uU N σ∼  and ( )20,t vV N σ∼  be independently and identically 
distributed. Let itY  denote the monthly counts of mosquitoes at village i  at 
time t . We then assume that conditionally on tU  and tV , itY  are mutually 
independent Poisson variables with mean it itη µ  where itη  is the number of 
traps used to catch the mosquitoes. Using a log link-function, we then write 

( ) 0 0 0 ,log T T
it it t it tdt xµ α β γ η δ µ= + + + +                   (5) 

1 1 ,T
t tdt Vη α β= + +                            (6) 
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where, 
 itx  is vector of dummy variables identifying each of the four villages; 
 td  is a vector of environmental variables; 
 itδ  is a binary indicator of the type of trap, taking value 1 if outdoor and 0 if 

indoor; 
 tU  is a random intercept which accounts for extra-Poisson variation in-

duced by unmeasured explanatory variables; 
 tV  is a random effect accounting for unmeasured explanatory variables 

which affect the log-ratio between the rate of mosquitoes outdoor and 
indoor; 

 tη  corresponds to the log ratio between the rate of indoor and outdoor 
mosquitoes at time t. 

 
Table 1. Shows description of variables and the codes used. 

Variable Description of variable 

cV  The village visited (KID = Kidugalo, MIN = Minepa, LUP = Lupiro and  
SAG = Sagamaganga) 

mT  The type of mosquito trapped i.e. Ag = A. gambiae and Af = A. funestus. 

pT  Indicates the type of trap used that is in = Indoor and out = Outdoor. 

rT  The difference between the maximum and minimum temperature recorded in degree 
Celsius. 

rH  Average relative humidity per month. 

dS  Average monthly saturation deficit measured in pressure vapor. 

dM  The density is the number of monthly mosquito counts per trap in the study area and 
is given by mosquito counts divided by number of traps. 

 
The standard error is computed by utilizing the formulation, 

Standard deviationStandard error
Sample size

=  

To understand how the resting behaviour of mosquitoes changes over time, 
we use Equation (6) which corresponds to the log-ratio between the rate of in-
door and outdoor mosquitoes and therefore, represent our target for inference. 
The variable selection procedure was to start with a full model including interac-
tions with all environmental variables and type of trap, i.e. indoor or outdoor. 
Then, the variables with a p-value greater than 5% (i.e. considering a 95% confi-
dence level) are removed from the model. The process is repeated until all the 
variables have p-values less than 5%. 

4. Results and Discussion 

We now look at the total number of mosquitoes collected by type of mosquito 
and trap in the study area, that is, for A. funestus and A. gambiae. 

In Figure 1, it is observed that there are differences in the numbers of mos-
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quitoes caught by the type of trap for A. funestus and A. gambiae. Over the four 
years of mosquito collection in the study area, a total of 4696 mosquitoes were 
collected resting indoors of which 57% were A. funestus and 43% were A. 
gambiae. Similarly, a total of 12,028 mosquitoes were collected resting outdoor 
of which 13% was A. funestus and 87% were A. gambiae. 
 

 
Figure 1. Mosquitoes collected by type of mosquito and trap in the study area. 

 
Figure 2(a) and Figure 2(b) shows the mosquito densities of A. gambiae by 

village for indoor and outdoor trap. It is observed that the median is different for 
all the villages for both indoor and outdoor trap. The highest density of A. 
gambiae was by indoor trap in Minepa village. We also note that there were 
three reported large densities by indoor trap each within Lupiro (LUP), Saga-
maganga (SAG) and Kidugalo (KID) and in Minepa (MIN) by outdoor trap. We 
observe that by both indoor and outdoor trap for A. gambiae, the mosquito den-
sities seem to have a similar pattern. Kidugalo and Sagamaganga village have 
lower densities of A. gambiae mosquitoes as compared to Lupiro and Minepa 
village for both indoor and outdoor trap. This can be attributed to village spe-
cific environmental characteristics. For instance, Kidugalo and Sagamaganga are 
on a higher altitude than Minepa and Lupiro villages. 

Figure 3(a) and Figure 3(b) shows the densities of A. funestus mosquito in-
door and outdoor by village. The highest density of A. funestus was by indoor 
trap in Kidugalo village. All the villages had the lowest density of A. funestus 
mosquito approximately being zero for indoor and outdoor trap. We observe 
large densities of Anopheles mosquitoes in villages Kidugalo, Sagamaganga and 
Minepa respectively by indoor and outdoor trap. In this case, we observe differ-
ent patterns by village in A. funestus mosquitoes indoor and outdoor. 

For both A. funestus and A. gambiae, we observe a similar pattern in the resting 
behaviour outdoor while the pattern seems different indoors. In almost all the vil-
lages, A. funestus was mostly caught indoor while A. gambiae was caught primar-
ily resting outdoor. This implies that A. funestus is likely to be more exposed to 
insecticide treated nets (INTs) and other chemicals applied to the walls such as 
indoor residual spraying (IRS). However, for A. gambiae mostly resting outdoor 
reduces the risk of exposure to chemicals and bites humans and animals outside. 

57%

13%

43%

87%

Indoor Outdoor

Mosquitoes Collected by type of Trap

Af Ag

https://doi.org/10.4236/jamp.2019.710169


E. Moyo et al. 
 

 

DOI: 10.4236/jamp.2019.710169 2499 Journal of Applied Mathematics and Physics 
 

 
Figure 2. (a) A plot of A. gambiae mosquito density indoor by village. (b) A plot of A. gambiae mosquito density outdoor by 
village. 

 

 
Figure 3. (a) A plot of A. funestus mosquito density indoor by village. (b) A plot of A. funestus mosquito density outdoor by 
village. 
 

In order to quantify the association between mosquito abundance and envi-
ronmental factors and trap location, we carried out the analysis separately for A. 
funestus and A. gambiae. 

4.1. Model for Anopheles funestus 

The first model considered was for A. funestus. After applying the variables se-
lection procedure described in Section 3.2, only temperature range showed a 
significant association. The final model is shown in Table 2. 
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Table 2. Output for A. funestus with environmental factors. 

Parameter Estimate Std.Error P value 

0α  0.3265 0.2810 0.2451 

LUP −0.2733 0.0576 2.09e−06 

MIN −0.4816 0.0496 2e−16 

SAGE −0.5815 0.0682 2e−16 

( )pT out  −0.9108 0.2697 0.0007 

rT  0.0991 0.0188 1.36e−07 

( ) :p rT out T  −0.1971 0.0302 6.81e−11 

 
The coefficient of Lupiro village indicates that the mosquito density is 0.7609 

times the density of A. funestus mosquitoes in Kidugalo village. The density of 
A. funestus mosquitoes in Minepa village is 0.6178 times the density of mosqui-
toes in Kidugalo village. In Sagamaganga, the A. funestus mosquito density is 
0.5591 times that in Kidugalo village. 40% of the density of A. funestus mosqui-
toes were caught outdoor implying that 60% were caught indoor. The percentage 
change in the A. funestus density is by 10% for every 1˚C increase in the tem-
perature range. The interaction effect between temperature and type of trap was 
significant. This suggests that the effect on the density of A. funestus resting 
outdoors is a change by 0.8211 compared to resting indoors for every 1˚C 
change in temperature range. 

Temperature is an important environmental factor affecting the resting be-
havior of A. funestus. We observe a significant relationship between temperature 
and the density of A. funestus. This implies that, a higher temperature range ex-
plains the change in the resting behaviour of A. funestus. It suffices to note that 
temperature is dependent on several factors such as location of the village, sur-
roundings and structure of the buildings in the area. 

We now carry out diagnostic checks of the residuals. 
We can observe in Figure 4 that there is a fairly random pattern in a plot of 

residuals against the fitted values for the model of A. funestus. The random pat-
tern indicates that the residuals appear to show homogeneity, normality and in-
dependence. This is an indication that the model provides a adequate fit to the 
data. As can be seen from the correlogram plot, we observe that there is no 
strong serial correlation in the residuals and the autocorrelation at all the lags is 
nearly close to zero. 

4.2. Model for Anopheles gambiae 

We now look at the model for A. gambiae. In the final model, temperature 
range, humidity range and saturation deficit showed a significant association 
with mosquito density. Also, there were interactions between humidity range 
and saturation deficit with type of trap. The estimates are given in Table 3. 
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Figure 4. A plot and correlogram of residuals of the model for A. funestus. 

 
Table 3. Output for A. gambiae with environmental factors. 

Parameter Estimate Std.Error P value 

0α  −1.2632 0.3990 0.0016 

LUP 1.2866 0.0596 2e−16 

MIN 1.7102 0.0524 2e−16 

SAG 0.5019 0.0494 2e−16 

rT  −0.8404 0.0297 2e−16 

rH  0.1349 0.0125 2e−16 

dS  2.8338 0.2172 2e−16 

( ):r pH T out  0.0675 0.0116 6.17e−09 

( ):d pS T out  −0.9438 0.2234 2.39e−05 

 
The coefficient of Lupiro village indicates that the mosquito density is 3.6205 

times the density of A. gambiae mosquitoes in Kidugalo village. The density of 
A. gambiae mosquitoes in Minepa village is 5.5301 times the density of mosqui-
toes in Kidugalo village. In Sagamaganga, the A. gambiae mosquito density is 
1.6519 times that in Kidugalo village. The A. gambiae mosquito density de-
creases by 0.4315 for every 1˚C increase in the temperature range. The change in 
the density of A. gambiae mosquitoes is 1.1444 for a 1 unit change in the average 
relative humidity range. A one unit change in the average monthly saturation 
density changes the density of A. gambiae mosquito by 17.01. The effects of the 
density of A. gambiae mosquitoes resting outdoors is 1.0698 times the density 
resting indoors for a unit change in the average relative humidity range. The ef-
fect on the density of A. gambiae mosquito resting outdoor is a change in the 
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density by 0.3891 compared to resting indoors for a unit change in the average 
monthly saturation deficit. 

All environment variables were statistically significant in explaining the suit-
ability of the environment in the resting behaviour of A. gambiae. An increase in 
the average relative humidity implies more A. gambiae mosquitoes resting out-
door. [13] Argue that when relative humidity rises, mosquitoes survive better 
and is higher at night. Also, a high temperature decreases the density of A. 
gambiae resting indoors. [14] In their study state that A. gambiae mosquitoes 
have the ability to avoid high temperatures thus, move to more humid locations 
that facilitate their survival. Saturation deficit plays an important role in the 
resting behaviour of A. gambiae as it is a significant variable. The higher the av-
erage saturation deficit in the study area, the more the A. gambiae mosquitoes 
rest outdoor and this can also be attributed to the location of the study area. 

We now check for model fit by carrying out a diagnostic plot of residuals. 
As can be seen from the correlogram plot in Figure 5, we observe that there 

seems to be no serial correlation in the residuals and the autocorrelation at all 
the lags is nearly close to zero. We can also observe that there is a fairly random 
pattern in a plot of residuals for the model of Anopheles gambiae. The random 
pattern indicates that the residuals appear to show homogeneity, normality and 
independence and is an indication that the model provides an adequate fit to the 
data. 

We now compare the resting behavior of A. funestus and A. gambiae by vil-
lage and use of Equation (6) for the log ratio between the rate of indoor and 
outdoor mosquitoes. The analysis is based on a comparison of the abundance of 
A. funestus and A. gambiae trapped indoor and outdoor. When the value of the 
log ratio is zero i.e. 0tη = , there is no difference in the log ratio between the 
mosquitoes resting indoors and outdoors. When 0tη >  implies that the log ra-
tio of mosquito density outdoor is greater than the density indoor and con-
versely when 0tη < . 

We start by looking at the log ratio rate between indoor and outdoor resting 
of A. funestus mosquitoes. The log ratio relationship is shown in Figure 6. 

As can be seen in Figure 6, the patterns are different over the villages imply-
ing that there is spatial heterogeneity in the log ratio between the rate of A. 
funestus mosquitoes indoor and outdoor. This implies that the densities of A. 
funestus are different in all the villages and we observe that the mosquitoes were 
not collected in 2015 for some villages. In Kidugalo village, we observe that the 
log ratio is negative implying that the mosquito density of A. funestus was more 
abundant indoor than outdoor. We observe that in both Kidugalo and Minepa 
villages, there seems to be no clear decrease or increase in the density of A. 
funestus mosquito in relation to the log ratio of the resting behaviour over time. 
Similarly, in Sagamaganga and Lupiro villages the density of A. funestus mos-
quitoes was more abundant indoor. We observe that in the two villages, the 
fluctuations in the mosquito densities for A. funestus are seen to almost have the  
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Figure 5. A plot and correlogram of residuals of the model for A. gambiae. 

 

 
Figure 6. Plots of the log ratio of mosquitoes resting indoor and outdoor with time for A. funestus. 
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Figure 7. Plots of the log ratio mosquitoes resting outdoor and indoor with time for A. gambiae. 

 
same pattern. Also, we observe that in all villages there are no clear signs of any 
shift in the resting behaviour of A. funestus mosquitoes from indoor to outdoor. 

Investigating the resting behavior of A. funestus mosquito over time found 
that it was mostly resting indoor. There were no clear variations in the resting 
behaviour of A. funestus in all the four villages as observed in Figure 6. These 
fluctuations can be attributed to malaria control strategies in the area such as 
indoor residential spraying, use of insecticide treated nets and other several rea-
sons that may affect interactions with environmental variables. This indicates 
that despite the high usage of antibodies for malaria in the study area, mosqui-
toes still enter houses as evident from the abundance of A. funestus indoor. 

Now, we consider the log ratio rate of A. gambiae mosquito resting indoors 
and outdoors. The plot is shown in Figure 7 

Similarly, it can be seen from Figure 7 that the patterns over time for all the 
villages differ implying spatial heterogeneity in the log ratio between the rate of 
A. gambiae mosquitoes indoor and outdoor. We observe both positive and nega-
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tive values of the log ratio between the rate of mosquitoes indoor and outdoor 
for all villages. The straight line represents a case when 0tη =  implying that 
the density of mosquitoes indoor and outdoor is equal. In Lupiro and Minepa 
villages, we observe a similar pattern in the resting behavior of A. gambiae mos-
quitoes as the density of mosquitoes is more outdoor than indoor. This indicates 
that maybe some A. gambiae mosquitoes were resting indoors as we have ob-
served regardless of the presence of vector control indoors. Overall, A. gambiae 
mosquitoes seem to be more abundant outdoor in these villages. We observe 
significant temporal variation in the resting behaviour of A. gambiae in all vil-
lages. 

The density of A. gambiae mosquitoes in all the villages was mostly more 
abundant outdoor over time. This can be attributed to the fact that A. gambiae 
breeds in places such as rice fields, puddles, sunlit pools and bites both human 
and animals. For instance, the shift in the resting behavior in some of the villages 
can be explained by malaria control programs. In Minepa and Lupiro, the main 
activities are cultivation of rice and thus, A. gambiae is mainly breeding in such 
fields. While in Sagamaganga and Kidugalo, they have a lot of cattle and there-
fore this explains the shift in the resting behavior of Anopheles to biting animals 
outdoor. 

5. Conclusion 

We conclude that A. gambiae and A. funestus show a remarkable temporal 
variation in their resting behaviour. A. funestus was the most abundant malaria 
vector indoor while A. gambiae was more abundant outdoor in the study area. 
The finding is in agreement with the results of [6]. Over four years of mosquito 
collection, 57% of mosquitoes collected indoor were A. funestus while 43% were 
A. gambiae. Similarly, 87% of the mosquitoes collected outdoor were A. gambiae 
and 13% were A. funestus. Minepa and Lupiro villages had large densities for 
both A. gambiae and A. funestus indoor and outdoor as compared to Kidugalo 
and Sagamaganga village. This can be due to their location as they are on the 
lower altitude of the Valley compared to Kidugalo and Sagamaganga, with 
possible presence of waterlogged areas. Also, the prominent activity in Minepa 
and Lupiro villages is farming while keeping cattle is the prominent activity in 
Kidugalo and Sagamaganga villages. Thus, the rice fields may be breeding sites 
for mosquitoes. There were variations in the resting behaviour of A. gambiae 
and A. funestus over time in all the villages. The patterns in the log ratio be-
tween indoor and outdoor densities of A. gambiae and A. funestus were different 
implying spatial heterogeneity in their resting behaviour. A. funestus was found 
to rest mainly indoor over time in all the villages. We found that A. gambiae was 
more abundant outdoor although there were some resting indoors in all the vil-
lages. Environmental variables had an impact on the abundance of A. gambiae 
and A. funestus. Temperature was found to significantly affect the resting 
behaviour of A. funestus. Whilst humidity range, temperature and saturation 
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deficit had an effect on the resting behavior of A. gambiae mosquitoes in the 
study area. The findings of this study could be used as a guide to implementing 
appropriate intervention measures. The use of indoor residential praying (IRS), 
insecticide treated nets (ITNs) and other insecticides may then impact on the 
abundance of A. funestus. However, for mosquitoes outdoor, the use of mos-
quito repellents and other interventions would help reduce the abundance of A. 
gambiae which was more abundant outdoor. Ensuring that all possible mosquito 
breeding sites are eliminated is also a way to eliminate mosquitoes outdoor as 
this is prevention through source reduction.  
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