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Abstract 
In waves dynamics, Generalized Kortewegde Vries (gKdV) equation and Sa-
wada-Kotera equation (Ske) have been used to study nonlinear acoustic 
waves, an inharmonic lattice and Alfven waves in a collisionless plasma, and a 
lot of more important physical phenomena. In this paper, the simple equation 
method (SEM) is used to obtain new traveling wave solutions of gKdv and 
Ske. The physical properties of the obtained solutions are graphically illu-
strated using suitable parameters. The computational simplicity of the pro-
posed method shows the robustness and efficiency of SEM. 
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1. Introduction 

The application of nonlinear partial differential equations is not limited to areas 
of mathematics exclusively but also applicable in other science aspects like phys-
ics and engineering. In the study of waves dynamics, Korteweg-deVries equation 
(gKdv) and Sawada-Kotera equation (Ske) are applied in nonlinear evolution 
equation of long waves of small or moderate amplitude in shallow water of uni-
form depth, nonlinear acoustic waves in an inharmonic lattice, Alfven waves in a 
collisionless plasma, and a lot of more important physical phenomena. In recent 
years, study of these two equations has been done to obtain the exact solution 
using different methods. Methods of obtaining analytical or exact solution to the 
gKdv and Ske nonlinear partial differential equations used by other researchers 
include the sine-cosine method [1], an auto-Blackland transformation [2], Hiro-
ta direct method [3], the projective Riccati equation method [4], the He’s varia-
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tional method [5], the Hirota bilinear method [6], the symbolic computation 
method [7] [8], the Odd Hamiltonian structure [9], the extended tanh method 
[10], (G’/G)-expansion method [11], the sub-ODE method [12], the extended 
mapping method [13], the tanh-coth method [14], etc. The simple equation me-
thod for solving nonlinear partial differential equations has gained a lot of atten-
tion from researchers due to its simplicity and ability to extract novel traveling 
wave solutions. The approach has been successfully used by several authors for 
obtaining the exact solution of nonlinear partial differential equations but to the 
best of our knowledge it has not been used to solve the above mentioned equa-
tions, that is, gKdv and Ske. The principal aim of this article is to obtain exact 
traveling wave solutions which include periodic and soliton solution to a partic-
ular case of the gKdv and Ske by a variant of the Simple Equation Method (SEM). 
The paper is organized as follows, in Section 2, we describe the steps of the sim-
ple equation method, in Section 3, we obtain the exact solutions for the Genera-
lized Korteweg-deVries equation and Sawada Kotera equations, Section 4 is the 
graphical representation of the solution, Section 5 is the conclusion. 

2. Method Description 
Simple Equation Method 

This section presents the description and steps of the simple equation method. 
Considering a (1 + 1)-dimensional nonlinear partial differential equation given by 

( ), , , , , 0t x tt tx xxG θ θ θ θ θ θ =                      (1) 

θ  is an unknown function which depends on the independent variables x and t, 
G is a polynomial of ( ),x tθ =  and its partial derivatives in which the highest 
order of the derivatives and the highest order of the nonlinear terms exist. The 
steps of the method are as follows: 

First Step: The independent variables x and t are put together into one varia-
ble called the wave variable, λ . That is: 

( ) ( ), .x t x tθ θ λ ν= = ±                      (2) 

Equation (2) is the traveling wave equation and ν  is the speed of the travel-
ing wave which is to be determined. The traveling wave equation allows us to 
transform the Equation (1) into an ordinary differential equation (ODE) that is: 

( )2, , , , , 0H uθ νθ ν θ νθ′ ′′ ′′ ′′− − =                  (3) 

where H is a polynomial and its derivatives with respect to λ . 
Second Step: Expressing the solution of Equation (3) in the form of a finite se-

ries 

( )( )
0

m j
j

j
b Pθ λ

=

= ∑                        (4) 

where ( )P λ  is a function that satisfies either the Bernoulli equation or the 
Riccati equation, jb  ( 0,1,2, ,i k=  ) are constant parameters to be determined. 
In this article we consider the Bernoulli and Riccati equations which are popular 
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nonlinear ordinary differential equations and their solutions are given by ele-
mentary functions. The Bernoulli equation employed in this paper is expressed 
as 

( ) ( ) ( )2 ,P aP cPλ λ λ′ = +                    (5) 

the Riccati equation is also expressed as 

( ) ( )2 ,P Pλ µ λ σ′ = +                     (6) 

where, a, c and σ  are constant to be determined. 
Third Step: Balancing the highest order of both the linear and nonlinear 

terms in Equation (3) gives the balance number m. Putting Equation (4) into 
Equation (3) with Equation (5) or Equation (6), makes the left hand side of 
Equation (2) to be transformed into a polynomial in ( )P λ , all the coefficients 
of the polynomial is equated to zero to give set of algebraic expressions for

( ), , 0,1, 2, ,jb a c j m=  . The constant parameters are obtained by solving the 
algebraic expressions. 

Fouth Step: Suppose the constant ( ), , 0,1, 2, ,jb a c j m=   can be determined 
in step three, then the exact traveling wave solution for Equation (1) is obtained. 

3. Application of the Method 
3.1. Generalized Korteweg-deVries (gKdV) Equation 

0.t x xxxα βΘ + ΘΘ + Θ =                        (7) 

Generalized Kortewegde Vries (gKdV) equation is a one dimensional nonli-
near partial differential equation introduced by D. Korteweg and G. de Vries in 
(1895) for mathematical explanation of solitary wave phenomenon discovered 
by S. Russell in 1855. This nonlinear partial differential equation describes long 
time evolution of dispersive waves and in particular, the propagation of long 
waves of small or moderate amplitude, traveling in nearly one direction without 
dissipation in water of uniform shallow. The gKdV equation admits a special 
form of the exact solution, the soliton which arises in many physical processes, 
such as water waves, internal gravity waves in stratified fluid, ion-acoustic waves 
in a plasma among others. 

Taking a traveling wave to be 

( ) ( ), , .x t x tλ λ νΘ = Θ = +                     (8) 

Transforming Equation (7) into ODE using the traveling wave equation in 
Equation (8), this gives us 

2 0.
2
αν β ′′Θ + Θ + Θ =                      (9) 

Balancing according to step three described above, the balancing number m is 
a positive integer which is obtained by balancing the highest order linear term 
(i.e., ′′Θ ) with the highest order of the nonlinear term (i.e. 2Θ ) in Equation (9), 
which is 2 2m m+ = , therefore 2m = . Hence the solution of Equation (9) is 
given as: 
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( )( )
2

2
0 1 2

0
,

j

j
P b b P b Pλ

=

Θ = = + +∑                  (10) 

with P satisfying Equation (5) above in the case of Bernoulli, as a result, the fol-
lowing expressions are obtained 

2
0 1 2

3 2 2
2 1 2 1

2 2 2 3 3 2 2 2 2
2 1 2 1 2 1

2 4 2 3 2 2 2 2
2 1 2 0 2 1 0 1 0

2 2
6 2 10 3 4

2 2 2 .

b b P b P
cP b cP b P ab Pab
c P b c P b cP ab cP ab P a b Pa b

P b P b b P b b P b Pb b b

Θ = + +
′Θ = + + +
′′Θ = + + + + +

Θ = + + + + +

     (11) 

Putting Equation (10) and Equation (11) into Equation (9) and equating the 
coefficient of jP  to zero, where 0j ≥  we have, 

( )
( )

2
1 0 1 1

2
21

2 0 2 2 1

2
1 2 2 1

2 2
2 2

2
0 0

0

4 3 0
2

10 2 0

6 0
2

0.
2

b b b a b
bb b b a b acb

b b ab c c b

b b c

b b

ν α β

ν α β

α β
α β

αν

+ + =
 

+ + + + = 
 

+ + =

+ =

+ =

               (12) 

Computing Equation (12) for the parameters 0 1 2, ,b b b  and ν  the following 
two cases is obtained first case: 

2
2

0 1 2
12 120, , , , 0a c cb b b a acβ β ν β
α α

= = − = − = − ≠ , 

second case: 
2 2

2
0 1 2

2 12 12, , , , 0a a c cb b b a acβ β β ν β
α α α

= − = − = − = ≠ , 

for 0, 0c a< >  the solution of Equation (7) for the first case of parameters is 
given by  

( )
( )
( )

( )
( )

22

1 2

2
22

2

exp2 12,
1 exp

exp12 ,
1 exp

a a x a ta a cx t
c a x a t

a a x a tc
c a x a t

ββ β
α α β

ββ
α β

  × −  Θ = − −
  − −  

  × −  −
  − −  

        (13) 

( )
( )

( )( )
2 22

1 2
2

12 exp2, .
1 exp

a c a x a tax t
c a x a t

β α ββ
α β

 − Θ = − −
 − × − 

         (14) 

Again, for the solution of Equation (7) using the second case is given by 

( )
( )
( )

( )
( )

22

2 2

2
22

2

exp2 12,
1 exp

exp12 ,
1 exp

a a x a ta a cx t
c a x a t

a a x a tc
c a x a t

ββ β
α α β

ββ
α β

  × +  Θ = − −
  − × +  

  × +  −
  − × +  

       (15) 
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( )
( )

( )( )
2 22

2 2
2

12 exp2, .
1 exp

a c a x a tax t
c a x a t

β α ββ
α β

 × + Θ = − −
 − × + 

          (16) 

On the other hand where 0, 0c a> <  the solution for Equation (7) using the 
first case is given by 

( )
( )
( )

( )
( )

2

3 2

2
22

2

exp12,
1 exp

exp12 ,
1 exp

a a x a ta cx t
c a x a t

a a x a tc
c a x a t

ββ
α β

ββ
α β

  × −  Θ = −
  + × −  
  × −  −
  + × −  

            (17) 

( )
( )

( )( )
2 2

3 2
2

12 exp
, .

1 exp

a c a x a t
x t

c a x a t

β α β
α

β

 − × − Θ =
 + × − 

             (18) 

also when 0, 0c a> <  the solution for Equation (7) using the second case is 
given by: 

( )
( )
( )

( )
( )

22

4 2

2
22

2

exp2 12,
1 exp

exp12 ,
1 exp

a a x a ta a cx t
c a x a t

a a x a tc
c a x a t

ββ β
α α β

ββ
α β

  × +  Θ = − −
  + × +  

  × +  −
  + × +  

        (19) 

( )
( )

( )( )
2 22

4 2
2

12 exp2, .
1 exp

a c a x a tax t
c a x a t

β α ββ
α β

 × + Θ = − −
 + × + 

         (20) 

For 

( )( )
2

2
0 1 2

0

j

j
P b b P b Pλ

=

Θ = = + +∑                 (21) 

and P satisfying Equation (6) above in the case of Riccati, the following expres-
sions are obtained, 

2
0 1 2

3 2
2 1 2 1

4 2 3 2 2 2
2 1 2 1 2

2 4 2 3 2 2 2 2
2 1 2 0 2 1 0 1 0

2 2
6 2 8 2 2

2 2 2 ,

b b P b P
P b P b Pb b
P b P b P b Pb b

P b P b b P b b P b Pb b b

µ σ σ
µ µ µσ µσ σ

Θ = + +
′Θ = + + +
′′Θ = + + + +

Θ = + + + + +

        (22) 

Putting Equation (22) into Equation (9) and equating the coefficient of jP  
to zero, where 0j ≥  we have, 

2 2
2 2

2
1 2 1

2
0 2 1 2 2

0 1 1 1

2 2
0 2 0

1 6 0
2

2 0
1 8 0
2
2 0

1 2 0,
2

b b

b b b

b b b b b

b b b b

b b b

α βµ

α βµ

α α βµσ ν

α βµσ ν

α βσ ν

+ =

+ =

+ + + =

+ + =

+ + =

                (23) 
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computing Equation (23) for the parameters 0 1 2, ,b b b  and ν  the following 
two cases are obtained, 

first case: 
2

0 1 2
4 12, 0, , 4b b bβµσ βµ ν βµσ
α α

= − = = − = − , 

second case: 
2

0 1 2
12 12, 0, , 4b b bβµσ βµ ν βµσ

α α
= − = = − = . 

For 0µσ <  the solution of Equation (7) for the first case of parameters is 
given by: 

( )
( )

2
2 2

1 0

14 3tanh 4 ln 1
2

, , 0, 1.

t x
x t

βµσ βµ σ µσ ν λ

λ ν
α

  − − + −     Θ = > = ±  

(24) 

again for the solution of Equation (7) using the second case is given by 

( )
( ) ( )

2

2 0

112 tanh 4 ln 1
2

, , 0, 1.

t x
x t

βµσ µσ βµσ ν λ

λ ρ
α

  − − + + −     Θ = > = ±  

(25) 

for 0µσ >  the solution of Equation (7) for the first case of parameters is given 
by 

( )
( )( )2

3

4 3 tan 4 1
, .

t x
x t

βµσ µσ βµσ

α

 − + + 
 Θ = −          (26) 

also for the solution of Equation (7) using the second case is given by 

( )
( )( )2

4

12 3tan 4 1
, .

t x
x t

βµσ µσ βµσ

α

 + + 
 Θ = −          (27) 

3.2. Application of the Simple Equation Method to the  
Sawada-Kotera Equation 

This section uses the proposed method to obtain the exact solution of the 
(1+1)-dimensional Sawada-Kotera equation, is expressed as 

245 15 15 0,t x x xx xxx xxxxxΘ + Θ Θ + Θ Θ + ΘΘ +Θ =             (28) 

the solutions of Equation (28) have been solved by different methods, but has 
not been solved anywhere with the simple equation method. Now using the 
proposed method in Section 2, we obtain the exact solution of Equation (28). 
Applying the transform wave equation of the form 

( ) ( ), , ,x t x tλ λ νΘ = Θ = −                     (29) 

to reduce Equation (28) into ordinary differential equation (ODE), given as 
245 15 15 0,'''''′ ′ ′ ′′ ′′′Θ + Θ Θ + Θ Θ + ΘΘ +Θ =             (30) 

integrating Equation (30) with respect to λ  we have, 
315 15 0.'''' ν′′Θ + ΘΘ − Θ+ Θ =                (31) 
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Balancing the highest order of the linear term ''''Θ  and that of the nonlinear 
term 3Θ , it gives 2m = . For 2m = , the solutions of Equation (31) is ex-
pressed as 

( )( ) ( )
2

2
0 1 2

0
,

j

j
P b b P b Pλ λ λ

=

Θ = = + +∑                (32) 

where 0 1 2, ,b b b  are constants parameters, and 2 0b ≠  
with P satisfying Equation (5) above in the case of Bernoulli equation the fol-
lowing expressions are obtained 

2
0 1 2

3 2 2
2 1 2 1

2 2 2 3 3 2 2 2 2
2 1 2 1 2 1

2 2

6 2 10 3 4

b b P b P

cP b cP b P ab Pab

c P b c P b cP ab cP ab P a b Pa b

Θ = + +

′Θ = + + +

′′Θ = + + + + +

 

4 6 3 5 4 5 2 4 2 3 4
2 2 1 2 1

3 3 2 3 2 2 4 2 3 4
2 1 2 1 1

3 6 3 5 2 4 2 4 2 3 3 3 2 2
2 1 2 0 2 1 2 0 1 2 1 0 2

2 2 2 3
0 1 0 1 0

120 336 24 330 60

130 50 16 15

3 3 3 6 3

3 3 ,

'''' c P b c P ab c P b c P a b c P ab

cP a b c P a b P a b cP a b Pa b

P b P b b P b b P b b P b b b P b P b b

P b b Pb b b

Θ = + + + +

+ + + + +

Θ = + + + + + +

+ + +

 (33) 

Putting Equation (33) into Equation (31) and equating the coefficients of 
( )P λ  to be equal to zero, with 0λ ≥ , we have 

4 2 2 3
2 2 2

3 4 2 2 2
2 1 2 1 2 1 2

2 2 3 2 2 2
2 1 2 1 2 0 2

2 2 2
0 1 0 2 1 2

3 2 2 2 2
2 1 1 2 0 2 1

120 90 15 0

336 24 150 120 45 0,

330 60 60 195 90

30 45 45 0

130 50 75 150 45

b c b c b

ab c b c ab c b b c b b

a b c ab c a b ab b c b b c

b b c b b b b

a b c a b c a b b ab b c ab c

+ + =

+ + + + =

+ + + +

+ + + =

+ + + +

 

2 3
0 1 0 1 2 1

4 3 2 2 2
2 1 0 2 1 0 1
2 2
0 2 0 1 2

4 2 2
1 0 1 0 1 1
3
0 0

30 90 15 0

16 15 60 15 45

45 45 0

15 45 0

15 0,

b b c b b b b

a b a b c a b b a b ab b c

b b b b b

a b a b b b b b

b b

ν

ν

ν

+ + + =

+ + + +

+ + − =

+ + − =

− =

             (34) 

the solution of Equation (34) exist only in the two cases below after solving: 
First Case: 

2 4
0 1 20, 2 , 2 , ,b b ac b c aν= = − = − =  

Second Case: 

2 2 4
0 1 2

1 105 1 15 105, 2 , 2 , 1 ,
4 60 2 4 4

b a b ac b c aν
   

= − + = − = − = − + − +      
   

 

and 

2 2 4
0 1 2

1 105 1 15 105, 2 , 2 , 1 ,
4 60 2 4 4

b a b ac b c aν
   

= − − = − = − = − + − −      
   

 

for 0, 0c a< >  the solution of Equation (28) for the first case of parameters is 
given by 
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( )
( )

( )( )
2 2

1 2
2

2 exp
, .

1 exp

a c a x a t
x t

c a x a t

 − × − Θ =
 − × − 

                  (35) 

again for the solution of Equation (28) using the second case is given by 

( )

2 4

2
2 2

4

1 15 1052 exp 1
2 4 41 105, ,

4 60 1 15 1051 exp 1
2 4 4

a c a x a t

x t a

c a x a t

   
× + − +           Θ = − + −         

 − × + − +           

 (36) 

and 

( )

2 4

2
3 2

4

1 15 1052 exp 1
2 4 41 105, .

4 60 1 15 1051 exp 1
2 4 4

a c a x a t

x t a

c a x a t

   
× + − −           Θ = − − −         

 − × + − −           

(37) 

On the other hand when 0, 0c a> <  the solution for Equation (28) using the 
first case is given by 

( )
( )
( )( )

2 2

4 2
2

2 exp
, .

1 exp

a c a x a t
x t

c a x a t

 × − Θ =
 + × − 

              (38) 

Again for the solution of Equation (28) using the second case is given by 

( )

2 4

2
5 2

4

1 15 1052 exp 1
2 4 41 105, ,

4 60 1 15 1051 exp 1
2 4 4

a c a x a t

x t a

c a x a t

   
× + − +           Θ = − + +         

 + × + − +           

(39) 

and 

( )

2 4

2
6 2

4

1 15 1052 exp 1
2 4 41 105, .

4 60 1 15 1051 exp 1
2 4 4

a c a x a t

x t a

c a x a t

   
× + − −           Θ = − − +         

 + × + − −           

(40) 

Again, P satisfying Equation (6) above in the case of Riccati, as a result, the 
following expressions are obtained 

2

3 2
2 1 2 1

4 2 3 2 2 2
2 1 2 1 2

2 2

6 2 8 2 2

P
p b P b Pb b

P b P b P b Pb b

µ σ

µ µ σ σ

µ µ µσ µσ σ

Θ = +

′Θ = + + +

′′Θ = + + + +

 

6 4 5 4 4 3 3 3
2 1 2 1
2 2 2 2 2 3

2 1 2
3 6 3 5 2 4 2 4 2 3 3 3

2 1 2 0 2 1 2 0 1 2 1
2 2 2 2 2 3

0 2 0 1 0 1 0

120 24 240 40

136 16 16

3 3 3 6

3 3 3 ,

'''' P b P b P b P b

P b Pb b

P b P b b P b b P b b P b b b P b

P b b P b b Pb b b

µ µ µ σ µ σ

µ σ µ σ µσ

Θ = + + +

+ + +

Θ = + + + + +

+ + + +

    (41) 
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putting Equation (41) into Equation (31) and equating the coefficients of ( )P λ  
to be equal to zero, with 0λ ≥ , we have 

4 2 2 3
2 2 2

4 2 2
1 1 2 1 2

3 2 2 2 2 2 2
2 0 2 1 2 0 2 1 2

3 2 3
1 0 1 1 2 0 1 2 1

120 90 15 0

24 45 120 0

240 90 30 120 45 45 0

40 30 150 90 15 0

b b b

b b b b b

b b b b b b b b b

b b b b b b b b b

µ µ

µ µ

µ σ µ µ µσ

µ σ µ µσ

+ + =

+ + =

+ + + + + =

+ + + + =

 

2 2 2 2 2 2
0 2 1 2 0 2 0 1 2 2

2 2 2 2
1 0 1 1 2 0 1 1

3 2 3
2 0 2 0 0

120 30 30 45 45 136 0

16 30 30 45 0

16 30 15 0,

b b b b b b b b b b

b b b b b b b b

b b b b b

µσ µσ σ µ σ ν

µ σ µσ σ ν

µσ σ ν

+ + + + + − =

+ + + − =

+ + − =

   (42) 

the solution of Equation (42) exist only in the two cases below after solving: 
First Case: 

2 2 2
0 1 22 , 0, 2 , 16 .b b bµσ µ ν µ σ= − = = − =  

Second Case: 

2
0 1 2

2 2 2 2

15 1052 , 0, 2 ,
30 30

15 10552 60 ,
30 30

b b bσµ µ

ν µ σ µ σ

 
= − + = = −  

 
 

= + − +  
 

 

and 

2
0 1 2

2 2 2 2

15 1052 , 0, 2 ,
30 30

15 10552 60 .
30 30

b b bσµ µ

ν µ σ µ σ

 
= − − = = −  

 
 

= + − −  
 

 

For 0µσ <  the solution of Equation (28) for the first case of parameters is 
given by: 

( ) ( )
2

2 2
1 0 0

1, 2 tanh 16 ln 1 , 0, 1,
2

x t t xµσ βµ σ µσ ν λ λ ν
  Θ = − − + − > = ±     

(43) 

again for the solution of Equation (28) using the second case is given by 

( )

( )

2 2 2 2
2

2

0 0

1, 30 tanh 2 105 22
15

1 ln 105 15 , 0, 1,
2

x t t t xµσ µσ µ σ µ σ

ν λ λ ν

 
Θ = − − + 


+ + − > = ±  

      (44) 

and 

( )

( )

2 2 2 2
3

2

0 0

1, 30 tanh 2 105 22
15

1 ln 105 15 , 0, 1.
2

x t t t xµσ µσ µ σ µ σ

ν λ λ ν

 
Θ = − − − + 


+ + + > = ±  

     (45) 
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Figure 1. Plot of the exact traveling wave solutions of Equation (14) with parameters 0.5, 0.7, 0.6, 0.6a cβ α= = = = . 
 

 
Figure 2. Plot of the exact traveling wave solutions of Equation (18) with parameters 0.5, 0.7, 0.6, 0.6a cβ α= = = = . 

 
For 0µσ >  the solution of Equation (28) for the first case of parameters is 

given by 

( ) ( )( )22 2
4 , 2 tan 16 1 ,x t t xµσ µσ µ σ Θ = − − + + 

 
          (46) 

again for the solution of Equation (28) using the second case is given by 

( )
2

2 2 2 2
5

1 1, 30 tan 2 105 11 105 15 ,
15 2

x t t t xµσ µ σ µ σ µσ
    Θ = − + − + −      

(47) 

and 

( ) ( )( )2
2 2 2 2

6
1, 30 tan 2 105 22 105 15 .

15
x t t t xµσ µσ µ σ µ σ Θ = − − + + + 

 
(48) 
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Figure 3. Plot of the exact traveling wave solutions of Equation (27) with parameters 0.5, 0.7, 0.6β σ α= = = . 

 

 
Figure 4. Plot of the exact traveling wave solutions of Equation (35) with parameters 0.5a =  and 0.7c = − . 

 

 
Figure 5. Plot of the exact traveling wave solutions of Equation (38) with parameters 0.5a = − , 0.7c = . 
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Figure 6. Plot of the exact traveling wave solutions of Equation (48) with parameters 0.2, 0.4µ σ= = . 

4. Results and Discussion 

This section compares existing literature results and the results obtained. With 
regards to the Generalized Kortewegde Vries equation, the solutions obtained in 
Equation (14), Equation (16), Equation (18) are almost similar to Ref.13. Again, 
for the solutions of the Sawada Kotera equation, solutions obtained in Equation 
(44), Equation (45) and Equation (46) are nearly similar to the solutions ob-
tained by Ref.2. The rest of the solutions obtained in this paper are unique solu-
tions which have not been stated before in existing literature. These solutions are 
applicable in long waves of small or moderate amplitude in shallow water of 
uniform depth, nonlinear acoustic waves in an inharmonic lattice, Alfven waves 
in a collisionless plasma, and a lot more important physical phenomena. Using 
suitable parameter values we illustrate the physical properties of some obtained 
results as shown in Figures 1-6. 

5. Conclusion 

In this research paper, the simple equation method has been used to obtain the 
exact solution of Generalized Korteweg de Vries (gKdV) and the Sawada Kotera 
nonlinear partial differential equation. These methods are used as the trial 
condition, since the simple equation method satisfies the first order Bernoulli 
differential equation or the first order Riccati differential equation. Using simple 
equation method, we derived a balance equation, by means of the balanced equ-
ations, exact solutions are obtained for the two equations. The exact solution at-
tained from the proposed method implies that the approach is simple to apply 
and computationally feasible. The two NLPDEs under the study satisfy both the 
Bernoulli and Riccati differential equations. We then verified that the solutions 
obtained are the true solution to the original equation. 
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