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Abstract 
This paper will present the results and analyses of a simulation to send a sa-
tellite from the Earth to Mars. We use Python to simulate the orbit of the 
rocket. Our goal is to find the least energy-cost trajectory, with the least initial 
velocity. We find the date which allows the satellite to go from the Earth to 
Mars in the shortest distance based on a Hohmann transfer orbit considering 
the gravity of the Sun, Earth, and Mars. 
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1. Introduction 

Mars, the closest planet to earth, has a lot in common with and has long been 
exploring. Since ancient times, “Mars has fascinated mankind” [1]. Finding 
retrograde motion of Mars not only improved Ptolemy’s geocentric theory, but 
also supported the heliocentric theory of Copernicus. “From then on, natural 
science liberated from theology” (Copernicus, 1543). Moreover, almost all of 
Kepler’s theories were based on observations of Mars for eighteen years. With the 
idea of “artificial canals” on the surface of Mars in 1877 [2] and the same year, A. 
Hall discovered two small satellites of Mars—Phobos and Phobos. In recent years, 
people increasingly considered Mars as another habitable planet, because of the 
environmental degradation on the earth and the evidence found on Mars. Radar 
evidence of subglacial liquid water on Mars found by the MARSIS instrument 
provided strong support to the importance of exploring Mars [3]. 

With the attraction of this precious red planet, we do want to learn more 
about it. However, the high risk of sending the probes from the Earth to Mars is 
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a big obstacle. Since the Soviet Union launched its first Mars probe in 1960, 46 
missions have been launched around the world, with less than a 45 percent suc-
cess rate. In the last century, a total of thirty-three detectors were launched 
worldwide, but only 9 of them were completely successful. The key concerns of 
launching process are the calculation of the track and the unknown accidents. 
When the detector approaches Mars, a slight deviation in the orbital calculation 
will cause amplified error enough to pass the planet. Also to be practical, fuel is 
another serious problem, which means the limited size of the aircraft restricted 
the amount of fuel carried. Then in order to solve these two problems, we try to 
figure out a better trajectory that can minimize the use of fuel with our careful 
calculation. We chose the Hohmann transfer as the basic model of our trajectory, 
because it’s undoubtedly the most fuel-efficient one of all the orbital paths, 
which has been proved hundreds of times, such as the article Journey to Mars: 
The physics of travelling to the red written by Stinner and Begoray (2005) [4]. In 
this paper, we simulate the launch of a detector from the Earth’s low Earth orbit, 
continuous moving by passing the sun and entering the orbit of Mars under so-
lar gravitation with the help of PYTHON. In addition, on the basis of Hoh-
mann’s orbit, we compared the 365 launch dates, the path generated, and the 
shortest distance path on a daily basis, which allows a relatively small amount of 
required fuel and short time. And then we calculated the time required, and the 
initial position of the Martian Earth, and chose the ideal launch date. 

2. Organization 

During our brainstorm, there were two routines of the probe from Earth to Mars 
that can travel for solving this problem: directly from the Perihelion of the Earth 
move to the Perihelion of Mars.  

Because our simulation depends on the Hohmann transfer, we first simulated 
an elliptic trajectory from lower orbit (the earth orbit around the sun) to the 
higher orbit (the mars orbit around the sun). In order to be simple, we chose to 
simplified the whole solar system with seven planets to be only Sun, Earth, and 
Mars, and also treat Earth and Mars orbits as two circular orbits with the same 
center. Because we want the trajectory from Earth to Mars to be the shortest. 
Then we treat the Perihelion coordinate to be the starting point from Earth, and 
the aphelion coordinate to be the ending point approaching Mars. We used the 
data (speed and distance from sun of the Perihelion coordinate and the aphelion 
coordinate of two planets) to dot a point on every final positions of mars and 
earth in a linear motion with the gravitational force, and gain two oval orbits of 
them. However, in fact, those two points, aphelion and Perihelion, are not in the 
same line, because there is an angle between the long-axis of two ellipses. We use 
the knowledge in geometry to figure out the coordinate of one point in mars or-
bit and successfully “turn the orbit of Mars in a certain angle”. The orbits of two 
planets were fixed. 

The next step of the research was to add the probe into the simulation. We 
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assume an initial altitude of probe and calculate the initial angle and the speed 
which allow the probe to reach Mars. We simulate the first situation (move di-
rectly toward mars). The result was it requires a numerous amounts of energy 
allowing the probe move toward mars, resisting the gravitational force exerted 
by Sun. Then, we considered Sun’s gravity at first, and gain an approximate ini-
tial speed. Then, we tended to figure out the shortest distance for probe to reach 
Mars, and enter the orbit to rotate around mars. We used recursive algorithm 
again, to simulate every position of Earth on daily basis, found the shortest dis-
tance it need to take, and return the position of the earth. After we finished the 
final orbit of probe with the gravity of earth, we located the shortest position 
between the orbit of Mars and probe, and calculate the time of probe takes to 
reach this point. Finally, we calculated the initial position of mars. We used the 
possible mass of probe provided by professor to evaluate the altitude of the low 
mars orbit, and speed. We tried to figure out the shortest time period needed 
from launching from Earth and arriving on mars, but our computer was unable 
to finish such huge amount of computation. Then, we found the target launch 
date in the lists of the coordinates of earth and mars for our shortest routine 
plan and end up our research. 

3. Materials and Methods 
3.1. Experimental Tools 

We used Python and Matlab to do the calculation and draw graph to simulate 
the orbits. 

3.2. The Initial Data 

In order to simulating the revolution orbit of Earth and Mars, we need initial 
data, the data is listed: 

1) The mass, radius of Mars, Earth, and Sun respectively, and Distance to Sun, 
Perihelion Speed, Perihelion coordinates, and Period of Mars and Earth are dis-
played in Table 1 and Table 2. 

2) 11 2 26.673Gravity 10 N m kg constantG −× ⋅ ⋅= =  

3.3. Depending Theory 

Hohmann transfer 
a certain trajectory from the Earth to Mars. 
law of universal gravitation 
Newton’s second law 

F ma=  

Law of conservation of energy 
the total energy of an isolated system remains constant.  

1 2 3Einitial nE E E E= = = = =  
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Table 1. Mass and radius. 

 Mars Earth Sun 

Mass 6.4219 × 1023 kg 5.965 × 1024 kg 1.9891 × 1030 kg 

Radius 3397 km 6378 km 6.6 × 105 km 

 
Table 2. Distance and Perihelion coordinates and speed. 

 Mars Earth 

Distance to Sun 2.0662 × 108 km 1.471 × 108 km 

Perihelion  
coordinates 

(−126, 169, 776, 453 m, 163, 625, 969, 530 m) (0 m, −147, 098, 074, 000 m) 

Perihelion speed 26,499 m/s 30,286 m/s 

 

Law of conservation of angular momentum 
The total angular momentum of a system remains constant unless acted on by 

an external torque. 
x,y components 
We separated the x component and y component of Force, speed, accelera-

tion. 

4. Simulation and Analysis 
4.1. Simulating Gravitational Environment 
4.1.1. Modeling Gravitational Effect 

116.67 10G∗ −= ×  

We calculate the gravitational forces between the Sun, Earth and Mars. The 
gravitational force between two masses is given by: 

2
ˆMmF G r

r
=


                          (1) 

According to the Newton’s second law F ma= , we obtain the acceleration: 

2
ˆMa G r

r
=
                           (2) 

4.1.2. Modeling the Revolution Orbit of Earth and Mars 
In order to simulate the revolution orbit of Earth and Mars, we need Perihelion 
coordinates and Perihelion speed of Mars and Earth in the initial data. 

Choose the time step (t) as one minute. Combined with gravitational effect, 
we can get the acceleration: 

1 2
1

ˆn
n

Ma G r
R−

−

=
                           (3) 

Therefore, the velocity varies by acceleration: 

1 1n n nv v a t− −= +                           (4) 

Also, the position varies by velocity: 
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1 sinn n nx x v t θ−= +                          (5a) 

1 cosn n ny y v t θ−= +                          (5b) 

Finally, the distance between the two objects is: 
2

1 1 1n n nR x y− − −= +                          (5c) 

Because we have known the initial theta, we can draw the elliptical revolution 
orbit of Earth and Mars by using these equations (see from Figure 1). 

4.2. Simulating a Trajectory 
4.2.1. Determining the Trajectory 
In order to find the least amount of fuel, we need to find the shortest distance 
from the initial position to the final position of the rocket. 

Because of the Kepler’s first law: all planets move around the Sun in elliptical 
orbits, having the Sun as one of the foci, the rocket’s trajectory is elliptical and 
focuses on the Sun. As a result, the line connecting the initial position to the fi-
nal position passes through the center of the Sun. 

We have known that the initial position of the rocket is on the line between 
the Sun and Earth and 6800 km from the center of Earth and also on the line 
between the Sun and Mars and 3800 km from the center of Mars. 

To find the shortest distance from the initial position to the final position, we 
use python to select it and print the coordinates of the initial and final position 
of the rocket. The results are below: 

Rocket initial coordinate ( )1 1,x y ; rocket final coordinate ( ),n nx y  

( ) ( )2 2
1 1distance n nx x y y= − + −                   (6a) 

( ) ( )2 2
1 1Distancesemi-longaxis

2 2
n nx x y y

a
− + −

= = =          (6b) 

 

 
Figure 1. The orbit of Earth and Mars. 
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( ) ( )2 2
1 12 2 2 2

1 1 1 1focallength
2

n nx x y y
c a x y x y

− + −
= = − + = − +    (6c) 

2 2b a c= −                            (6d) 

4.2.2. The Velocity of Rocket to Transfer into the Hohmann Orbit 
A) Simplifying the original problem 
The problem in reality is quite difficult to solve by our hand calculation, we 

started from a simplified form that we ignore the competing gravitational effect 
from the Earth and Mars. In this situation, the rocket moves noticeably in a sim-
ple Keplerian elliptical orbit under the gravitation of the Sun, which we can use 
the Kepler’s law to solve the problem. 

According to the Kepler’s second law, a line segment joining a planet and the 
Sun sweeps out equal areas during equal intervals of time, which represents the 
ratio of area to time as a constant. 

1d  = distance from the center of the earth to the rocket = 6878 km. 

2d  = distance from the center of mars to the satellite’s orbit which orbit 
around the mars = 4185 km. 

id  = distance from the initial position to the center of sun= 1.473459836 × 
1011 m. 

fd  = distance from the final position to the center of sun= 2.034171152 × 
1011 m. 

iv  = velocity we need at the initial position. 

lv  = the lower velocity at the initial position. 

ilv  = the ideal initial velocity. 

fv  = the final velocity at the final position. 

flv  = the ideal final velocity. 
a = semi-long axis. 
b = semi-short axis. 
m = rocket (satellite). 

av  = velocity at the point a. 

bv  = velocity at the point b. 

a bv v v∆ = −                            (7) 

Area swept in a very small time interval at the initial position: 

1
2i id v tδ δ=                           (8) 

Area swept in a period: 

ta ab= π                             (9) 

According to the Kepler’s third law, Square of the orbital period of a planet is 
proportional to the cube of the semi-major axis of its orbit. Combining with the 
Newton’s gravitation law, we can get the equation: 

2 34
t

s

ap
GM un
π

=                         (10) 
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Finally we get the equation: 

2 3 34 2
si t

t

s

ab GM una a ab
t p a a

GM un

δ
δ

π
= = =

π
               (11a) 

The result is below: 
32786 m silv =  

il i fl fv d v d=                         (11b) 

23734 m sflv =  
B) Perturbation and Correction 
Considering the competing gravitation of Sun, Earth and Mars, we can first 

get a range of the velocity. 
-To determine the initial velocity 
We start with velocity lv , which is equal to the orbital speed of the earth 

around the sun plus the escape velocity from the Earth: 

lv  = the lower speed 
a) The Lower Speed 
Because we ignore the Earth gravitational effect on the rocket, we can add the 

energy needed to escape from the earth to find a velocity which has lower mag-
nitude than the actual velocity. Escapev  = escape velocity from earth 

2 earth
Escape

earth

1 0
2

M m
mv G

R
− =                     (12) 

Escape 11169 m sv =  

The kinetic energy: 

2 2 2
Escape Velocity

1 1 1
2 2 2l ilmv mv mv= +                 (13) 

34619 m slv =  

b) The Higher Speed 
Because planets conserve energy at any point as it moves around the same star 

in an elliptical orbit, we can use the conservation law of energy to calculate the 
speed difference between the initial position and final position. 

( )2 sun earth1
2a a b

i l

M m M m
E m v v G G

d d
= − − −            (14a) 

sun mars

2
b

f

M M m
E G G

d d
= − −                  (14b) 

According to the conservation law of energy: 

a bE E=                         (14c) 

The figure of elliptical revolution orbits of Earth and Mars with pointing a and 
b is depicted in Figure 2. 

We obtain the value of 18117 m sv∆ =  
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Figure 2. Orbits with perihelion and aphelion. 

 
The sum of fv  and v∆  is greater than the true speed, because the ignor-

ance of Earth and Mars gravitation. 
As a result, we obtain a range of speed at initial position ( ),l flv v v v∈ + ∆ . 
Using the Newton’s law of motion (Rocket Equation), we can get these func-

tions: 

( ) 0t t
xx x t
t

δ
δ+∆ = + ∆                      (15a) 

( ) 0t t
yy y t
t

δ
δ+∆ = + ∆                      (15b) 

( ) 0t t

x
x x

v
v v t

t
δ
δ+∆

= + ∆                     (15c) 

( ) 0t t

y
y y

v
v v t

t
δ
δ+∆

= + ∆                     (15d) 

( ) ( ) ( )

( ) ( )

sun earth
2 2 2 2

mars
2 2

mars mars

t t
t t t e t e

t t

M M
a G G

x y x x y y
M

G
x x y y

δ+ = +
+ − + −

+
− + −

          (15e) 

Input the initial position ( )0 0,x y , the range of initial velocity (get results 
every 50), and the duration of time steps, these functions help us to modeling the 
trajectory. We can use python to add up these steps and using numerical method 
for integration. The result is below: 

41600 m siv =  
We then increase the velocity lv  from velocity in small steps to find the tra-

jectory that approximately intersects the designated point. From this process, we 
find the required change in velocity to be 648 m/s and the total velocity to be 
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41,600 m/s. With the total velocity, we find out that it takes 209 days for the sa-
tellite to approach to Mars. 

We input the initial position ( )0 0,x y , the initial velocity in the range of 
( ),l flv v v+ ∆ , adding 50 m/s each time until finding the trajectory that approx-
imately intersects the designated point. 

-To determine the day of the period from the starting point to the designated 
point. 

Thus, we can get the time StoDt  for the satellite moving from the starting 
point to the designated point by keeping track of the real-time coordinates of the 
satellite. 

209 daysStoDt =  
Initial probe.coordinate = [ ]69178254048.58987, 130096917958.33554−  
After finding the time to travel to Mars, we can find the coordinate of Mars 

when the satellite is entering the trajectory. 
We can then consider the 3 gravitational forces, and simulate the trajectory of 

the satellite as the Earth and Mars orbit the Sun. 
We then iterate the initial velocity from 41,600 m/s to optimize the distance 

between the earth and Mars when they approximately get to the designated 
point. We thus get the optimal initial velocity Initial Velocityv , which is 41,655 m/s, 
and the distance between the satellite and Mars at that moment is 497,311 km. 

The full figure of the trajectory and the figure of the designated part are 
shown in Figure 3. 

In 4.2.3, we specifically explain how we draw the trajectory (see from Figure 
4). 

4.2.3. The Principle to Draw a Trajectory 
To find out the position of the rocket at certain time and draw the trajectory, we 
can use the Newton’s law of motion. 

( ) 0t t
xx x t
t

δ
δ+∆ = + ∆                        (16a) 

( ) 0t t
yy y t
t

δ
δ+∆ = + ∆                       (16b) 

( ) 0t t

x
x x

v
v v t

t
δ
δ+∆

= + ∆                       (16c) 

( ) 0t t

y
y y

v
v v t

t
δ
δ+∆

= + ∆                       (16d) 

( ) ( ) ( )

( ) ( )

sun earth
2 2 2 2

mars
2 2

mars mars

t t
t t t e t e

t t

M M
a G G

x y x x y y
M

G
x x y y

δ+ = +
+ − + −

+
− + −

            (16e) 

Input the initial position ( )0 0,x y  and time step, we can get the initial acce-
leration; Input the initial speed and initial acceleration and time step, we can get 
the next step’s velocity; Input the next step’s velocity and time step, we can get  
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Figure 3. Trajectory of 41,600 m/s. 

 
the next step’s position; We can use the python to add up all these steps and us-
ing numerical method for integration of trajectory. 

4.2.4. Orbit from Low Earth Orbit 
Calculating the acceleration 

Thrust 3000 tonsmv
t

δ
δ

= =                  (17a) 

2Thrust 10 m st

mv
ta

m m

δ
δ= = =                (17b) 

Initial position to accelerator. 
m = the mass of rocket. 

equivalentt  = the period of the rocket orbit around the Earth orbit. 
θ  =the angle between the line which from the initial position to the center of 

Earth and the line from projection point to the center of Earth. 
T = the time that need for accelerate from the initial velocity to the final ve-

locity. 
R = radius of Earth. 

sunR  = distance from the center of Sun to Earth. 
h = low earth orbit’s height. 
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Figure 4. Trajectory of 41,600 m/s with detail. 

 
After launching from the Earth surface, the probe enters the orbit around 

Earth, which is 500 km above the Earth surface, with the velocity of 7605.662596 
m/s. 

( )

2
earth

2

M m vG m
R hR h

=
++

                     (18a) 

earthM
v G

R h
=

+
                       (18b) 

11 24

Near Earth Orbit 6 5

6.67 10 5.965 10 7605.662596 m s
6.378 10 5 10

v
−× × ×

= =
× + ×

     (18c) 

2
sun earth earth

earth2
sunsun

M M v
G M

RR
=                    (18d) 

And then, we change the velocity relative to the earth by plus a velocity 
change in order to reach the velocity to start the elliptical trajectory to Mars 
which is about 41,645 m/s relative to Sun. 

41655 7605 30287 3853 m sv′∆ = − − =               (19a) 

The process of velocity change of the probe near Earth is shown in Figure 5. 
The Thrust is 3000 tons, and the designed the mass of the rocket is 300 kg. 
The time period we use to change the velocity is now obvious to calculate 
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Figure 5. The Earth part of the velocity change. 

 
3853 385.3 s
10

vt
a
′∆

= = =                   (19b) 

Because the T is very small, we can ignore the offset track. Therefore, before 
the probe comes to the point where it starts the elliptical trajectory, it took a 
time period to change the velocity. In addition, the period of an orbit around the 
earth is 

( )6 5

Near Earth Orbit
Near Earth Orbit

2 6.378 10 5 102 2
7605

5682.544187 s

T
v

R h
ω

π× × + ×π π
= = =

+
=

     (19c) 

6
earth 6.378 10 mR = × , 55 10h = ×  

2Near Earth Orbit

earth earth

1 0.109137842031
2

v a t
R h R h

θ = + =
+ +

       (19d) 

equivalent
Near Earth Orbit

earth

98.5957637656 dayst
v

R h

θ θ
ω

= = =

+

       (19e) 

According to the equivalent time around the orbit when accelerating, we can 
calculate the point where the probe starts the elliptical trajectory by python’s da-
ta. 

https://doi.org/10.4236/jamp.2019.710162


Y. F. Wei, Y. K. Zhang 
 

 

DOI: 10.4236/jamp.2019.710162 2396 Journal of Applied Mathematics and Physics 
 

4.2.5. Simulating the Transfer 
We use the python to simulate the picture, but we ignore the competing gravita-
tion of Earth and Sun. So the rocket accelerates on the Low Earth orbit and get 
out of the orbit at the projection point. 

4.3. Orbiting from Hohmann Transfer Orbit to Mars  
Reconnaissance Orbit 

4.3.1. Simplifying the Original Problem 
The problem in reality is too complicated to solve, we started from a simplified 
form that we ignore the competing gravitational effect from the Earth and Mars. 
In this situation, the rocket moves noticeably a simple Keplerian ellipse under 
the gravitation of the Sun, which we can use the Kepler’s law to solve the prob-
lem. 

We calculated the area that the Mars swept from the initial position to the end 
position by the function: 

1tan

2

y

x

a
a

A ab

−

= π
π

                          (20a) 

tA ab= π                              (20b) 

2 3

mars

4
t

aP
GM
π

=                            (20c) 

t

t

AA
t P
=                               (20e) 

1
2 3

mars

tan
4

2
31 days

y

x

t

t

a
a aab

GMAP
t

A ab

−

π
π

π
= = =

π
              (20d) 

Because of the Kepler’s second law, we know that the ratio of area to time as a 
constant. We know that it takes 209 days to Mars. After that, we need to use py-
thon to rearrange the data. 

4.3.2. Perturbation and Correction 
Considering the competing gravitation of Sun, Earth and Mars, we can first get a 
range of the period. 

Because this initial day does not change so much, that we can try more days to 
make it better (adjust the period to enable the velocity). 

Finally, the actual initial position coordinate is (69, 178, 254, 048.58987, −130, 
096, 917, 958.33554), which needs 27.5 days to get there from the perihelion. 

Starting point: the point where we start entering the trajectory from the near 
surface orbit about 500 km height above the earth surface. 

Starting point = initial position. 
Designated point: the point where we first get close to Mars (within 500,000 

km). 
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-To change the velocity to get closer to Mars (within 5000 km from the mass 
center of the Mars). In order to get closer to Mars which is necessary for us to 
enter the orbit around Mars, we plan to change the velocity again by changing 
the acceleration on XY component, to get to the point within 5000 km away 
from Mars. 

mainforce

2 2 2 2
mainforce sideforce

0.04018sin 0.262
0.1483 0.04018

a

a a
θ = = =

+ +
       (21a) 

mainforce

2 2 2 2
mainforce sideforce

0.1483cos 0.965
0.1483 0.04018

a

a a
θ = = =

+ +
      (22b) 

After 28 days acceleration, the velocity changed into 39,015 m/s. And the dis-
tance between the center of Mars and the satellite is 4185 km, which means the 
satellite is at the height of 788 km. 

aftera. mars 4185 3397 788 kmh d R= − = − =              (22a) 

mars 3397 kmR =  

-To make the satellite orbit around Mars Then the satellite change the velocity 
into around Marsv , and it can orbit around the Mars with the height of 788 km. The 
detail of the trajectory when the probe approaches Mars is displayed in Figure 6. 

mars
around Mars

aftera.

3199 m s
Gm

v
d

= =                    (22b) 

4.4. Fuel Consumption 

0M  = initial mass of the rocket. 
M = mass at time. 

pM  = mass of propellant. 
v = the velocity of rocket. 
F = net force = thrust. 

eqv  = equivalent engine exhaust velocity = spI g  

1fm  = full mass at Low Earth Orbit. 

2fm  = the mass of the satellite after the first acceleration. 

em  = empty mass = 300 kg. 
v v′∆ = ∆  or v′′∆  

According to the Newton’s law of motion: 

p
eq

MvF M v
t t

δδ
δ δ

= =                      (23a) 

ln lnf f
eq sp

e e

m m
v v I g

m m
∆ = =                    (23b) 

Separating the fuel consuming into two part: 
1) from Low Earth Orbit to Hohmann Transfer Orbit. 
2) from Hohmann Transfer Orbit to Mars Reconnaissance Orbit. 
Because we ignore the offtrack, there is no need to considering the variation of 

g in the process of acceleration. 

https://doi.org/10.4236/jamp.2019.710162


Y. F. Wei, Y. K. Zhang 
 

 

DOI: 10.4236/jamp.2019.710162 2398 Journal of Applied Mathematics and Physics 
 

 

Figure 6. The detail when the probe approaches Mars. 

 
1) g ′  = the gravitational acceleration at Low Earth Orbit 

3753 m sv′∆ =  

( )
earth

2 8.625 N kg
GM

g
R h

′ = =
+

                   (24) 

1

2

2.9739f

f

m
m

=  

2) g ′′  = the gravitational acceleration at Mars Reconnaissance Orbit 

around Mars Mars 6165.4 m sfv v v v′′∆ = + − =            (25a) 

( )
Mars

2
mars

2.9663 N kg
GM

g
R h

′′ = =
+

              (25b) 

2 180.487f

e

m
m

=  

The total mass of fuel = 1fm  
As a result, the total mass of fuel = 161,025 kg. 

4.5. The Date the Satellite Escape the Orbit of the Earth 

We use the table including the Azimuth angle and the distance from Mars and 
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the earth to the sun on each day separately to find the date of the earth appear-
ing on the perihelion. According to our calculation, we know if we speed up the 
satellite and escape from the earth orbit after the earth passes the perihelion, the 
distance the satellite getting to Mars is the shortest route. Then we find the next 
date of the earth arrives its perihelion, add 28 days after it, we get the ideal date 
is January the 31st in 2019. 

5. Conclusions 
By modeling the condition of launching a rocket to Mars and simulating the 
rocket trajectory, we have successfully optimized the route that enables the rock-
et efficiently travel from Earth to Mars within a short period of 209 days, by ad-
justing the initial values of the launching condition to a precision of 3 figures in 
our attempts to orbit around Mars. With the thrust provided and the calculated 
trajectory, we are able to send 300-tons rocket into space, which also signifies a 
large effective payload of rocket being put into the orbit of Mars. However, along 
with all our achievements also come the drawbacks. We ignore other planets’ 
gravity in the solar system. 

We have tried our best to make our result as closer to the real situation as 
possible, but there are two limitations in our simulation that cause the error. 
Since our computers are not capable of running the code for some precise calcu-
lation, we have to approximate the real situation with some other ways to reduce 
the computation. 

The first limitation is that the displacements of planets and probe in an ex-
tremely short period are infinitely close to linear segments, but our computers 
are not able to deal with the computation of such extremely short time period or 
integral. The only way we can cope with it is to calculate the linear displacement 
in certain short time period to simulate the real arc displacement of them. The 
second limitation is that we try to figure out the initial coordinates of Mars and 
Earth about the shortest time period plan, because the shortest time period 
means fewer risks for the probe to be damaged in the space. Our computers do 
not allow us to finish this simulation, so we have to abandon this plan. 

Actually, although these approximations or errors have little impact on the 
result of the simulation, we have to admit that there is some unavoidable error 
between our simulation and the real situation of the movement of those celestial 
bodies. 
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