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Abstract 
The main goal of the paper is to obtain the local strong solution of the 
Cauchy problem of the nonhomogeneous incompressible Boussinesq equa-
tion in two-dimension space. Especially, when the far-field density is vacuum, 
we make a priori estimate in a bound ball and prove the existence and uni-
queness of the local strong solution of the Boussinesq equation. 
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1. Introduction 

The Boussinesq equation is an important class of equations in fluid equations. 
We consider the Cauchy problem of two-dimensional nonhomogeneous incom-
pressible Boussinesq equations: 
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( ) ( )

div 0,

div ,

0,
div 0,

t

t

t
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u u u P u

u
u

ρ ρ

ρ ρ µ

θ θ κ θ

+ =


+ ⊗ +∇ = ∆


+ ⋅∇ − ∆ =
 =

                   (1) 

for viscous incompressible flows. Here, 0t ≥  is time, 2x R∈  is the spatial 
coordinate, and ( ),x tρ ρ= , ( )( )1 2, ,u u u x t= , ( )( )1 2, ,x tθ θ θ=  and 

( ),P P x t= , are the fluid density, velocity, temperature and pressure, respec-
tively. The constant 0µ >  and 0κ >  are the viscosity coefficient and the 
thermal expansion coefficient of the flow respectively. 

The initial data 0ρ , 0u  and 0θ  are given by 
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( ) ( ) ( ) ( ) ( ) ( )0 0 0 0,0 , ,0 , ,0 .x x u x u x x xρ ρ ρ ρ θ θ= = =        (2) 

There has been a long history, studying the existence of solutions to Boussi-
nesq equations. In recent years, much attention has attracted by Boussinesq eq-
uations with 0ρ > . For example, when 0µ > , 0κ > , Ishimura-Morimoto [1] 
gave blow-up criterion in the 3D. Next, for the cases of “partial viscosity”, in [2], 
Fan-Zhou proved blow-up criterion of Equations (1) with 0µ = , 0κ > . For 
general initial data in mH  and 3m ≥  cases, Hou and Li [3] come up with the 
global well-posed solution of the proof for the incompressible Boussinesq equa-
tions in two-dimensions. When the equation was not viscous, such as 0µ κ= = , 
Dongho Chae and Hee-Seok Nam [4] studied the local existence of solution of 
the Boussinesq equations and provided a blow-up criterion for the smooth solu-
tions in the Sobolev spaces ( )2mH R  and 2m > . In 0ρ ≥  case, Hou and Jiu 
[5] considered the local existence and uniqueness of the strong solutions of the 
density-dependent viscous Boussinesq equations for incompressible fluid in 3R  
with 0µ > , 0κ > . But the case of the 3D case [5] cannot be used in 2D case. 
However, the two-dimensional case is an open problem. Recently, we mention 
that Liang [6] has come up with energy estimation of the Navier-Stokes equation 
with vacuum as far-field density in a bounded sphere, then extends to the entire 
two-dimensional space to obtain the existence of a local strong solution of the 
incompressible Navier-Stokes equations. In fact, if the temperature function is 
zero (i.e., 0θ = ), then (1) reduces to the Navier-Stokes equations [7]. Compar-
ing with the Navier-Stokes equation and Euler equation, Boussinesq equations 
exist a complicated nonlinear relationship between velocity and pressure [8]. As 
a result, the study of Boussinesq equations is more complicated. Based on [6], we 
will show the existence and uniqueness of strong solution to the Cauchy prob-
lem (1) and (2). 

This article has two difficulties. Firstly, it is difficult to control the Lp-norm 
( 2p > ) of the velocity u with the L2-norm of its gradient. To overcome this  

difficulty, in light of [6] [9], we introduce ( ) ( )0

1
2 212 logx e x e xγ++ +

 
( 0 0γ > ), and set up a Hardy-type inequality (such as (14)) to bound the 
Lp-norm of ux γ−  taking the place of the velocity u [10]. We acquire a pivotal 
inequality (such as (22)), which can control the Lp-norm of uρ . Moreover, in 
incompressible Boussinesq equations, there are strong coupled terms that bring 
us some new difficulties, such as u θ  and u θ∇ . For the purpose of 
controling u θ  and u θ∇ , which are infered from the coupled term 
u θ⋅∇  and integration, we make use of a spatial weighted mean estimate of θ  
and θ∇  (i.e., 2ax θ  and 2ax θ∇ , such as (18), (42)). Particularly, the focus 
of this article is to do a priori estimate in a bounded ball 

0RB . Through the 
above key steps, we can easily get the existence and uniqueness of strong solu-
tion to the Cauchy problem (1) and (2) by a standard limit procedure. 

Theorem 1.1. For each positive constant 2q >  and 1a > , Let the initial 
data ( )0 0 0, ,uρ θ  satisfy 
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 

       (3) 

Then set 1 0T >  is a small time, for the problem (1)-(2) make a unique 
strong solution ( ), , ,u Pρ θ  on [ ]2

10,R T×  satisfies the following properties: 
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     (4) 

and 

( ) ( )
1

00

1inf , d d ,
4

N
t T

B

x t x x xρ ρ
≤ ≤

≥∫ ∫                    (5) 

for the constant 0N >  and { }2 |NB x R x N∈ < . 

2. A Priori Estimates 

The main duty in the present paper is to establish crucial energy estimates in the 
bounded domain. Next, we are going to establish the a priori estimates of ψ , 
which will be the main effort of this section. We define 

( ) 2 22 2 1 1 1,
1 2 2 21 .q

a a
L LL L L H W

t u u x xψ ρ θ θ ρ+ + ∇ + ∇ + +
 

  

Proposition 2.1 Suppose ( )0 0 0, ,uρ θ  satisfies (3). Let ( ), , ,u Pρ θ  be the 
solution to the initial-boundary-value problem (1) on { }2 |NB x R x N∈ < . 
Then there exists a small positive time 1 0T >  and C which depends on 

0 1, , , , ,q a Nµ κ γ , and ψ , such that 
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u u x t

u P t u t P
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ρ θ θ θ
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+ +

+ + + ∇ + ∇ + ∇

+ + ∇ + ∇ + + ∇

+ ∇ + ∇ + ∇ + ∇

+ ∇ + ∇ ≤

∫

∫

∫

(6) 

In addition 

2 22 2 1 1 1,
1 2 2 2

1 0 0 0 0 0 0 .q
a a

L LL L L H W
E u u x xρ θ θ ρ+ ∇ + ∇ + +

 

  

The validity of Proposition 2.1 is at the end of this section. Next, we will start 
the standard energy estimation for ( ), , ,u Pρ θ  and the Lp-norm of the density. 
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Next, we start with the standard energy estimates. 
Lemma 2.1 Assume that problem (1) have a smooth solution ( ), , ,u Pρ θ  to 

the initial-boundary-value, in the { }0

2
0|RB x R x R= ∈ <  and 0 0R > . When 

for arbitrary 0t >  

[ ]
( ) ( )1 2 2 22

2 2 2 21 2
00,

sup d ,
t

L L L L LLs t
u u s Cρ ρ θ θ∞

∈
+ + + ∇ + ∇ ≤∫



      (7) 

moreover, C relies on 0 0, , , , ,q a Nµ κ γ  and ( )tψ . 
Proof: From the mass Equation (1)1, we can deduce 

[ ]
( ) ( )2 2 22

2 2 2 21 2
00,

sup d ,
t

L L LLs t
u u s Cρ θ θ

∈
+ + ∇ + ∇ ≤∫          (8) 

owing to div 0u =  and the continuity Equation (1)1 [11], we obtain 

[ ]
1

0,
sup .L L
s t

Cρ ∞
∈

≤


                      (9) 

Inequalities (8) and (9) complete the proof. 
Next, spatial weighted estimates of density and temperature have yet to be 

proven. 
Lemma 2.2 Let the assumptions in Lemma 2.1 be satisfied. Where 2 0T >  is 

a small time and relies only on 0, , , , ,q a Nµ κ γ , and ψ , then for arbitrary 
( ]20,t T∈  

[ ]
( )1 2 2

2 22 2
00,

sup d .
ta a a

L L Ls t
x x x s Cρ θ θ

∈
+ + ∇ ≤∫          (10) 

Proof: First, for 0R , let ( )0 00R RC Bϕ ∞∈  satisfy 

( )
0 0 0

10 1, 1, if 2, .R R Rx x N CNϕ ϕ ϕ −≤ ≤ = ≤ ∇ ≤      (11) 

From Equations (1)1 and (14) we can deduce 

( ) ( )0 0

1 21 2 21 1d ˆd d d ,
d R Rx u x CN x u CN

t
ρϕ ρ ϕ ρ ρ− −= ⋅∇ ≥ − ≥ −∫ ∫ ∫ ∫   (12) 

integrating (12) and using (5) give 

[ ] [ ] 0 0
2 20

1
0 20, 0,

ˆinf d inf d 1 4,
R

R RBt T t T
x x CN Tρ ρϕ ρ ϕ −

∈ ∈
≥ ≥ − ≥∫ ∫ ∫       (13) 

where, ( ){ }2
ˆmin 1, 4T N C . It follows from (13), (9) and ([2] Lemma 2.3) that 

for arbitrary 1,2v D∈   we can obtain 

( )
( ) ( ) 22

2 2 21 2

2
, , ,LL

vx C v C vγ

γ
γ ρ γ−

+
≤ + ∇


          (14) 

where { }min 1,γ γ= . From now on, using multiplying Equations (1)1 by ax  
and integrating, we obtain 

( )

( )
( )( )

0

8
87

21 2

21

211

8 41
8 8

1 7
1 28 8

2

d d log d
d

1 1 ,

a
aa

a a

a
a a

L L
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aa a

LL L L

a
LL

x x C u x e x x
t

C x ux

C x u u

C x u

γρ ρ
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ρ ρ ρ
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++

∞
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         (15) 
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using Gronwall’s inequality and (7), we find 

[ ]
( ){ }21

2

00,
sup exp 1 d .

ta
LLs t

x C C u s Cρ
∈

≤ + ∇ ≤∫            (16) 

Next, multiplying Equations (1)3 by axθ  and integrating, we infer 
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≤ + +

≤ + + + ∇

≤ + ∇ + ∇

∫ ∫

∫     (17) 

due to Gagliardo-Nirenberg inequality [12], (7), (14). Then using Gronwall’s 
inequality and (7), we find 

[ ]
2 2

2 22 2
00,

sup d ,
ta a

L Ls t
x x s Cθ θ

∈
+ ∇ ≤∫                 (18) 

which together with (16) gives (10). We complete the proof. 
Lemma 2.3 Suppose that ( ), , ,u Pρ θ  and 2T  of Lemma 2.1 and Lemma 2.2 

hold. There is a positive constant 1ζ > , for all ( ]20,t T∈  

[ ]
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  (19) 

Proof: In Equations (1)2, multiplying both sides by tu , and integrating, we get 

22 2 2d d d d .
d tu x u x C u u x
t

µ ρ ρ∇ + ≤ ∇∫ ∫ ∫             (20) 

Now, it follows from (7), (10), and (14) that for arbitrary 0> , 0γ > , 
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where { }min 1,γ γ=  and ( )0

1,2
Rv D B∈  . Particularly, this together with (7) 

and (14) derives 

( ) ( ) ( )22 2 1 .LL L
u ux C vγ γ

γ γρ + +
−+ ≤ + ∇

                (22) 

Using Hölder’s and Gagliardo-Nirenberg inequalities, we deduce that 
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88

2 18
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where 1ζ > . 
Substituting (23) into (20) gives 

2

222 2d d d .
d t L

u x u t u C
t

ζρ ψ∇ + ≤ ∇ +∫ ∫                (24) 

Now, it follows from Equations (1)3 that 
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≤ ∇ ∇

≤ ∇ +

                  (25) 

owing to (22) and Gagliardo-Nirenberg inequality, multiplying (25) by 
( )1

0 1Cκ − +  and the resulting inequality to (24) imply 
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u C u
t

C x u C ζ
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θ ψ−
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≤ ∇ + ∇ +
          (26) 

where ( ), , ,u Pρ θ  satisfies Stokes system, so the regularity estimates [13] on the 
weak solutions show for all ( )1,p∈ ∞  

( )2 .p p pp tL L LL
u p C u u uρ ρ∇ + ∇ ≤ + ∇            (27) 

Making use of (27), (6), (22) and Gagliardo-Nirenberg inequality, one has 
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       (28) 

Finally, inserting (28) into (26) and choosing   small enough to hold 
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0
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L

u C u
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κθ ρ θ
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∇ + + ∇ + + ∆

≤ ∇ +
       (29) 

Integrating (29), using ([2] Lemma 2.4), (9), and (28), we obtain (18). Hence 
Lemma 2.3 is proved. 

Lemma 2.4 Suppose that ( ), , ,u Pρ θ  and 2T  of Lemma 2.1 and Lemma 2.2 
satisfy 

https://doi.org/10.4236/jamp.2019.710161


H. F. Wang 
 

 

DOI: 10.4236/jamp.2019.710161 2379 Journal of Applied Mathematics and Physics 
 

[ ]
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         (30) 

Proof: Differentiating both side of Equations (1)2 with respect to t, then mul-
tiplying both sides by tu  and integrating gives 
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    (31) 

Making use of (21), (22) combined with Gagliardo-Nirenberg inequality and 
Hölder’s inequality combined with (21) and (28) leads to 
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In summary, we conclude from (31) that 

( )22 2
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u u C u
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Differentiating both side of Equations (1)3 with respect to t, then multiplying 
both sides by tθ  and integrating hold  
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Next, multiplying (32) by ( )1
1 1u C− +  and using (33) we get 
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2 221 2 1 2
1

d 1 1 .
d t t tLL L

C u C u C u
t

ζµ ρ ψ ρ+ + ∇ ≤ +      (34) 

Multiplying in by t, then by means of the Gronwall’s inequality and (18) we 
arrive at (30). We complete the proof of Lemma 2.4. 
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Lemma 2.5 Suppose that ( ), , ,u Pρ θ  and 2T  of Lemma 2.1 and Lemma 2.2 
hold, there exists a constant 0ζ >  for each ( ]0,t T∈  satisfies 
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Proof: Multiplying Equations (1)3 by axθ∆  and integrating by parts, we get 
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2 d

d d

ˆ .

a a

a a a

i
i

x x x x
t

C u x dx C u x x C x x

M

θ κ θ

θ θ θ θ

=

∇ + ∆

≤ ∇ ∇ + ∇ ∇ + ∇ ∆ ∇

∫ ∫

∫ ∫ ∫

∑

   (36) 

We then deduce: 

( )( ) 2
2

2
1 22 22

1
ˆ ,q

a
q q a

L L L
L

M C u x C u xζθ ψ θ∞

+
≤ ∇ ∇ ≤ + ∇ ∇  

( )

( )
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6
666 2

2 2
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42 2

2 2

1 13 22 3 33 32 3

2 22 2

6 2 3 2 22 32 2 2

2 222 2

2 22 2

ˆ ˆ

4

4

1
4

1 .
2

a
aaa

a
a a

LL L

a a
L L

a a aa a a
LL L L

a a
LL L

a a
L L

M M C x ux

C x x

C x C x x

C x x

C x x

ζ

ζ

ζ

θ θ

κθ θ

κψ θ θ θ θ

κψ θ θ θ

κψ θ θ

−

− −−

−

+ ≤ ∇ ∇

+ ∇ + ∆

≤ ∇ ∇ + ∇ + ∆

≤ + ∇ + ∇ + ∆

≤ + ∇ + ∆

 

Substituting the above estimates into (36) gives 

( )( ) 2

1 22 2 2 21 d d d 1 .
2 d q

q qa a a
L L

x x x x C u x
t

ζθ κ θ ψ θ
+

∇ + ∆ ≤ + ∇ + ∇∫ ∫  (37) 

where, we claim that 
( ) ( )( ) ( ){ }1 21 22 2

0 0
exp d .q qq q

q qt tq q
L LL L

u P s u s P C C s sζψ
+ +∇ + ∇ + ∇ + ∇ ≤∫ ∫  (38) 

However, choosing p q=  in ([2] Lemma 2.4), we deduce from (7), (21) and 
Gagliardo-Nirenberg inequality that 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 2 2

2 2 2

2 2 2

22 2 2
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ζ
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−− − − −

∇ + ∇

≤ + ⋅∇ ≤ + ∇

≤ + ∇

 ≤ ∇ + + ∇ 
 

   (39) 

using (18) and (30), we conclude 
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d
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C u s C u s
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ζ

ρ
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ρ

ρ
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− − +
− + − −

−+

− − +
− +− −

∈

∇ + ∇

≤ ∇

+ + ∇

≤ ∇

+ + ∇

∫

∫

∫ ∫

∫

∫

 

{ }

{ }

3 2

3 2

2

2 2
22

0 0

0

exp d 1 d

exp d ,

q q q
t t q q q

t L

t

C C s s s u s

C C s

ζ

ζ

ϕ

ϕ

+ − −
−

+ −
  
  ≤ + + ∇     

≤

∫ ∫

∫

          (40) 

and 

( )
( ) ( ) ( ) ( )( ) ( )

( )

{ }

2 2 2

2 2

2 2

22 2

2 22
0

2 1 2 2 22 2

0

1 12 21 2 2
0 0

2 221 2 2
0 0 0

0

d

d

d d

d d d

exp d .
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t
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q q q q qt
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qt t
t L L

t t t
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t

s u s P s

C s u s u s

u s C s u s

C u s C s u s C s u s

C C sζ

ρ

ρ

ρ

ψ

− − − −

−

∇ + ∇

≤ ∇

+ + ∇

≤ + ∇ + ∇

≤

∫

∫

∫ ∫

∫ ∫ ∫

∫

           (41) 

The desired (38) comes from equalities (39)-(40). Thus, multiplying (37) by t 
and using Gronwall’s inequality, (19), (20), and (38) to deduce 

[ ]
( ) { }{ }2 2

2 22 2
0 00,

sup d exp exp d .
t ta a

L Ls T
s x s x s C C C sζθ θ ϕ

∈
∇ + ∆ ≤∫ ∫    (42) 

Now, combining Equations (1)3, Hölder and Gagliardo-Nirenberg inequality 
that, we acquire 

( )

2 22

42 8 2

42 2 8

22 2 2

2 222

22 4 2

2 42 22 4

2 22 82 21 1 ,
4

t L LL

a a
t LL L L

a a
t LL L L

a
t LL L L

C C u

C C ux x

C x C ux

C C x C u

θ θ θ

θ θ θ

θ θ θ

θ θ θ

−

−

∇ ≤ + ∇

≤ + ∇ ∇

≤ + ∇ + ∇

≤ + ∇ + ∇ + + ∇

     (43) 

which together with (28) gives that 

( ) ( )
22 2

22 22

2 222 2

2 22 82 1 .

LL L

a
t t LL LL

u P

C u C x C u

θ

ρ θ θ

∇ + ∇ + ∇

≤ + + ∇ + + ∇
        (44) 

Finally, multiplying (44) by t , from (20), (30), and (42) we get 
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[ ]
( ) { }{ }22 2

2 222 2
00,

sup exp exp d ,
t

LL Lt T
t u t P t C C C sζθ ϕ

∈
∇ + ∇ + ∇ ≤ ∫     (45) 

which combined with (42) implies (30) and thus finishes the proof Lemma 2.6. 
Lemma 2.6 Suppose that ( ), , ,u Pρ θ  and 2T  of Lemma 2.1 and Lemma 2.2 

hold. For a constant 0C >  dependent on T hold 

[ ]
{ }{ }1 1 1, 00,

sup exp exp d .q

ta
L H Wt T

x C C sζρ ϕ
∈

≤ ∫
 

             (46) 

Proof. The lemma is analogous to that in ([2] Lemma 3.7) and is left to the 
reader. No proof will be given for Lemma 2.7. 

Using the priori estimates given in Lemma 2.1-Lemma 2.6, gives Proposition 
3.1 immediately. 

3. Proof of Theorem 1.1 

Now, combining Lemma 2.1-Lemma 2.6 and using a standard method, we ob-
tain Proof of Theorem 1.1. In this paper, we mainly make prior estimates. The 
other steps are omitted here. 
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