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Abstract

This paper is concerned with the dynamics of a delayed stochastic
one-predator two-prey population model in a polluted environment. We
show that there exists a unique positive solution that is permanent in time
average under certain conditions. Moreover, the global attractively of system
is studied. Finally, some numerical simulations are given to illustrate the
main results.
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1. Introduction

With the rapid development of economy, environmental pollution has gradually
become the major social problem today. With a growing number of toxicant and
contaminants entering into the ecosystem, the quality of our living environment
has declined. Then many species have been extinct, and some of them are on the
edge of extinction. Therefore, controlling environment pollution has become a
major topic in many countries, which draws researchers to investigate the influ-
ence of environment pollution.

In the 1980s, Hallam ez al [1] [2] [3] firstly proposed the deterministic models
to study the impact of environment toxicant on the survival of biological popu-
lation. Their studies have provided useful bases about protecting species for us.
However, population system is often affected by environmental noise, and there
are many scholars who have studied the dynamics of stochastic models with
toxicant [4] [5] [6] [7].

On the other hand, more realistic models of population interactions should
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take the effects of time delay into account [8] [9]. Further, in the natural world,
it is a common phenomenon that a predator feeds on some competing preys [10]
[11] [12]. However, there is little research on the delayed stochastic one-predator
two-prey model in a polluted environment. Thus we consider a stochastic de-
layed one-predator two-prey model with toxicant input in this article.

The rest is organized as follows. In Section 2, we show some notations and in-
troduce a stochastic delayed one-predator two-prey model in polluted environ-
ment. In Section 3, we show that the system (5A4) has a unique global positive
solution. In Section 4, we give the main theorems and their proof. In Section 5,
the attractively global system is investigated. In Section 6, we present numerical

simulations to illustrate our mathematical findings.

2. The Model and Notations

In this section, we will give some notations on stochastic one-predator-two-prey
system. The stochastic predator-prey system in a polluted environment takes the

following form:

dx, (1) =%, (1) ~a,C, (1) e, (t C12X2 )]dt,
dxz(t) X, [—rz—aZCZ(t)+021 —Cyo%, (t)]dt,
(t)=[ —(g,+m,) 1(t]dt, 2.1)
C, (t)=[KkC, (t)—(g, +m,)C, (t)]dt,
C.(t)=[-hC, (t)+u(t)]dt.

The above model does not incorporate the effect of time delay, but for a long
time, it has been recognized that delays can have a complex effect on the dy-
namics of a system [9] [13]. In the same time, the natural growth of many popu-
lations is inevitably affected by many random disturbances. Considering the ef-
fects of random disturbances, we assume the growth rate of prey and the death

rate of predator are perturbed with

n—>r+4B(t),i=123.

where B, (t)(i=12,3) is mutually independent one-dimensional standard
Brownian motions with B, (0) =0 and g > O(i :1,2,3) being the intensities
of white noises. Stochastic version corresponding to deterministic system with

time delays can be rewritten as:

dx, (t) =% (t)[ 1, —a,C, (t) -, (t)—cpX, (t—7)]dt+ B,x (t)dB, (t),
dx, (t )= X, (1)1, —2,C, () + €y, (t=7) =X, (1) |dt + By, (t)dB, (1),
t)=[kC, (t)—(g, +m,)C,(t)]dt, 2.2)
dc (t =[kC,(t) —(g2+m )C, (t)]dt,
)=[-hC, (t)+u(t)]dt.

In past few decades, delay population systems with one predator and two
competing preys have received great attention and have been investigated widely.

However, as far as the authors concerned, no one has yet explored the preda-
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tor-prey system with time delays and toxicant inputs in the same time. Therefore,
on the basis of article [14], we establish the following delayed stochastic
one-predator two-prey model in a polluted environment:

[rl_a'.lc t)_cllxl(t)_clzx2(t_le)_cl3X3(t_Tl3):|dt+ﬁlxl(t)dBl(t)'
)[r —8,Cy (1) = Cpy X, (=75 ) = CppX, (1) = CpaXs (=75 ) ]t + B,X, (1) dB, (1),

dxl (t

)=%
d, () = x

(t) X ( )[ Co (1) +CyyX, (t =75y ) +Cyp X, (=735 ) — CaX, (1) |t + B, (1) dB, (1),
o (t)=[kC +p19ﬂ/k —(g,+m)C, (t)]dt,
C.(t)=[-hC, (t)+u(t)]dt.
(2.3)

with initial data
%(0)=¢(0), 0e[-7,0], r=max{z}, i,j=123,

where X (t) is the size of the the prey j, i=1,2, and X,(t) is the size of the
predator; I is the growth rate of the /the species, =12, I, isthe death rate
of the predator; C; is the intra-specific competition rate, i=1,2,3. ¢, and
C, stand for the inter-specific competition rates between species 1 and 2, Cj,
and C,; stand for the capture rates, C;; and C;, are the efficiency of food
conversion. C,(t) and C,(t) denote the concentrations of the toxicant in the
organism of species and the environment at time ¢ respectively. @ stand for
dose-response of the prey and predator to the organismal toxicant, and —(;
and —m, denote the excretion and depuration rates of the toxicant, i=12,3,
respectively. k; and p; represent the absorption of toxicant per unit of mass
by the environment and by food, respectively. @ is the concentration of tox-
icant in the environment; [ is the uptake rate of food per unit mass. Parameter
h reflects the ability of the environment to clean up toxicant. u(t) denotes the
exogenous rate of toxicant input into the environment and it is supposed to be
bounded and 0<U, <u(t)<U, <. All coefficients mentioned above are posi-
tive constants. 7; >0 represents the time delay.
5(6’)2(51(9),52 (9),53(9))T €U, where U represents the space of all the
continued functions from [-7,0] to R®= {X = (X, %, %) € R® |xi >0,i=1, 2,3} .
Although the model is a five-dimensional system, because the explicit solu-
tions of the latter two equations are easy to get, it is actually only necessary to
study the first three stochastic differential equations of the model, which is called
model (SM) in this paper.

For the sake of simplification, we define some notations:

2
b.=r—ﬁ—‘,|_12 b_r+ﬂ3
2 2

di =b -aCp 1=1,2,3, A=yl +C;iCypb, —C1yCxob,

2

G 6 )2 Ci G G
2

r= Cx r ﬂz/z’ C= Cy Cyp  Cyls
2

€y N ﬁs /2 Gy —Cxp G
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dy, (t)

n Co G Cu o G Cu Ci n
C.=|n, Cp Cyuls Co=[Cy L Cyuls Cy=|Cy Cx |

—f —Cyp Gy —C; T Gy —Cy G G

ﬂlz / 2 ¢, Cg Ciy ﬂlz / 2 cp C Ci ﬂlz / 2
él = ﬂzz /2 Cpp Cyfs éz =|Cx ﬁzz/z Cas|» 63 =€y Cp ﬁzz/z :

Jis / 2 —Cp Cy €y B / 2 Cy €y —Cy, S / 2

For a function g; we denote the following notations:

jg s)ds, g(t) —Ilmsup jg s)ds, g(t), = liminf = jg

t—>o

3. Existence and Uniqueness of the Global Positive Solution

In order to make the model be sense, we need to show the solution is
non-negative and global.

Lemma 3.1 ([15]) For model (2.3), if 0<k, +p0B/k <g,+m, U,<h,
then 0<C,(t)<1, 0<C,(t)<1.

This paper assumes that condition 0<k +p68/k <g,+m, U, <h is al-
ways true in model (2.3), then the solution process of model (SM) should be

non-negative.

Lemma 3.2 For any initial value &(6 ) (§ ( )& (0).& (9))T € R?, there is
a unique global positive solution (Xl( t)) € R3 a.s.. Moreover, there
is a positive constants k such that
IimsupE(xi (t))sk, i=12,3. (3.1)
t—owo

Proof. Consider the following system:
dN, (t):[rl—alc0 (t)—c,eM —ceM2) _ Mol }dt+/31dBl (1),
dN ( ) |: aZC (t)_021eN1(t—121) _szeNz(t) —C23e 1 (t-723 :|dt+ﬂ2dB ( ) (3.2)
dN, (t) = [—rs —a,C, (t)+Cye™ () ¢ et ) g Mol } dt + A,dB, (t).
with initial value N, (9) =logé (9),i =1,2,3. Since the coefficients of (3.2) obey
the local Lipstchiz condition, then (3.2) has a unique local positive solution

N(t) on [O,Te), where 7, stands for the explosion time. Hence it follows

from It6’s formula that (SM) has the following unique positive global solution
x(t)= (x1 () =e",x, () =e"W x, (1) = ") )T :

Now we show that x(t) is global, ie, 7, =c. Consider the following sys-

tem:

=Y (t)[ﬁ _aico (t)_011Y1 (t)] dt +:81y1 (t)dBl (t)’

dy, (t) =y, (t)[ r, —a,Cy (t) =Y, (t) ]dt + By, (t)dB, (1),

dy, (t) =Y, (t)[_rs -3,C, (t) +Cau Yy (t - 731) +CsYs (t — T3 ) —CsY; (t)] dt+ By, (t)st (t)
(3.3)
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Y1 (t):

Y, (t)=

ys (t) =

with initial value vy, (9) =¢ (0),i =1,2,3. By the stochastic comparison theo-
rem [16], one can see that for t<[0,7,),
X (t)<y(t), as., i=123.

Thanks to Theorem 4.2 in [17], system (3.3) can be explicitly solved as follows
exp{dit+ 5B, (t)}

yt (O)+cnj';exp{dls + BB, (s)}ds ’
exp{d,t+ ,B, (1)}

v, (O)+c22j; exp{d,s+ 5,B, (s)}ds ’
exp{—dgt +.[;(cgly1 (S—75)+CypY, (5—75))ds + BB, (t)}

y,"(0)+ c33j; exp{—d3s [ (Gl (U=751) + Cip ¥, (U =155 ) ) du + BB, (5)}ds

Note that Y, (t),y,(t) and y,(t) areexistenton t>0,hence 7, =+o.

Before we state the main theorem of this paper, we need to introduce several
hypotheses.

Hypothesis 1. C>0,C, >0,i=12,3. which imply that all the populations
coexist if model (SM) frees from stochastic noises.

Hypothesis 2. C; >, +C;;,C,, > Cpy +Cpy,Caq > Cyy +Cp .

4. Permanence in Time Average

In this section, we study the permanent in time average of systems (2.3) and
(SM). We firstly do some preparation.
Definition 4.1. System (2.3) is said to be permanent in time average if there

are positive constants S, and V; (i=12,3) such that

v; <liminf X (t)<limsupX (t)<s, i=1,23.

t—>o

holds for any solution (Xl (t),X2 (t),X3 (t)) of system (2.3) with initial condi-
tion &(t)={(&(1).&(1).&(t)):—r <t <0} e C([-7,0]:R?).

Lemma 4.1 ([18]). Suppose X(t) be a continuous function from Qx[0,+00)
to R, .

1) If there exist constants 4,4, >0 and T >0 such that

log x(t) < lt—%jéx(s)dwéﬁiBi (1),

for t>T, where B;(t) are independent standard Brownian motions and J,

are constants, 1<i<n, then we have:

X <A/%, as., if 120,
1Iimx(t)=0, as., if 1<0.

2) If there exist positive constants 4,4, and T'such that

logx(t) > lt—ﬂoj';x(s)dSJriZ:ﬁiBi (®),

DOI: 10.4236/jamp.2019.710154

2269 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2019.710154

M. W. Lietal.

for all t>T, where B;(t) are independent standard Brownian motions and
p. areconstants, 1<i<n,thenif 1>0,wehave X. > /1/2.0 ,a.s..
Lemma 4.2 For arbitrary 7>0, we have

im[' y,(s)ds=0, as. i=12 (4.1)

tow t-7

Proof. Consider the first two equations in model (3.3). By [19], we have

A a . B
lim=| y (s)ds=— as., ifb >, i=12,
fim= ], (s) . 25

B
limy, (t)=0 as., ifb, <5 i=12.

Consequently, if b < ﬂiz / 2, then

lim [ y, (s)ds = lim 1(J'; Y, (s)ds—f;_r y, (s)ds) = 0.

t—+oo f -7 to+oo {

If b > f?/2,then

lim 2"y, (s)ds = lim %(f; yi(s)ds—[ "y, (s)ds) I Y

to+oo § -7 —>+0 Cii Cii

We now consider the following stochastic equation with delays

dy, (t) = o () (1 ~Cuys (1) dt + AdBy (1) ],

dy, (t) = ¥, (1)[ (1, ¥, (1)) dt+ B,dB, (1) ],

dy, (t) =y, (t)[(—r3 +Cy Yy (=751 )+ Cap Yo (=75 ) — G Y5 (1) ) dt + B,0B, ( )]
Y, (t)=&(t)eC([-7.0];R,),

Y, (t)=&(t)eC([-2,0];R,),

¥ (t) =4 (t) € C([-7.0:R.)

(4.2)
Lemma 4.3 Assume that b >0,b, >0 and
Cyub, /C,y + b, /C,y —b, > 0, then the solution of (4.2) has the following proper-

ties:
. b . _ b, . _ A
limy, (t)=—, limy,(t)=—, limy,(t)= ,
o 1() Cyp 2() Cp 3() C11C5Cq5
logy; (t
Iim%'()zo, as. (i=1,2,3).
t—wo t
Proof. The solution of (4.2) has the property that ([4])
logyi(t) o by
fm—— =0 Im%(6)=_- (43)
By Itd’s formula, we get
log y, (t)-log y; (0) = bt —Cuf; y,(s)ds+ 4B, (1), (4.4)
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log y, (t)-log y, (0) =b,t - czzj y,(s)ds+4,B, (1), (4.5)

log y; () - log y;(0)
= bt+c3lj Y, (s— r3l)ds+c3zj Y, (s—15)ds— c33j y;(s)ds+ 5,B, (t)

t 4.6
:_b3t+calj Vi (s ds+cazj Y, (s)ds— cg3j y;(s)ds— cMUﬂyl(s)dS (4.6)
—le Vl(s)dS]—csz [ i, va(s)ds=[' v, (s ds}r £:B, (1),
Dividing both sides of (4.4), (4.5) and (4.6) by ¢, one can see that
0] /318 BB(Y)
Y () + (4.7)
Lo 93,0) =b, —c, ¥, (t)+
1 Y2 (t) _ _ - ﬂsz (t)
" log Y,(0) =b, —c,, ¥, (t)+ t (4.8)
1, ys(t)
=lo
t gYs(O)

— — — C
= by + 5 ¥, (1) + €50V, (1)~ Cs ¥ (t)_%[f_m Yi(s)ds— I y1 ds] (4.9)

_Cﬁ[-‘t%zy s)ds - J' Y, (s ] Py 3()

t

And it is well known that

_Bi(1) .

!'mT:O' as., i=12,3. (4.10)
Utilizing Lemma 4.1, b, = rl—ﬂlz/ZZ 0 and b, =, —ﬂ;/ZZO, it is easy to

derive that

lim= jyl —L as. (4.11)

t~>oot cll
And

1.t b
lim= s)ds=—2, as.. 4.12
towo { oyz( ) Cyy ( )

Plugging (4.11), (4.12) into (4.7), (4.8), respectively, then combining (4.10)

leads to

lim log i’l(t) -0, as. (4.13)
and

!L@M =0, as.. (4.14)

Besides, computing (4.7)xC,,Cy; +(4.8)xC;;Cy, +(4.9)xCy1C,, , One can derive
that
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CpCar 1 V(1) Cn o Vo (D) | GGy Ya(t)
lo log + log

t 1(0) Y, (0) t Y3 (O)
C1 C,,C. 0
C14CpCap [ N 731 )ds—J:T31 yl(S)dS}
C C,,C.
11v22732 t 132 dS Im yz ds}

= Cala {bl —Cu% (t) +ﬂITI()} +C1Cyp {bz -CpY, (t) + Pe Btz (t)}

PiB; (t)}

t

+CCp |:_b3 + C3171 (t) + Cszyz (t) - C3373 (t) +

= CZZC3lb1 + C11C32b2 - Cllczzbs - C11(:2203171 (t) - C11022032 72 (t)
AiBy(t)
t

+C11C5Ca Y (t) +C1C5C3 Y, (t) —C11C5C3Y3 (t) +CpCyy ———

5,8, (1) . BB (t) (4.15)

C11C31 t + 1¥22

v BB (1 B,B, (t B, (t
=A—C1yCpCsYs (t)"‘czzcm%()"‘cncal 2 t2( )+011C22 : ts( )

In view of (4.1), (4.13), (4.14), (4.15) and Lemma 4.1, we can gain that

limy, (t)=0, as., if cyyb /e, +c5b, /c,, —by <O,

A . (4.16)
tl'ﬂltj Ya (s 011022033 , as., if cyb /e, +¢5,b,/c,, —by 2 0.
By (3.11)-(3.16), we have
lo t
IimM =0, as.
tow t
This completes the proof.
Lemma 4.4 For arbitrarily 7>0,
I 1.t ds =0
th;fIt-r y;(s)ds=0, as.. (4.17)

Proof. From Lemma 4.3, we can see that either limy, (t)=0 or
t—0

IIm I y3 dS =a (aconstant).

If tILrst( )=0, then

lim= .[ s (s)ds =lim=> (f ys (s s—J';_Tya(s)ds)zo, as..

tooo f It

If Ilm J' Y5 (s)ds =a, then it is easy to see that

1t At
lim= Y3(3)d3=!L“jO¥(JOYs dsj Yy (s ds) 0, as.

t—o t t-z

This completes the proof.
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Lemma 4.5 For any initial data

£(t)={(&(1).&(1).&(t)): —z <t <0} e C([-7,0];R? ), the solution
(Xl (t), X, (t), X (t)) of system (SM) has the property that
% (1) <y (), as. for i=123.

where (yl (1), (t), Ys (t)) is the solution of system (4.2).

%0
dz, (t) = d[ﬁ} = {—ﬁ][q —CuX (1) =CpuX, (t—173,)
ek (t-n) ]+ A }dt_idsl(t)

Proof. Let z,(t)= . Then, by 1t&’s formula, we have

x(t) % (1)
_|: I _Clzxz(t_flz)_QBXS(t_Tlg)}dt+ A dt- A dB, (t)
X

O = %) % (1) O %(0)

[(2 )z (0 +es - Az (t)dsl(t){"lzxzxft(t‘)fﬂh613X3Xft(t‘)’13>}dt

[(ﬂf - ﬁ)dt - pdB, (t)} z,(t)+ [011 + Clzxle(t(t_)rlz) + C13X3Xl(t(t_)T13)Jdt.

This is

dz1<t>=[<ﬂf—n)dt—ﬂldBl(t)]zl(t){cnﬁzxz <“T12>+°13X3<t—%)]dt

% (t) % (t)

Then

2

2
I[[&’rles’ﬁldBl(s) X, (t— C.X (t— IS{"r&}dHﬂdEﬁ(f)
Zl(t):eo 2 1 +J~; Cll+C12 2 112)+ 15% (t—735) el 2 ds

(
% (0) % (t) % (t)

ﬂlz—r - -
=e[7 1]1 A1) 1 +It(%+cux2 (t—rlz)Jchx3 (t—z’l3)Je{l
% (t) % ()

N ‘.FN

]wldms)
ds

r—ﬁ s+/AdBy(s)
[7—&]‘-51(131(‘) 1 ‘ [1 z] Ay .
>e WJr_[Oclle ds|=y;'(t).

By Lemma 3.2, we obtain that y, (t) is the solution of the following equation
dy; (1) = v, () (.~ .y (1)) dt+ BB, (1) ]
Hence, we have
x (1) <y (1), as.

In the same way, we can get
X, (t)<y,(t), as.

On the other hand, let Z(t)= . Then, by It6’s formula, we derive that

1
X (t)
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o <
o}

[(,33+r) (t)+ 033—031x1(t )2 (t)—chxz(t—rm)zS(t)}dt
+ Bz, (t)dB (t)
:[(ﬂ§+r3 Ca, (t— f31)_c32x2(t_f32))dt+ﬁ3d53(t)]zg(t)+c33dt.

We then have
1 [&4.@}4,5333() Ca1J ¥ (5—731)ds—cgp [ %o (732 )ds
z,(t) = e
%(0)
" [%32”3}(1 )+ (B (t)-Ba(s))~Can [y (U731 )du—Ca; J; X (u=rzz )
+cy [ ds

1 [ﬂi”s}”ﬂsBs t) a1 [ V1 (5731 )ds—Cap Jo Yo (5732 )ds
e

{ﬂi“’s J(t s)+/33 (B3 (t)-Bg(5))~Car s v1 (u—ra1 )du—cap g Y (u-732 )du

+c33j e ds

=Y, (1)

Therefore

X (1) <y, (t), as.
By Lemma 3.2, we know that Y, (t) is a solution of the following equation
dy, (t) =y, (t)[(—r3 +Cyy ¥y (t =75 )+ Cop ¥, (t— 75 ) — Cig Y5 (1)) dt — B,0B, (t)]
Hence the proof is completed.
Lemma 4.6 The solution X(t) of (SM) satisfies
Iirtniuplog X (t)/t<0, as, i=1,23. (4.18)

Proof. We know that either lim y;(t)=0,as. or lim= Iy, s)ds=a con-
stant, 1=12,3.1If tIimyi (t):O,then

limsuplog x; (t)/t <limsuplog y; (t)/t <0, as..
t—o0

t—>o

If lim= .[yl ds—a constant, similar to the proof of [20], we have

t~>oc
limlog y, (t)/t=0,as..
Hence limsuplogx (t)/t <limsuplogy, (t)/t =0,as.. The proof is com-
pleted. o o

Based on the above discussion, now we show the main results in this sectionm
Theorem 4.1 Assume that I'>0 and C, / C, >1, then for any initial data

&(t)= {(ffl (1).&(t).&(t):—r<t< O} eC ([—z—,O]; Rf), the solution
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(X1 (t), %, (t), X (t)) of (§M) has the following properties:

lim>[*x (s)ds= ¢ -G
C

t—>o t J0 !

, as., i1=123.

Proof. Let (y1 (t), Y, (t), Y, (t)) be the solution of system (4.2). By Lemma

4.5, we obtain

t+r

t+7
) xl(s—r)ds<t y,(s—7)ds
t B t '
Since
t+7
s—r)ds
|imM:0_
t—oo t
Then
t+7
" x(s-7)ds
t —
lll_)ng——O- (4.19)
Similarly,

IHTXZ(S—r)dS ijgl(s—r)ds

H t _ H t _
lim—=——=0, lim 0 e
It can be straightly shown by Lemma 4.3 that
log x; (t) o log y; (t) _
(f S!Lrgfzo, i=123. (4.21)
Applying It6’s formula to (SM) results in
X (t t t
log (0) =bt—c, [ % (s)ds—cy, [ %, (s—7,)ds
%(0) (4.22)

_clSJ'; X (s—75)ds+ BB, (t),

X, (t
log : (1 :bzt—Cle;xl(s—TZl)ds—CZZJ;xz(s)ds
% (0)
. (4.23)
—Cys [ X (5=75)ds + B,B, (1),
Iogx3—(t):—b3t+c31j;xl(s—131)ds+c32ﬁxz(s—rgz)ds
% (0) (4.24)

—csSJ-; X, (s)ds + ;B (t).

Dividing both sides of (4.22), (4.23) and (4.24) by time £ one can obtain that

1. (1) _ _ -y, BB
~log——==b - t)— t)— t)+——=
9% (0) by =% (1) = 6%, (1) ~ 0¥ (1) + =
C t 0
+%DHIZ X, (s)ds—L12 %, (s)ds} (4.25)
C, t 0
+T3Ut-fn x3(s)ds—.[_r13 x3(s)ds},
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L ox ) ) ~ B, (t

flog xzz((o)) =b, ;% () %, (1) 5% (1) + & t2( :
+%[ :{21Xi(S)dS—J.i21X1(S)dS:| (4.26)

Coa [ ot

+%|:J.FT23 XS(S)dS_J‘*OTB XS(S)dS],

L ot ) B ~ B, (t

¥|Og xj (0)) = b +cy% (t)+C32X2 (t)—C33X3 (t)+ & t3( )
s es] e

0

'[I X, (s)ds— |

t-73; ~732

_Cﬁ[
t

Let m and n satisfy the following system:

{szm —CgN =Gy,
Cy3M+Cy5N =Cys.

xz(s)ds}

Then,

m:%>0, n:—&>0.
Cll Cll
where C; represents the complement minor of ¢; in the determinant
C,i,j=123.
After a simple calculation of (4.25)x (—l) + (4.26)>< m + (4.27) xn, we get
t t t -C
t " x(0) t Tx(0) t “x(0) C; Cy

+i[f_m X, (s)ds - J'_om X, (s)ds}

t
+%[fm X, (s)ds— J'im X, (s)ds}

t
C,yMm

_T[' xl(s)ds—J'0 xz(s)ds}

t-71 —721
_ CysM |:

. J-:_TZS X, (s)ds —.[_Om X, (s)ds]

+C3t—1n[ ' x(s)ds —J'_Ors1 X, (s)ds]

(4.28)

t-731
Substituting(4.18), (4.17), (4.1) into (4.28) gives

l Xl(t) Cl_él _i— ﬂ1Bl(t)_mﬂsz(t)_nﬂaBS(t)
tlog Xl(O)S c. +& c % (t)+ ; - (4.29)

11

For sufficiently large # By C, / C, >2r / B >1, Lemma 4.1 and the arbitrari-
ness of &, we have

.~ C -C
_t S 1 1

, as. (4.30)

Analogously, let M and A satisfy the following system
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Then,

Multiplying both sides of (4.25), (4.26) and (4.27) by m, (-1) and 11, respec-

tively, then adding these three equations, we get

_,.»+_C,-C
X, () s%, as.. (4.31)

Plugging (4.1), (4.17), (4.30), (4.31) into (4.27) results in

1. %(t) Cu(C-C BBt
+log Xj((o))s ! é 3)+g—c33x3(t)+%(). (4.32)
Noting that C, / C, >1. Then an application of Lemma 4.1 to (4.32) yields
that
~ v _C-C
%(t) <= as. (4.33)

Substituting (4.1), (4.17), (4.31) and (4.33) into (4.25) elicits that

%log% Sb, - e, % (1) -2 (CZC_CZ) 5 (Cé_é3) . ﬁlBtl(t)
w82l x(s)0s [, x(s)os]
[ x(s)is— [ x(s)ds]
NGRS YC)

C

for sufficiently large # Hence, we can further get from Lemma 4.1 and the arbi-

trariness of & that

% (t). 2 c o as (4.34)
In the same way, we can show that

- c,-C

X% (1), 2 == as. (4.35)

Substituting (4.34) and (4.35) into (4.27), and then using (4.1) and (4.17),
Lemma 4.1 and the arbitrariness of ¢, we get

- C,-C
% (1), = 3C 3, as.

This together with (4.30), (4.31), (4.33), (4.34) and (4.35), yields

Lt
!Lrﬂf ,Xi(s)ds

_Ci_ci
- C

, as., i1=12,3.
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This completes the proof.
As to model (2.3), by utilizing similar techniques to those employed in the

proof of Theorem 4.1, one can obtain the similar result.

5. Global Attractivity

Theorem 5.1 Let Hypothesis 2 hold, then system (SM) is globally attractive.
Proof. Let ¢; be the cofactor of the ith diagonal element of L., where
Ciz +Ci3 —Cp —Ci3
Le=| —Cu Cu+Cy  —Cy
—Cy —Cp Cay +Cap
Making use of Kirchhoff's Matrix Tree Theorem (See, e.g., [21]), one has
g, >0,

Define

Asa consequence,

129[

=1j

|cu|}E|x % (s)|ds <V (0) <o
Therefore
E|x (1) % (t)| € L'[0,+o0). (5.1)
According to (SM),
E(% (1)) =% (0)+ [;| E(x(s))5 ~aCo () E (4 (5)) - E(x(5))
—clzE(xl(s)xz(s—rlz))—claE(xl(s)x3(s—r13))]ds.
Clearly, E(X1 (t)) is differentiable. By virtue of (3.1),
B, ))5-30 (OE(6 (0) - E (% O
)

dt
Cp E(X, (1) %, (t=735)) = E(%, (t) X (t=1735))

=E(x
<E(% (0)r <5k,
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where K >0 is a constant. Consequently, E(Xl (t)) is uniformly continuous.
In the same way, E(X2 (t)) and E(X, (t)) are also uniformly continuous
functions. By virtue of (5.1) and Barbalat’s conclusion [23], we derive the re-

quired assertion.

6. Numerical Simulations

Now we introduce some numerical figures to support Theorem 4.1 by using the
Euler scheme [24].
Considering the parameters as following:
dx, (t) = (t)[ 0.8—-0.6x, (t)—0.2x, (t —1)— 0.3, (t - 2) |dt +0.3x, (t)dW, (t),
dx, (t) =%, (t)[ 0.8—-0.3x, (t—2)—0.6x, (t)—0.2x, (t —1) |dt +0.2x, (t)dW, (t),
dx, (t) =X, (t)[ 0.8-0.2%, (t—3) - 0.3x, (t —2) - 0.6, (t) ]dt +0.1x, (t)dW, (t).
(6.1)
It is easy to get that:
C =0.1430, C, =0.3340, C, =0.0580, C, =0.3340,
C,, =0.1400, C,, =0.0300, C,, =-0.1400, C,, =0.3000.

Set f32/2=0.0450, 87 /2=0.0200 and p?/2=0.0050. Then by calculation,
we have C, =0.0140>0, C, =0.0074>0, C,=0.0056>0 and
['=4x10"* > 0. Furthermore, C, / C, =59.6429 > 1. Therefore all conditions in

Theorem 4.1 have been checked. Then we have

A 3 c,-C :
tllrﬂof , ¥ (s)ds = =2.3007,
lim "X, (s)ds GG 0.3538,
to+o t 70 C

lim = "%, (s)ds = €:=Cs 5 206s.
t—+o t 70

see Figure 1, which is obtained by applying the Milstein method [25].

Figure 1 shows the simulations of the solutions of systems (SM), besides,
% (t),% (t) and X,(t) are shown in Figure 1. We see that X, (t),%,(t),%(t)
tend to constants, which is consistent with the results of Theorem 4.1. the solu-
tions of systems (SM) fluctuate around a small zone. Thus, we think the system
(SM) is permanent.

Since the parameters given above meet the hypothesis 2: ¢, >¢C,+Cj;,
Cy >C, +Cy and Cyy >Cy +C;y. According to Theorem 5.1, we can get the
system (SM) is global attractively, see Figure 2.

Figure 2 shows the simulations of the solutions of systems (SA4), From Figure
2(a) and Figure 2(b), we can see that the solution of the system is globally at-

tractively, whether with or without random perturbations.

7. Conclusions and Discussions

The dynamic relationship between predator and their preys has been and will

continue to be one of the major themes in ecology due to its importance and
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Figure 1. System (6.1) with A’ / 2=0.045, 3 / 2=0.02 and A / 2=0.005. The red line and purplish red represent two prey

population X (t),

% (t), respectively, the pink line represents the predator population X, (t). The yellow line represents %(t),

the green line represent X,(t) and the blue line represent X, (t). Figure 1(a) and Figure 1(b) represent system with and without

random perturbations, respectively. (For interpretation of the references to color in this figure caption, the reader is referred to the

web version of this article.)
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Figure 2. System (6.1) with &, =0.6>a,, +a,
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=02+0.3=05, a,=0.6>a,+a,=03+0.2=05,

(t),%;(t). The green line represents one prey population

X;(t), The purplish red line represents another prey population X,(t) and the blue line represents one predator population

X (t) . Figure 2(a) and Figure 2(b) represent system with and without random perturbations, respectively.

universal existence.

This paper is concerned with a delayed stochastic

one-predator-two-prey population model in a polluted environment. Firstly, we

show that there exists a unique positive solution in our system. Secondly, the

permanence of this system is investigated. Conditions for the system to be per-
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manent in time average are given. Our main result in part 4 reveals the impacts
of stochastic perturbations on the persistence and extinction of every species.
Finally, our results are confirmed by numerical simulation.

Some questions deserve further explorations. In the first place, it is significant
to study the delay population system with other disturbance, such as Lévy jumps,
or Markovian switching. Another problem is to consider population models
with different functional responses, such as Holling II-IV type and Bedding-
ton-DeAngelis functional response. We leave these investigations for future

work.
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