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Abstract 
Multiply-connected Hall plates show different phenomena than singly con-
nected Hall plates. In part I (published in Journal of Applied Physics and 
Mathematics), we discussed topologies where a stream function can be defined, 
with special reference to Hall/Anti-Hall bar configurations. In part II, we focus 
on topologies where no conventional stream function can be defined, like Cor-
bino disks. If current is injected and extracted at different boundaries of a mul-
tiply-connected conductive region, the current density shows spiral streamlines 
at strong magnetic field. Spiral streamlines also appear in simply-connected 
Hall plates when current contacts are located in their interior instead of their 
boundary, particularly if the contacts are very small. Spiral streamlines and cir-
culating current are studied for two complementary planar device geometries: 
either all boundaries are conducting or all boundaries are insulating. The latter 
case means point current contacts and it can be treated similarly to singly con-
nected Hall plates with peripheral contacts through the definition of a so-called 
loop stream function. This function also establishes a relation between Hall plates 
with complementary boundary conditions. The theory is explained by examples. 
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1. Introduction 

Part II of this paper largely builds on part I, where we studied the stream func-
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tion of plane multiply-connected Hall plates [1]. In part I, we found that in the 
absence of spiral streamlines, the stream function obeys particularly simple rules 
when all boundaries are insulating except for the point-sized contacts. Then the 
stream function is independent of the applied magnetic field and it is linearly 
proportional to the Hall potential. Thus, there is no Hall voltage between points 
on the same current streamline. In the following, we will see that for a large 
group of Hall plates, no classical stream function exists. As a consequence, 
such devices show entirely different behavior with the most striking new fea-
ture being spiral current streamlines. Such spiral current streamlines were 
known in multiply-connected Hall plates where all boundaries were contacts [2] 
[3]. A well-known example of such a topology is the Corbino disk, which max-
imizes the magneto-resistance effect. However, there are numerous equivalent 
shapes—most of them are multiply-connected. This was already known at a very 
early time [2]. In [3], it was proven that there is no Hall voltage between any 
contacts of such a device. In [2], the author explicitly states that in such kinds of 
devices, the equipotential lines remain unaltered by the application of an exter-
nal magnetic field. He also gave a general expression for the magnitude of the 
circulating currents that show up in these devices—we will pick up this thread in 
Section 3 after some basic definitions in Section 2. In Section 4, we discuss the 
converse case, i.e., multiply-connected Hall plates with insulating boundaries and 
point-sized contacts with internal current sources (the case without internal 
current sources was treated in part I). No theory exists on this kind of Hall plates 
so far. Finally, Section 5 summarizes all rules of parts I and II for convenient 
reference. Some symmetries and similarities will become apparent. Appendices 
A and B give analytical calculations of the current density in singly- and doub-
ly-connected regions with insulating boundaries and spiral current streamlines. 
There, current is injected near the center and flows to a point on the unit circle. 
Appendix C deals with a specific detail of reverse magnetic field reciprocity for 
multiply-connected regions in two dimensions. 

2. Assumptions and Basic Definitions 

In this part II, the same assumptions and definitions apply as in part I [1]. Here 
we repeat the important ones. We assume only negative charge carriers. Then 
the Hall effect in a plane Hall plate in the (x, y)-plane with small thickness Ht  is 
described by 

( )2 2
,1

H a
H a

H a zB
µ

ρ ρµ
ρ µ
− ×

= + × ⇔ =
+

Ε Ε B
E J J B J

           
 (1) 

with the externally applied magnetic field ,a a z zB=B n , the specific ohmic resis-
tivity 0ρ > , and the Hall mobility 0Hµ > . a×J B  denotes the vector product 
of J  and aB . This work is limited to the linear case, where ρ  and Hµ  are 
constant versus Ε  and aB . We decompose the potential φ , the electric field 
Ε , and the current density J  into even and odd functions of the applied 
magnetic field. Thereby we hold either the supply current or voltage constant 
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while changing the polarity of the applied magnetic field. 

( ) ( ) ( ), even , odd ,, , ,a z a z a zB B Bφ φ φ= +r r r               (2a) 

( ) ( ) ( ), ,
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, ,
,

2
a z a z

a z

B B
B

φ φ
φ

+ −
=

r r
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 (3a) 

( ) ( ) ( ), ,
even , even

, ,
,

2
a z a z

a z

B B
B φ

+ −
= = −∇

E r E r
E r          (3b) 
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( ) ( ) ( ), even , odd ,, , ,a z a z a zB B B= +J r J r J r               (4a) 

( ) ( ) ( ), ,
even ,

, ,
,

2
a z a z

a z

B B
B

+ −
=
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B B
B

− −
=

J r J r
J r               (4c) 

The odd potential is also called Hall potential. The difference in Hall potential 
at two test points on two contacts is called Hall voltage. The odd electric field is 
also called the Hall electric field. All odd functions vanish at zero applied mag-
netic field due to their definition. We denote all even functions at zero applied 
magnetic fields with an index 0. 

( ) ( ) ( )even 0,0 ,0φ φ φ= =r r r                    (5a) 

( ) ( ) ( )even 0,0 ,0= =E r E r E r                   (5b) 

( ) ( ) ( )even 0,0 ,0= =J r J r J r                   (5c) 

In the entire Hall plate, the electric field vectors E  are rotated by the Hall an-
gle Hθ  against the current density vectors J . From (1), we get ,tan H H a zBθ µ= . 
Inserting (1) for both polarities of the applied magnetic field into (3b, c) and (4b, 
c) gives relations between even and odd vector fields. 

odd odd evenH H aρ ρµ= = + ×Ε Ε J J B                (6a) 

even even oddH aρ ρµ= + ×Ε J J B                   (6b) 

( )
odd even

odd 2 2
,1

H a

H a zB
µ

ρ µ
− ×

=
+

Ε Ε B
J                    (6c) 

( )
even odd

even 2 2
,1

H a

H a zB
µ

ρ µ
− ×

=
+

Ε Ε B
J

                  
 (6d) 

Instead of computing the electric field and the current density directly, one 
commonly uses the electric potential ( )φ r  or the stream function ( )ψ r . 
However, in Section 5 of part I [1], we saw that the stream function works only 
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for a limited class of Hall plates, namely the ones without internal current 
sources: 1

zρ ψ−= − ∇×J n  holds only if d 0s⋅ =∫ J n


 along all loops within the 
multiply-connected domain (see Section 5 of part I). In this part II, we address 
Hall plates with internal current sources and therefore we have to use the poten-
tial φ  instead of the conventional stream function ψ . 

In the stationary case Faraday’s law of electromagnetic induction  
t∇× = −∂ ∂ →E B 0  means that the electric field can be expressed as a gradient 

of a scalar potential φ= −∇E  (cf. (3a)). On the other hand, stationary current 
flow implies that the amount of electricity entering any volume element inside a 
Hall plate must equal that leaving it, thus 0∇⋅ =J . Hereby we cut out all 
current-carrying contacts on the boundaries and inside the Hall effect region 
(see Section 4). Letting nabla operate on (1) and using these results leads to 

0∇⋅ =E . It means that under stationary conditions net charge density vanishes 
everywhere inside a homogeneous Hall plate. From 0∇⋅ =E  it follows the 
Laplace equation 2 0φ∇ =  for the potential. With (2b, c) also evenφ  and Hφ  
are solutions of the Laplace equation. 

3. Plane Hall Plates Where All Boundaries Are Contacts 

On the boundary of a general Hall plate, we distinguish between insulating 
boundaries and contacts. On the contacts, the value of φ  is either forced by ex-
ternal voltage sources or it follows from a fixed current into the contact (either 

supplyI±  in the supply contacts or zero in the sense contacts). On the insulating 
boundary, there is no normal current density and therefore the electric field is 
rotated by the Hall angle against the tangent on the boundary. For the potential, 
this gives an unusual boundary condition ( )tan Hn tφ θ φ∂ ∂ = ∂ ∂  [4]. Here 

nφ φ∂ ∂ = ⋅∇n  means derivation in the direction n  normal to the boundary 
and tφ φ∂ ∂ = ⋅∇t  means derivation in the direction t  tangential to the 
boundary with 1⋅ =n n , 1⋅ =t t , and 0⋅ =n t . The magnetic field dependence 
of the potential enters via ,tan H H a zBθ µ=  in the boundary condition, it does 
not enter via Laplace’s equation. 

Suppose a Hall plate in two-dimensional space with an arbitrary number of 
holes. On its outer perimeter and on the hole boundaries it is bounded by con-
tacts only, having no insulating boundary. If all contacts are tied to voltage 
sources, then the boundary conditions contain no magnetic field dependence 
any more. Thus the electric potential and the electric field in these Hall plates are 
independent of any applied magnetic field. This means: 

0 even even 0φ φ φ= = ⇒ =E E                   (7a) 

0H Hφ⇒ = ⇒ =E 0                    (7b) 

The Hall potential Hφ  and the Hall electric field HE  vanish everywhere in 
these Hall plates. Inserting (7a, b) into (6c, d) and (1) with 0 0ρ =E J  gives: 

0
odd 2 2

,1
H a

H a zB
µ
µ

− ×
=

+
J B

J                       (8a) 
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0
even 2 2

,1 H a zBµ
=

+
J

J                       (8b) 

0 0
2 2

,1
H a

H a zB
µ
µ

− ×
=

+
J J B

J
                     

 (8c) 

It holds odd evenH aµ= − ×J J B . In particular odd even⊥J J  and even 0||J J . We 
can solve (8c) for 0J . Alternatively, from (7a, b) we can simply say 0 =E E  
and replace E  by the left equation in (1). The result is: 

0 H aµ= + ×J J J B                       (9a) 

Therefore 0J  and J  are rotated by the Hall angle and scaled in magnitude. 

2 2
0 ,1 cosH a z HBµ θ= + =J J J

                
(9b) 

This holds inside the Hall plate but also on the contacts. In other words, at 
fixed potentials on all contacts, the current density normal to the contacts at the 
applied magnetic field is smaller by the factor ( )2cos Hθ . We can relate the po-
tentials and currents at all contacts of such a Hall plate via a resistance matrix, 
because the device is electrically linear: due to the superposition principle, the 
potential at any contact is a linear combination of currents at all contacts. Then 
all resistances are proportional to ( ) 2 2 2

,cos 1H H a zBθ µ− = + , which is an even 
function in ,a zB . Consequently, the Hall voltage vanishes also at constant 
supply current of the Hall plate, because it is an odd function in ,a zB  according 
to its definition (2c). This is identical to (7b). Zero Hall voltage was shown by 
Haeusler in his 1967 thesis [3]. With finite element simulations (FEM) it is 
straightforward to verify this on devices with multiply-connected Hall domains, 
where all hole boundaries are contacts on different potential. Then the current 
streamlines show pronounced spirals at large magnetic field (see Figure 1(a) & 
Figure 1(b)). However, the vanishing of Hall voltages also holds for geometries 
where unitary hole boundaries are split in two or more contacts at different po-
tential. These cases are extremely challenging to study with FEM, due to insuffi-
cient meshing at the interface of contacts on the same boundary. 

Furthermore, the electrical equivalent of such a Hall plate with n contacts is a 
pure resistor network with resistors ( )2

,0 cosij ij HR R θ=  between contacts i 
and j with 1 ,i j n≤ ≤  with i j< . ,0ijR  is the respective resistor at zero ap-
plied magnetic fields. This gives a network with ( )1 2n n −  resistors. Hence, 
the electric response of such a Hall plate with n contacts is fully described by 
( )1 2n n −  degrees of freedom. This particular group of Hall plates shows sim-

ple reciprocity, which means that supply current (input) and sense voltage (out-
put) electrodes may be interchanged without any change in the output voltage. 
Conversely, all other Hall plates show reverse magnetic field reciprocity (RMFR 
[5] [6] [7]), which means that current and voltage electrodes may be interchanged, 
provided the applied magnetic field is reversed, too. Therefore, the equivalent cir-
cuit representation of Hall plates with all boundaries being electrodes is a pure re-
sistor network, which does not comprise non-reciprocal elements like gyrators or  
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Figure 1. The same Hall effect region as in Figure 9 of part I, but here all boundaries are electrodes drawn as solid black lines. 1 A 
current is input at the square hole and sunk at the triangular hole. The electrode on the perimeter is grounded for reasons of 
compatibility with Section 4. (a), (b) Current streamlines and cones in grey, potential in identical color map (red means 25.28 V, 
blue means −22.07 V) for , 10H a zBµ =  in (a) and , 10H a zBµ = −  in (b). The red curve is an equipotential line at 1.2348 V. Note 

the different directions of the spiral currents in (a) and (b). ((c), (d)) Current streamlines in red, potential in identical color map 
(red means 0.250307 V, blue means −0.218552 V) for zero applied magnetic field in (c), whereas (d) shows the even current den-
sity evenJ  and the scaled even potential ( )2 2

,1even H a zBφ µ+  at , 10H a zBµ = . The plots in (c) and (d) are perfectly identical. (e) The 

red streamlines and cones denote the odd current density oddJ  and the color map is the potential at , 10H a zBµ = . (f) shows the 

same data as (e) in a different plot: here the lines and cones denote streamlines and orientation of the odd current density oddJ , 
the height above/below the Hall plate and the color-coding denote the potential at , 10H a zBµ = . Obviously, the streamlines of 

oddJ  are closed loops, and each loop has a unitary color at constant height, because the oddJ  streamlines flow along equipotential 
lines. All displayed quantities were obtained in FEM simulations with COMSOL MULTIPHYSICS in a plane conduction model 
with (1). 
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controlled sources [8] [9]. If we supply such a Hall plate with a constant voltage 
source certain potentials will appear at the other (floating) contacts. If we change 
the applied magnetic field the ratios of resistances will remain the same and 
therefore the potentials at the floating contacts will also remain constant. 

What happens if we supply the Hall plate with a constant current source in-
stead of a constant voltage source? Due to the increase of resistances all poten-
tials will rise by the same factor ( ) ( )2 2 2

,cos 1H H a zBθ µ− = + . The Hall plate re-
sponds as if we would have supplied it with a voltage source whose voltage was 
increased by the same factor 2 2

,1 H a zBµ+ . With (8a, b) this means: 

odd 0H aµ= − ×J J B   and even 0=J J 

              (10a) 

( )2 2
even , 01 H a zBφ φ µ φ= = +    and 0Hφ =

             (10b) 

for constant supply current. The tilde refers to the operating condition “constant 
supply current” of the Hall plate with conducting boundaries. In words: under 
constant supply current the even current density is constant versus applied 
magnetic field and the odd current density is linearly proportional to the applied 
magnetic field. We will encounter the same behavior of oddJ  and evenJ  versus 
applied magnetic field in Hall plates with all insulating boundaries and point 
sized contacts with internal current sources (see Section 4). Figure 1(c) & Fig-
ure 1(d) show the identities of even current density and even potential with 
current density and potential at zero applied magnetic field, respectively, ac-
cording to (10a, b). 

The equipotential lines encircle the current input contact if the contact sub-
tends the entire closed boundary of a hole (here we ignore cases where a unitary 
boundary is split up into several contacts). At zero applied magnetic field, the 
current density vector is perpendicular to these loops ( 0× =n J 0 ), but if a mag-
netic field is impressed on the Hall plate, the current density rotates by the Hall 
angle while the equipotential line remains fixed at constant supply voltage. Then 
the component sin HθJ  is tangential to the equipotential loop. We can inte-
grate this current component along this loop L, which gives the circulation Γ  
around the current source. 

d sin d dH z
L L L

s s sθΓ = ⋅ = = ⋅ ×∫ ∫ ∫J t J n n J
  

            
(11a) 

The unit vector t  points in tangential direction along the loop L such that 
the current contact is at its left hand side. The unit vector n  is orthogonal to 
the equipotential lines and points away from the current contact. It holds 

z × =n n t . From (8c) we get: 
2

0 0cos cos sinH z H Hθ θ θ= − ×J J J n               (11b) 

Inserting (11b) into (11a) with 0× =n J 0  gives the circulation: 

supply,0 supply
0cos sin d cos sin tanH H H H H

H HL

I I
s

t t
θ θ θ θ θΓ = ⋅ = =∫ J n



   
(11c) 

Thereby we used the ratio of supply currents with and without applied mag-
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netic field ( )2
supply supply,0 cos HI I θ=  at fixed supply voltage. In the integration, 

we used the fact that the total supply current flows out of the closed-loop L. Note 
that the loop L can be entirely within the conductive region, but it may also 
comprise portions of electrodes in a multiply-connected Hall plate. In the latter 
case, the loop enters and leaves the electrode in stagnation points of the current 
density at zero applied magnetic field (see the red 1.2348 V contour lines in Fig-
ure 1(a) & Figure 1(b)). Non-vanishing circulation means that the current 
streamlines are spirals around the current input electrode whenever there is a 
closed path around it within the conductive region. The same applies to the cur-
rent output electrode (with opposite sign). If the entire outer perimeter is one 
supply contact, the current pattern has only one spiral pattern, otherwise, it has 
two spirals in opposite directions. There is no circulation and no spirals around 
electrodes, where no net current flows in or out. If a floating electrode encircles 
both current input and output contacts the circulation along it vanishes. Then 
this loop L can be split up in smaller loops with branching points being the 
stagnation points of the current density at zero magnetic field, and at least one of 
these smaller loops has non-vanishing circulation. 

At constant supply voltage, the equipotential lines in the Hall plate are also 
constant versus applied magnetic field. With (8b) the even current density is or-
thogonal to the equipotential lines. With (8a) the odd current density is parallel 
to the equipotential lines. Thus, oddJ  flows in closed loops along equipotential 
lines (see Figure 1(e)). Summing up all contributions between two fixed poten-
tials 1 2φ φ<  at constant supply voltage gives with (8a) the respective circulating 
or loop current. 

2 2
, 0

loop,12 odd 2 2
1 1,

2
, 2 1

2 2
sheet1,

d d
1

d cos sin
1

H a z H
H z

H a z

H a z H
H H

H a z

B t
I t s s

B

B t s
RB

µ
ρµ

µ φ φ
φ θ θ

ρµ

 
= ⋅ = × ⋅ +  

−
= ⋅∇ =

+

∫ ∫

∫

E
J n n n

t
       

(12a) 

where the unit vector t  is tangential to the path, z × =n n t , 0 0 ρ=J E , 

0 φ= −∇E , and sheet HR tρ= . Thus, the loop current is finite as long as the 
potentials are finite, but it may grow unboundedly if points 1 or 2 are singulari-
ties of the potential (e.g. if we force current through the device while the input 
contact becomes point sized and identical to point 1 or 2. This is similar to Fig-
ure 7 in Appendix A). With the equivalent resistor network, it holds: 

( ) ( ),0
2 1 supply supply2cos

ij
ij

H

f R
f R I Iφ φ

θ
− = =

             
(12b) 

whereby ( )ijf R  is a ratio of polynomials in resistances of the equivalent resis-
tor network. It has the dimension of a resistance. Points 1 and 2 can be inside the 
conductive region or on the boundary electrodes while the supply current can be 
injected via the same or via other electrodes. Combining (12a, b) gives: 

( ),0loop,12

supply sheet

tanij
H

f RI
I R

θ=
                   

(12c) 
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Hence, the loop current can be smaller or larger than the supply current and it 
grows unboundedly for large Hall angle 90Hθ → ±  . For points 1 and 2 being 
on electrodes we can compute the loop current without knowledge of the geo-
metry or topology, if we only know the equivalent resistor circuit. In Figure 1(e) 
for 1 A supply current the circulating current between both supply contacts di-
vided by tan 10Hθ =  is equal to the supply voltage 2,0 1,0 4.6886 Vφ φ− =  at 
zero applied magnetic field divided by the sheet resistance  

( )loop,12 2,0 1,0 sheettan HI Rθ φ φ= −  (for sheet 1R = Ω ). 
(12c) is essentially identical to (7) in [2], however, Green expressed the loop 

current in terms of the capacitance matrix of the electrode configuration instead 
of its resistance matrix ,0ijR . 

The expression in (12c) is equal to the number of spiral loops of a current 
streamline within an annular region bordered by equipotential lines through 
points 1 and 2 (see also (B6a)). 

4. Hall Plates with Point Current Contacts on Different 
Boundaries or in Their Interior 

In Figure 9 of part I [1], we studied the current pattern and the Hall potential in 
a rectangular sample with three holes—being square, oval, and triangular—where 
all boundaries were insulating and both current contacts were on the boundary 
of the large oval hole. There we noted no current spirals and the current pattern 
was constant versus applied magnetic field. The Hall voltage between points on 
the square and on the triangular hole vanished due to the specific locations of 
these holes. Now we revisit this triply connected Hall plate with insulating 
boundaries, yet this time we place one point current contact on the boundary of 
the square hole and the other point current contact on the boundary of the tri-
angular hole. The current pattern changes dramatically: Figure 2 shows massive 
spirals around both holes with current contacts—admittedly this happens only 
at huge applied magnetic field , 30H a zBµ =  (88.1˚ Hall angle). Moreover, in 
contrast to part I, the current streamlines are not independent of the applied 
magnetic field any more: compare the different streamlines in Figure 2(a) & 
Figure 2(b) for positive and negative applied magnetic field. However, due to 
the principle of RMFR ([5] [6] [7]) there is no Hall voltage between points 2 and 
3, which formerly were current contacts in Figure 9 of part I. This holds for ar-
bitrary applied magnetic field irrespective of the strength of the spirals (a proof 
is given in Appendix C). It also holds, if we move the current contacts arbitrari-
ly along the boundaries of their respective holes (because in part I the Hall po-
tential was homogeneous on all hole boundaries). 

If we shrink all holes with single current contacts on their boundaries we end 
up with a Hall plate where current is supplied at interior points. These arrange-
ments act similar to multiply connected Hall plates even though they might be 
simply connected. As an example Figure 3 shows a circular disk where the cur-
rent is injected in the center point and extracted at the rightmost point.  
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Figure 2. The same Hall plate with insulating boundaries as in Figure 9 of part I [1], but here the point-sized current contacts are 
at boundaries of different holes: Current is input at point 4 on the boundary of the square hole and sunk at point 1 on the boun-
dary of the triangular hole. A point on the perimeter is grounded, but no current flows into this ground node. Both figures show 
current streamlines in grey color and Hall potential according to the color map (red means 0 V, blue means −30 V): (a) for huge 
positive magnetic field , 30H a zBµ = , (b) for huge negative magnetic field , 30H a zBµ = − . The Hall voltage between points 2 and 

3—which were current inputs in Figure 9 of part I—vanishes in spite of the complicated spiral current pattern. The Hall potential 
along all hole boundaries is not constant. Also, the Hall potential is not constant along the current streamlines. Two arbitrary 
streamlines are shown in red to guide the eye. They swirl in opposite directions around the current source and their sense of di-
rection also changes with the sign of the Hall angle. All displayed quantities were obtained in FEM simulations with COMSOL 
MULTIPHYSICS in a plane conduction model with (1). 

 

 
Figure 3. Circular Hall disk with current input in the center point and current output at the rightmost point. The leftmost point is 
grounded. Results are of 2D FEM simulations with COMSOL MULTIPHYSICS. All figures show current streamlines in red with 
the stagnation point labelled “S”. The color-coding gives the electric potential in Figures (a), (b), (d), (e), (f) and the Hall potential 
in (c) (blue means negative, red positive values). 
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The leftmost point is grounded. This is similar to a Corbino disk but with 
point-sized instead of extended contacts. The analytical calculation is done in 
Appendix A. The figure shows the current streamlines, the potential, and the 
Hall potential at various magnetic fields as obtained by FEM simulations. Ob-
viously, the Hall potential in Figure 3(c) is not constant along the current 
streamlines and the current streamlines are not constant versus applied magnetic 
field (compare Figures 3(d)-(f)). The current spiral around the inner current 
contact is infinitely strong with an infinite circulating current around the point 
current contact even at very small applied magnetic field (cf. Appendix A). 

How can we explain this new phenomenon of spiral current patterns and the 
fact that current streamlines change with applied magnetic field in contrast to 
our findings in part I? Apparently, it has something to do with internal current 
sources. However, there are no spirals if current input and output are on the 
boundary of the same hole as in Figure 9 of part I. On the other hand, the case 
of Figure 3 can be regarded as a single point current contact on a hole boundary 
in the limit of vanishing hole size. Thus the communality is that spiral current 
patterns are a product of internal hole boundaries being current sources or sinks. 

In the case of non-zero net current through a hole boundary it is obvious that 
the stream function ψ  has a problem, because in Section 5 of part I, we saw 
that ψ  is constant on insulating boundaries between contacts, and it jumps 
across a contact by the amount of current through the contact (see (18) in part I). 
If the net current through all contacts on this boundary differs from zero the 
stream function faces a dilemma: it is forced to change also somewhere in-between 
two contacts. So the entire concept of a stream function crumbles. 

Let us recall from part I that the stream function is proportional to the vertical 
magnetic field zH  caused by the currents ,x yJ J  in an infinitely thick Hall 
plate with 0z∂ ∂ = . However, a stationary magnetic field due to a current 
makes sense only when this current flows in a closed loop. If the loop is opened, 
we will have 0∇⋅ ≠J  at its ends and this violates Maxwell’s first law 
∇× =H J  because 0∇⋅∇× =H . This is explained in [10] and it seems to ad-
dress our problem particularly well. In Figure 9(a) of part I, we were inexact, 
because we did not show the full current loop, i.e., how the current flows from a 
battery to the current input contact and from the current output contact back to 
the battery. Yet it is simple to add some curve through the big hole and insert a 
battery along this path (see Figure 9(b) of part I). Then the zH  field will have 
the same value within the hole at the RHS of this curve as it has on the right 
segment of the hole boundary. Also left of this curve the value of zH  will be 
identical to the one on the left segment of the hole boundary (see the blue and 
red hatched portions of the hole in Figure 9(b) of part I). zH  is discontinuous 
on infinitely many points, namely across the current return path. Luckily, these 
points are outside the conductive region. In these points zH  jumps by 

supply HI t . Left and right of the current return path zH  must be constant be-
cause the thickness of the Hall plate is infinite (according to our 2D assumption 
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0z∂ ∂ = ) and there are no currents flowing inside the hole region except along 
the arbitrary current return path. Also in Figure 6 and Figure 7 of part I, we can 
close the current loops—there they can be closed outside the perimeter of the 
conductive regions. Therefore they add constant zH  outside the conductive re-
gions. Hence, we did not miss these return paths when we discussed the stream 
function inside the conductive region. Finally, apart from the current return 
path—ψ  is constant outside the conductive regions and inside the holes, and 
this agrees with the familiar notion =J 0  there. In fact, this is even a simple 
explanation why ψ  is constant on a hole boundary without current contacts: it 
is constant there because inside the entire hole constantzH =  because no cur-
rent flows inside the hole region. 

The situation is different in Figure 2 and Figure 3. There we cannot close the 
current loop without cutting through the conductive region. We cannot solve 
this problem by pulling current straps out of the (x, y) drawing plane because the 
Hall plates are supposed to be infinitely thick for our zH  versus ψ  analogy in 
part I [1], we are not allowed to work with 3D tricks in a 2D world. Hence, the 
return current path goes right through the conductive region and this will affect 

zH  and ψ  there, too. Such a return current sheet will make zH  disconti-
nuous at infinitely many points in the conductive region.  

On the other hand, ignoring the current return path altogether gives wrong 
results for zH  and ψ , as the following example illustrates. Suppose an infi-
nitely long hollow cylinder along z-direction. The cylinder consists of poorly 
conducting material like most high mobility semiconductors. No magnetic field 
is applied. The cylinder bore is clad with a perfectly conducting contact and also 
the outer surface is clad with the same material. If we tie one contact to ground 
and apply a voltage to the other contact a radial current density will result 

1
rr−∝J n . This is an infinitely thick Corbino disk at zero applied magnetic fields. 

What is the magnetic field generated by the current density? Solving Maxwell’s first 
equation ∇× =H J  gives ( )arctanz y x=H n , but also ( )arctanz x y= −H n  
is a solution. Thus, the solutions are discontinuous on x- and y-axes, respectively, 
and the solution is not even unique. Moreover, from physical intuition, we can 
consider a thin circular disk with radial current density. It will have only azimu-
thal magnetic field: CW above its top surface and CCW below its bottom surface. 
If we pile up an identical second circular disk the azimuthal fields of both disks 
cancel at their interface. Piling up infinitely many of them will cancel out the 
field in all test points. In the end, there is no (!) magnetic field caused by this 
current distribution—which of course contradicts Maxwell’s first equation 
∇× =H J  (current must always be accompanied by a magnetic field). What 
went wrong? The current loop was not closed. In reality, currents need to flow in 
both contacts parallel to the cylinder axis. Both currents vary versus z. The cur-
rent on the inner contact generates an azimuthal magnetic field on its own 
within the conductive region. This cannot be handled in a 2D model. A complete 
3D model must account for the vertical current component (see [11] [12]). 
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To sum up, there exists no stream function, if the electrodes in a 2D conduc-
tion problem are placed in such a manner that the current return path via the 
battery cuts through the conductive region. If both supply contacts are on the 
same boundary we can add a current return path outside the conductive region 
or inside a hole. Then the current density is equal to the curl of a unique mag-
netic field perpendicular to the plane of conduction. This is the stream function. 
It is continuous in nearly all points, i.e., in all points with exception of a finite 
number of points (namely a finite number of point supply contacts on the 
boundaries). Then we can interpret ψ  as a current potential function. Conversely, 
problems like in Figure 2 and Figure 3 have internal current sources, i.e., single 
supply contacts on boundaries or within the conductive region. For them, we 
cannot close the current loop outside the conductive region or inside a hole in a 
2D analysis. These current patterns are not identical to the curl of a unique ver-
tical magnetic field. 

In order to reconcile 0∇⋅ ≠J  with Maxwell’s first law ∇× =H J  we may 
add an extra current density eJ  (inside the Hall effect region, not outside) 
which closes the current loop. From Maxwell, we know that every closed current 
loop is accompanied by a magnetic field H , whereby the current density is the 
curl of H . 

e e∇× = + ⇒ ∇⋅ = −∇ ⋅H J J J J               (13) 

Note that eJ  may be a continuous function (as below in (14a)) or a discon-
tinuous current return sheet (as in Figure 7(b) and Figure 9(b), both in part I 
[1]). In both cases, the zH -component has the physical meaning of a magnetic 
field generated by e+J J  and with (11) in part I the stream function also speci-
fies e+J J  via 1

e zρ ψ−+ = − ∇×J J n . Of course, this procedure helps us only 
in the calculation of the current pattern e+J J  and not for the original J . But 
if eJ  is known a priori, we can simply subtract it from e+J J  to get J . In 
the following, we will use eJ  which is not known a priori, but which has a cer-
tain relation to J . This will help us to break up the original problem into 
smaller sub-problems by decomposition of J  into evenJ  and oddJ . 

If we choose ( )e a= − −J J B , contacts connected to current sources are no 
sources for the e+J J  vector field, although they are sources for the J  vector 
field. Therefore we may write according to (8) in part I and with 2e odd+ =J J J . 

odd odd ,oddd 0 z z
C

s H⋅ = ⇒ = ∇×∫ J n J n


            (14a) 

The meaning of (14a) is: Since oddJ  is a vector field free of sources, its flux 
through any closed contour C in the multiply-connected Hall plate vanishes, and 
therefore oddJ  can be expressed as the curl of a magnetic field ,oddz zH n . The 
label ,oddzH  is used to discriminate it against zH  in part I [1]. (14a) holds for 
Hall plates with both point-sized and extended contacts. With (14a) we can de-
fine a so-called loop stream function loopψ  analogous to the conventional 
stream function ψ  of part I. 

loop ,oddzHψ ρ= −                      (14b) 
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Analogous to part I, loopψ  is constant along the streamlines of oddJ , and 
therefore odd loop 0ψ⋅∇ =J . Without internal current sources—like in part I—

loopψ  vanishes because then the current density is independent of the applied 
magnetic field: ( ) ( ) odd 0− = ⇒ =J B J B J . The definition implies that loopψ  is 
an odd function of the applied magnetic field. Hence, loopψ  depends on aB  
whereas ψ  in part I was constant w.r.t. aB . oddJ  is linked to oddH  via (14a) 
and therefore odd∇× =J 0 . Hence loopψ  fullfills the Laplace equation and it is 
constant on all boundaries without current contacts, because there is always a 

oddJ -streamline that flows along such a boundary. If we insert (1) into (3c), we 
get with (2a-c) and (14a, b): 

( )2 2
, even , loop1H z H a z H a zB Bφ µ φ µ ψ ∇ = − × ∇ + + ∇ n         (15a) 

These are the Cauchy-Riemann differential equations. It means that the function 

( )2 2
, , , even , loop1R H I H H H a z H a zF iF i B Bφ µ φ µ ψ = − = + + +        (15b) 

is analytical. We call it the complex Hall potential ,R HF  because its real part is 
the Hall potential Hφ , whereas the complex potential RF  in (21) of part I has 
the potential φ  as its real part. (15b) differs from ,oddRF  in (22) of part I only 
in the term with the loop stream function. Therefore (15b) is a generalization of 
(22) in part I, because loopψ  was zero there. Hence, both ,R HF  and ,oddRF  are 
odd in ,a zB . (15a) is equivalent to 

( )2 2
, even , loop1z H H a z H a zB Bφ µ φ µ ψ×∇ = ∇ + + ∇n .          (15c) 

If we integrate the odd current density oddJ  traversing a contour (extruded 
into thickness direction) that starts at point 1 and ends at point 2 we get with 
(14a, b). 

2 2

loop,12 odd loop
1 1

2
loop,1 loop,2

loop
sheet sheet1

d d

1 d

H
H z

tI t s s

s
R R

ψ
ρ

ψ ψ
ψ

= ⋅ = ⋅ ×∇

−−
= ⋅∇ =

∫ ∫

∫

J n n n

t
            

(16) 

If points 1 and 2 are left and right of a point current contact on a boundary, it 
holds ( ) ( )2 2

1 1
d da as s⋅ = − ⋅∫ ∫J B n J B n . Inserting this into (16) shows that loopψ  

is also continuous on boundaries with point current contacts, whereas in part I 
ψ  was discontinuous there. On extended contacts loopψ  has identical values at 
both ends, but it varies along the contact. If points 1 and 2 in (16) are point 
supply contacts on different boundaries, loop,12I  is the total circulating current 
that flows in the Hall plate. It can be smaller or larger than the supply current 
and it can even become infinite (see Appendix A). In the absence of internal 
current sources, i.e., when both point supply contacts are on the same boundary, 
the circulating current vanishes, because then the loop stream function vanishes. 
If we use Maxwell’s law in the quasistatic case d 0⋅ =∫ E s



 at positive and neg-
ative applied magnetic field and subtract both equations it gives d 0H ⋅ =∫ E s



 
(see (3c)). Inserting (1) gives the circulation Γ  of the odd current density oddJ  
if the curve C encircles the current input contact. 
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( )

odd , even

supply
, even odd ,

d d

d

H a z
C C

H a z H a z
HC

B s

I
B s B

t

µ

µ µ

Γ = ⋅ = ⋅

= + ⋅ =

∫ ∫

∫

J s J n

J J n

 



          

(17a) 

In (17a), we were allowed to add oddJ  in the integrand because integration of 

odd ⋅J n  over a closed path gives zero according to (16). The circulation of a 
specific pattern of spiral current streamlines is computed in Appendix A. Note 
that the circulation in (17a) is identical to the circulation in Hall plates where all 
boundaries are contacts (see (11c)). On the other hand, if we use even d 0⋅ =∫ E s



 
and (1) and (14a, b) it follows: 

even d 0
C

⋅ =∫ J s


                       
(17b) 

With even odd= +J J J  and (17a, b), it is clear that the circulation of J  is 
equal to the circulation of oddJ . Spiral current streamlines appear only for 

odd ≠J 0 . Therefore we have no spirals in the absence of internal current sources 
like in part I [1], where it holds odd =J 0  (because J  was independent of aB ). 
Conversely, in the case of internal current sources there are also no spirals at 

a =B 0 . Thus, it needs applied magnetic field and internal current sources to 
produce circulating current. Thereby it is irrelevant if the internal current 
sources are embedded in the conductive region or if they are on boundaries of 
holes in the conductive region. The method of Corbino images from [13] is also 
a way to prove that the circulation around single point contacts is given by (17a) 
and that it vanishes when both supply contacts are encircled. In [13] this method 
was used for conductive regions with one boundary, but it can also be genera-
lized for more boundaries (like ring domains) if one uses a superposition of infi-
nitely many images [14] [15]. 

Inserting the right hand sides of (3b, c) into (6d) and eliminating the vector 
product by use of (15c) gives: 

( )even even , loop
1

H a zBφ µ ψ
ρ
−

= ∇ +J
                 

(18) 

In (18), the terms in the brackets act like a potential, which fulfills the Laplace 
equation because of 2

even 0φ∇ =  and 2
loop 0ψ∇ = . On the boundary even ⋅J n  

is given – it is zero at the insulating boundary and it is a Dirac delta pulse of 
strength supply HI t±  at the point-sized supply contacts. However, evenρ− ⋅J n  
is the normal derivative of the bracket term in (18), which is a von Neumann 
boundary condition that does not depend on the applied magnetic field. There-
fore the term in the brackets of (18) does not depend on the applied magnetic 
field. Yet, at , 0a zB =  it is equal to 0φ  (up to an arbitrary additive constant) 
and therefore 

0 even , loopH a zBφ φ µ ψ= + .                    (19) 

In (19), we implicitly assume the arbitrary additive constant in loopψ  such 
that loop 0ψ =  in the ground node where it holds 0 even 0φ φ= = . On the other 
hand, we want to interprete loopψ ρ−  as the magnetic field ,oddzH  caused by 
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oddJ . Since oddJ  vanishes outside the perimeter of the Hall plate, also 

,odd 0zH =  there. Therefore we have to ground a point on the perimeter of the 
multiply-connected Hall plate. 

(19) in (18) with 0 0ρ =E J  gives: 

even 0=J J                           (20) 

which is identical to (10a) in Section 3 (both times the Hall plates are supplied 
by constant current sources). (19) can be seen as an alternative definition of the 
loop stream function, being the negative increase in even potential divided by 

,H a zBµ . Since loopψ  does not change along any hole or perimeter boundaries, 

even 0φ φ−  is also homogeneous there according to (19). With (19) we can elimi-
nate the even potential in (15b). 

( ), , , 0 loopR H I H H H a zF iF i Bφ µ φ ψ= − = + +
             

(21a) 

( ), 0 loopH z H a zBφ µ φ ψ∇ = − × ∇ +∇n
               

(21b) 

Curves of constant Hall potential are orthogonal to curves of constant 

, 0 loopH a zBµ φ ψ+ . 
Next, we compute the Hall electric field perpendicular to an insulating boun-

dary from (6a) with odd 0⋅ =J n  and with (20). 

, 0 , 0
H

H H H a z z H a zB B
n
φ

φ ρµ ρµ
−∂

⋅ = − ⋅∇ = = × ⋅ = ⋅
∂

E n n J n n J t
     

(22) 

Thus, the Hall potential is a harmonic function, which satisfies von Neumann 
boundary conditions with values that are linearly proportional to applied mag-
netic field. Therefore Hφ  is perfectly linear in ,H a zBµ  (the same applies to 
Hall plates with insulating boundaries and point-sized contacts without internal 
current sources, see part I [1]). With (21a, b) it follows that loopψ  is also per-
fectly linear in ,H a zBµ . Therefore, also oddJ  is linear in ,H a zBµ  (see (14a,b)). 
Consequently, the total current pattern 0 odd= +J J J  is not constant versus 
applied magnetic field – which is in contrast to the Hall plates discussed in part I. 
Therefore, in the case of internal current sources the current density depends on 
the applied magnetic field even if the contacts are only point-sized. This explains 
the different streamlines at positive and negative magnetic field in Figure 2(a) & 
Figure 2(b). At positive Hall angle they go counter-clockwise (CCW) around 
the current input at the square hole and clockwise (CW) around the current sink 
at the triangle. At negative Hall angle the directions of the spirals are inverted. 

From (19) it follows that even 0φ φ−  is proportional to the second power of 

,H a zBµ . In other words, ( ) ( )2
even 0 ,H a zBφ φ µ−  does not depend on the applied 

magnetic field, and since it is equal to ( )loop ,H a zBψ µ  it is constant on all 
boundaries. Moreover, ( ) ( )2

even 0 ,H a zBφ φ µ−  is a solution of the Laplace equa-
tion. Consequently, ( )loop ,H a zBψ µ  is linearly proportional to the potential 0φ  
of the very same Hall plate with the same supply current into the same supply current 
contacts but all boundaries are conducting (like in Section 3) instead of insulating. 

loop 1 , 0H a zc Bψ µ φ= 

                     (23a) 
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In (23a), we chose the arbitrary additive constant of 0φ  being a solution of 
the Laplace equation such that 0 0φ =  where loop 0ψ = , i.e., the electrode being 
the perimeter must be grounded. The constant 1c  follows from the circulation. 
Inserting (23a) into (17a) gives: 

0
odd 1 ,

supply
1 0 1

H

d d

tan d tan
t

H a z
C C

H H
C

c B s

I
c s c

φ
µ

ρ

θ θ

∇
Γ = ⋅ = ⋅

= − ⋅ = −

∫ ∫

∫

J s n

J n





 



            

(23b) 

Setting this equal to (11c) gives: 

1 1c = −                           (23c) 

(23a, c) relate the loop stream function in a multiply-connected Hall plate 
with insulating boundaries to the potential at zero applied magnetic field in the 
same Hall effect region, yet with all boundaries being electrodes. Therefore, on 
the contacts loopψ  is a function of the resistors ,0ijR  of Section 3. We do not 
even need to know the geometry of the Hall plate to compute it—it already fol-
lows from the equivalent resistor circuit ,0ijR  at zero applied magnetic field for 
the Hall plate with all boundaries being contacts. Inserting (23a) into (16) with 
points 1 and 2 being negative and positive supply contacts, respectively, and 
comparing to (12c) proves that the total circulating current is identical in two 
identical Hall regions with (i) point sized contacts with insulating boundaries 
and (ii) all boundaries conducting, provided the same supply current is injected. 

Inserting (23a) into (21a) gives: 

( ), , , 0 0R H I H H H a zF iF i Bφ µ φ φ= − = + − 
              

(24) 

Thus, the lines of constant Hall potential are orthogonal to the lines of con-
stant 0 0φ φ−  . Therefore, the Hall voltage vanishes, if it is sampled between two 
points on the same streamline of the current vector field 0 0−J J , whereby 0J  
is the current density of the Hall plate with all boundaries being insulating and 

0J  is the current density of the Hall plate with all boundaries being electrodes, 
and both Hall plates are supplied with the same fixed current at zero applied 
magnetic field. 

Inserting (23a, c) into (14a, b) shows that at fixed supply current the odd cur-
rent density in the Hall plate with insulating boundaries is identical to the odd 
current density in the same Hall effect region with all boundaries being electrodes. 

0tanodd odd H zθ= = ×J J n J 

                   (25) 

With (20) and (25) we can express even and odd current densities and electric 
fields via 0J  and 0J , so that from now on we would not need loopψ  any 
more. 

( )0 0tanH H zρ θ= − ×E J J n

                  
(26) 

Integrating the Hall electric field along a path from point 1 to point 2 gives 
with (26): 
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( )

( )
( )

2 2 2

,1 ,2
1 1 1

2

0 0
1
2

0 0
1

sheet 0,12 0,12

d d d

tan d

tan d

tan

H H H H H

H z

H

H

s

s

s

R I I

φ φ φ φ

ρ θ

ρ θ

θ

⋅ = − ⋅∇ = − = −

= ⋅ − ×

= − ⋅

= −

∫ ∫ ∫

∫

∫

E s t

t J J n

J J n







           

(27a) 

where 0,12 0,12,I I  are the currents flowing across a contour that connects points 
1 and 2. Thereby the applied magnetic field vanishes and all boundaries of the 
Hall plate are electrodes (for 0,12I ) and insulating (for 0,12I ), respectively. The-
reby the same supply current flows into the same boundaries. Analogous to (7) and 
(19) in Part I, we can write for the Hall voltage between arbitrary points 1 and 2 

,12 supply sheet ,12 tanH H HV I R G θ=                  (27b) 

with the Hall geometry factor 

0,12 0,12
,12

supply
H

I I
G

I
−

=


                     
(27c) 

Thus, the Hall geometry factor is again (like in part I) a ratio of a current 
flowing across a contour connecting the two point-sized output contacts over 
the supply current, however, here we have 0,12 0,12I I−  in the numerator, whe-
reas we had 12 0,12I I− = −  in part I. Note that in part I point-sized current input 
and output contacts were at the same boundary, which means 0,12 0I = , because 
the electrode on that boundary is a perfect short. Therefore, (27c) is a generali-
zation of (19) in part I. If the points 1 and 2 are on the same boundary the cur-
rent 0,12I  goes continuously to zero as the two points approach, whereas the 
current 0,12 supplyI I=  if a supply contact is between points 1 and 2. This means 
that along boundaries the Hall voltage jumps abruptly across point current contacts 
and it varies smoothly on the rest of the boundary. Due to the subtraction in (27c) 
the Hall voltage along boundaries is smaller in the case of spiral current streamlines 
than in the absence of internal current sources like in part I. (27b, c) also show that 
locations of zero Hall voltage do no change versus applied magnetic field. 

A comparison of this section with the preceding one shows that the Hall elec-
tric field in multiply connected Hall plates vanishes everywhere if all boundaries 
are highly conducting, whereas it is proportional to the applied magnetic field 
everywhere if all boundaries are insulating. 

Figure 4 shows the spiral current streamlines and the loop stream function for 
the Hall plate of Figure 2 with the same current supply contacts: oddJ  flows in 
closed loops around the current contacts while loopψ  is constant on these loops. 
Thus loopψ  is also constant on all hole boundaries and zero on the outer boun-
dary, just as we would expect it for the vertical magnetic field ,oddzH  generated 
by a current vector field oddJ  according to (14a). Figure 5 shows that even 0φ φ−  
is constant on all boundaries. Figure 6 shows that the streamlines of 0 0−J J  
flow along equipotential lines of the Hall potential. 
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Figure 4. The same Hall plate with insulating boundaries as in Figure 2, with the same supply current of 1 A into the same point 
current contacts 4 and 1. The grey lines are streamlines of oddJ . They are not spirals, but closed loops around the holes with the 
current contacts. The grey cones denote the orientation of oddJ . The color-coding denotes the magnetic field ,z oddH  in A/m 

normalized by ,H a zBµ . All results are obtained by three coupled FEM calculations with COMSOL MULTIPHYSICS: two are 

conductive media calculations with the conductivity tensor from (1) for positive and negative applied magnetic field 

, 10H a zBµ = ± . The resulting current density for positive magnetic field is denoted by the components Jx_emdc, Jy_emdc. The re-

sult for negative magnetic field is Jx_emdc2, Jy_emdc2. Half the difference of current densities in these two calculations is set 
equal to ( ) ( )Jx_emdc-Jx_emdc2 2 Jy_emdc-Jy_emdc2 2odd x y= +J n n . The third calculation computes the magnetic field ,z oddH  

in response to oddJ , whereby the boundary condition was “electric insulation” ( , 0z oddH = ) on the outer boundary. The current 

streamlines are identical with the contour lines of ,z oddH . The hole boundaries are also contour lines of ,z oddH  with values of 

6.36, 0.24, −5.45 A/m for the square hole, the large hole, and the triangular hole, respectively. Inside the holes the ,z oddH -field is 

homogeneous. No current flows into the ground node on the perimeter. 
 

 
Figure 5. The same Hall plate with insulating boundaries as in Figure 2 and Figure 4, with the same supply current of 1 A into the 
same point current contacts 4 and 1. The geometry is drawn in black lines. The color lines denote the function  

( ) ( )0 ,loop even H a zBψ φ φ µ− = −  where blue means negative, green means zero, and red means positive (the precise values are given as 

labels). The height above/below the Hall plate also denotes ( ) ( )0 ,even H a zBφ φ µ− . Evidently, the hole boundaries and the perimeter 

boundary are at constant values. The spikes in the current contacts are due to insufficient meshing in these singular points. The two 
lines L1, L2 are virtual lines without physical meaning (compare Figure 9(b) in part I [1]). The results are obtained by three conductive 
media FEM calculations with COMSOL MULTIPHYSICS with the conductivity tensor from (1) for , 10H a zBµ = ±  and , 0H a zBµ = . 
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Figure 6. The same Hall plate with insulating boundaries as in Figure 2, Figure 4 and Figure 5. The grey streamlines 

denote 0 0−J J  and the color map gives the Hall potential at , 10H a zBµ = ±  (red means 0 V, blue means −10 V). (a), (b) 

different point current contacts on the same hole boundaries. The supply current is 1 A. The ground node is a point on 
the perimeter. No current flows into this ground node. Obviously, the streamlines are identical with equipotential lines of 
the Hall potential. The Hall voltage between points 2 and 3 vanishes due to RMFR, because they were current contacts in 
Figure 9 of part I [1] while the boundaries of the square and triangular holes were on the same streamline of J . There-
fore, the color map has identical color at points 2 and 3. The results are obtained by four conductive media FEM calcula-
tions with COMSOL MULTIPHYSICS with the conductivity tensor from (1) for , 10H a zBµ = ±  and , 0H a zBµ =  first with 

insulating boundaries and then with all boundaries being electrodes. 
 

Finally, we briefly mention that there are alternative ways to tackle the prob-
lem of Section 4. Instead of the loop stream function, one could also define a 
generalized stream function Ψ  with: 

0 0 zρ
Ψ

− = −∇×J J n

                     
(28) 

because ( )0 0 d 0s− ⋅ =∫ J J n



 for all closed paths in a multiply-connected 2D 
Hall effect region (compare with (8) in part I). Inside the Hall effect region, it 
holds ( ) ( )1 2 2

0 0 0 0 0ρ φ φ−∇ ⋅ − = − ∇ −∇ =J J  . Ψ  does not depend on the ap-
plied magnetic field. Then we get with (26): 

tanH Hφ θ= − Ψ                        (29) 

where we define =0Ψ  in the ground node. These equations have greater simi-
larity to (13) and (17a) in part I. 

5. A Summary of Simple Rules 

In parts I and II, we derived simple rules to understand the classical (non-quantum) 
Hall potential in thin, plane and homogeneous regions with linear material 
properties. Here we compile them. 

It turns out that internal current sources are a key issue in multiply-connected 
Hall plates. A plane two-dimensional current distribution is free of internal cur-
rent sources if (i) there is no current flowing into or out of any interior point, 
and (ii) if the net current flowing into or out of any closed hole boundary or the 
perimeter boundary is zero. A stream function exists only in the absence of in-
ternal current sources. Conversely, spiral current streamlines originate only 
from internal current sources. However, in this latter case, at least the odd part 
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of the current density can be obtained from a loop stream function. Stream 
function and loop stream function can be interpreted as the vertical component 
of a magnetic field generated by the respective current in the Hall plate with in-
finite thickness. 

Without internal current sources and when all boundaries are insulating 
(apart from point sized current contacts) the current density is constant versus 
changes in applied magnetic field. The Hall potential is constant along all cur-
rent streamlines. Since any closed boundary (hole boundary or perimeter) with-
out current contacts is encircled by a single current streamline, the Hall potential 
is constant on the boundary. Therefore, the Hall voltage between any two points 
on such a boundary vanishes. In all test points, the Hall potential is linearly 
proportional to ,H a zBµ . The Hall voltage between any two points is propor-
tional to the current flowing across a contour between both points. 

If there are no current sources in the Hall plate but at least one contact is ex-
tended, the current density changes versus applied magnetic field. Then, in gen-
eral, the Hall voltage between two points on the same boundary does not vanish, 
even if that boundary has no current contacts. The Hall voltage is not strictly li-
near versus applied magnetic field. At very large Hall angles extended contacts 
become similar to point-sized contacts located at one of both ends of the ex-
tended contacts—which one depends on the polarity of the applied magnetic 
field. Therefore, at very large Hall angles the Hall voltage diminishes if it is 
tapped between points with no current flowing in-between (e.g. on hole bounda-
ries with no contacts). 

If the peripheral boundary and all hole boundaries of a multiply-connected 
Hall plate are electrodes there is no Hall voltage between any points (or contacts) 
of the Hall plate. The device acts like a network of resistors, whose resistances 
are proportional to 2 2

,1 H a zBµ+ . This is the only case when a Hall plate is reci-
procal instead of reverse magnetic field reciprocal. 

If a Hall plate has internal current sources, the total current density changes 
versus applied magnetic field regardless of the size of the contacts. However, in 
the absence of extended contacts at least the even part of the current density is 
constant versus applied magnetic field, whereas the odd current density and the 
Hall potential are linear versus applied magnetic field. Then the odd current 
density is identical to the one in the same Hall plate, yet with all boundaries be-
ing electrodes. Therefore the circulation of the current density does not depend 
on the size of the electrodes. The Hall voltage vanishes between two points on 
the same streamlines of 0 0−J J , i.e., the difference in current densities at zero 
applied magnetic field with point contacts and with all boundaries being elec-
trodes. Along boundaries, the Hall potential jumps across point-sized current 
contacts and if there are no current contacts it varies smoothly according to cur-
rent density flowing through this boundary in case all boundaries were elec-
trodes. If current enters or exits the Hall plate through a point in its interior the 
current streamlines encircle this point infinitely many times even at very weak 
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applied magnetic field and at very small supply current. Then there flows an in-
finite circulating current around this point. However, this applies only to points 
in a mathematical sense (infinitely small ones). Otherwise, if the net current into 
a hole boundary differs from zero, the current streamlines may encircle the hole 
zero times, once, or several (finite) times, depending on the strength of the ap-
plied magnetic field. The current streamlines swirl around internal current 
sources in CW or CCW direction, depending on the polarity of the current and 
of the applied magnetic field and on the sign of the charge carriers. In particular, 
positive and negative charge carriers swirl around a contact in opposite direc-
tions (at identical polarities of current and applied magnetic field). In current 
spirals, the self-field of the current adds to the applied magnetic field construc-
tively if the positive or negative charge carriers flow into the spiral. 

Table 1 gives a survey of the properties of the electric quantities of multiply- 
 
Table 1. Overview of the properties of the electric quantities of thin, homogeneous, plane, multiply-connected Hall plates with 
constant supply current with boundaries being all insulating or all conducting at ,a a z zB=B n  with homogeneous ,a zB . Resistivi-

ty ρ  and Hall mobility Hµ  are constant versus E  and aB . 

Plane multiply-connected Hall plates with constant supply current 

All boundaries are insulating All boundaries are conducting 

Reverse Magnetic Field Reciprocity holds Reciprocity holds 

No internal current sources Internal current sources w/o internal current sources 

even 0=J J  even 0=J J  even 0=J J 

 

odd loop oddz ψ ρ= ×∇ ⇒ =J n J 0  odd 0 oddtan tanH z Hθ θ= × = ∝J n J J 

 

0loopψ =  odd loop loop 0tanz Hψ ρ ψ θ φ= ×∇ ⇒ = −J n 

 

0 z ψ ρ= = ×∇J J n  constant versus Hθ  
0 0tan H zθ= + ×J J n J  changes with Hθ  0 0tan H zθ= + ×J J n J    changes with Hθ  

even 0ρ=E J  
2

even 0 0tan Hρ θ ρ= +E J J  
2

even 0 cos Hρ θ= =E E J  

 

even 0 0φ φ− =  
2

even 0 0 even 0tan Hφ φ φ θ φ φ− = = −  

 

0tan tanH H z Hρ θ θ= × ∝E J n  ( )0 0tan tanH H z Hρ θ θ= − × ∝E J J n

 H =E 0  

tan tanH H Hφ ψ θ θ= − ∝  tanH Hφ θ∝  0Hφ =  

12
,12

supply
H

IG
I
−

=  with 12 12,0I I=  0,12 0,12
,12

supply
H

I I
G

I
−

=


 
,12 0HG =  

ψ  does not depend on Hθ  loop tan Hψ θ∝  
2cos Hφ θ  does not depend on Hθ  

Hφ  and ψ  are homogeneous along 
boundaries without current contacts 

even 0φ φ−  and loopψ  are homogeneous along all 
boundaries 

φ  is homogeneous along all contacts 

Hφ  is homogeneous on streamlines of 0J  
Hφ  is homogeneous on streamlines of 0 0−J J  0Hφ =  everywhere 

( )( )01 tanR HF i iθ φ ψ= + +  ( ), 0 0tanR H H HF iφ θ φ φ= + −   - 

0Γ =  no current spirals supply Htan tH IθΓ =  current spirals w/o current spirals 
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connected Hall plates with constant supply current. Medium-sized contacts are 
excluded. 

6. Discussion 

We found that the boundary conditions have a dominant impact on the electric 
potential in a multiply connected Hall region. The magnitude of the Hall poten-
tial at arbitrary points in the Hall plate depends on the percentage of the total 
boundary covered with electrodes. If all boundaries are electrodes, the Hall po-
tential vanishes everywhere in the Hall effect region, i.e., the Hall effect is inac-
tive. Conversely, if all boundaries are insulating and the contacts are only 
point-sized, the Hall potential is strictly proportional to ,H a zBµ  everywhere in 
the Hall effect region. In both cases, the even current density is not affected by 
the applied magnetic field provided that the Hall plate is supplied with constant 
current. 

A major portion of this work was devoted to multiply-connected Hall plates 
with insulating boundaries and point-sized contacts, for which we developed a 
new theory. In part I, we showed that the Hall voltage vanishes if it is tapped 
between two points on a boundary without current contacts. This is the case in 
Hall/Anti-Hall bars. In part II, we introduced internal current sources and then 
a Hall voltage between the very same taps exists again! 

Our new theory can be applied to Hall plates with anisotropic conductivity as 
it is caused by mechanical stress in a cubic crystal. Then, in a preceding isotro-
pization step, one can replace the original geometry by a distorted geometry with 
isotropic conductivity (see [16] and references therein). This procedure does not 
change the number of holes in a multiply-connected Hall plate. It also preserves 
point-sized contacts and boundaries, which are being entirely covered by elec-
trodes. Therefore, we expect no new phenomena in multiply-connected Hall 
plates with anisotropic conductivity. 

For engineering purposes, the magnitude of the Hall potential is less impor-
tant than its ratio over noise at given impedance level and costs for chip area. 
Under these boundary conditions, Hall plates with peripheral medium sized 
contacts turn out to be optimum [17]. 
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Appendix A 

We compute the potential in a disk-shaped Hall plate with current input at the 
center point and current exit at the rightmost point (see Figure 3). In this case 
there exists no stream function but we can still use the ansatz (A1) of part I [1] 
for the electric potential. 

( )( ) ( )( )0 0 0
1

ln 1 sin cosk k
k k k

k
A r B C A r B r C k kφ ϕ ϕ ϕ

∞
−

=

= + + + + +∑ .  (A1) 

From periodicity, it follows 0 0C = . With (1) the radial component of the 
current density becomes: 

( )
,

2 2
,

1
1

H a z
r r

H a z

B
J

r rB

µφ φ
ϕρ µ

 − ∂ ∂
= ⋅ = − ∂ ∂+  

J n           (A2) 

with rn  being the unit vector in radial direction. The current flowing out of any 
circle with 1r <  around the current input is given by: 

supplydH rt J r Iϕ
π

−π

=∫
                     

 (A3) 

If we insert (A1) into (A2) into the integrand in (A3) all terms except 0A  va-
nish and we get: 

( ) ( )2 2
0 supply sheet ,1 2H a zA I R Bµ= − + π                (A4) 

Next, we evaluate (A2) at the unit circle 1r =  and set it equal to the Fourier 
series of the outflowing current. 

( )
( )supply 2 for

1
0 for

H
r

I t
J r

ε ε ϕ ε

ε ϕ

− ≤ ≤= = 
≤

            (A5) 

With (A2) and (A1) the radial current density at the unit circle still has odd 
terms in ϕ  which have to vanish because the current density (A5) has even 
symmetry. This gives ( ),1 1k H a zC B kµ= − ∀ ≥ . For the other coefficients, we 
get in the limit 0ε →  

( )supply sheet , 1k H a zA I R B k kµ= π ∀ ≥ .              (A6) 

Grounding the potential at the leftmost point finally gives 

( )supply sheet
0 supply sheet

1

1 ln 2
k

k

I R
B I R

k

∞

=

− −
= =

π π∑ .            (A7) 

With these coefficients, the series in the ansatz can be summed up in closed 
form and we can express the potential at applied magnetic field in terms of ele-
mentary functions. 

( ) ( )22 2 2
supply sheet , 2 2

,

1 11ln ln
4 2 4

arctan
1

H a z

H a z

I R B x y
x y

yB
x

µ
φ

µ

  + − +
  = − + +

 π  

+
− 

     (A8) 
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The first two terms give evenφ  analogous to (2b), the third term is the Hall 
potential Hφ  according to (2c). It agrees perfectly with Figure 3(c). evenφ  con-
tains second order terms in ,a zB , which is in contrast to (22) of part I. Con-
versely, Hφ  is linearly proportional to ,a zB , which agrees with the Hall poten-
tial in part I (see (17a) in part I). 

In the above derivation, we differentiated the series expansion of the ansatz 
term wise to obtain (A6). This was not allowed on the unit circle, because there 
the series diverges for 0ε → . The situation improves if we keep ε  finite for 
the boundary conditions and compute 0ε →  afterwards in the potential φ . 
Alternatively, we can simply check if the result (A8) fulfills Laplace’s equation 
and all boundary conditions, which it does. 

The stagnation point of the spiral current streamlines is defined by 
( ), 0S Sr ϕ =J . The radial current density vanishes everywhere on the unit circle 

except at the current contact. The azimuthal current density vanishes also in one 
point on the unit circle which is defined by: 

( ) ,2 2
,

1 1 0 for 1
1 H a z

H a z

J B r
r rBϕ ϕ

φ φµ
ϕρ µ

 − ∂ ∂
= ⋅ = + → = ∂ ∂+  

J n
   

 (A9) 

Inserting (A8) into (A9) gives: 

( )
,

12arctan sgn 2S H H
H a zB

ϕ θ θ
µ

 
= = π−  

            
 (A10) 

In Figures 3(a)-(e) it appears that with increasing Hall angle the current 
streamlines encircle the input current contact more often. However, this is only 
a deception caused by the finite mesh of the numerical simulation as the follow-
ing arguments show. The outmost current streamline flows on the unit circle 
during its last loop (this is the red streamline in Figure 7). If we follow it 
backwards from the current sink towards the input contact, it will cross the neg-
ative x-axis several times: at 0 1 1 2 1 21, 1 , 1 ,x x x= − = − + ∆ = − + ∆ + ∆  . If we in- 

 

 
Figure 7. A simply-connected circular Hall disk from Figure 3(b) with point supply 
contact in its center. Several current streamlines are shown in grey color. The outmost 
current streamline is shown in red: it flows from the stagnation point S in CCW direction 
along the perimeter to the current output contact. 
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tegrate the current density between two neighboring crossings it must give the 
entire supply current. We define the spacing n∆  between n-th and (n + 1)-th 
crossing by 

( ) supply, 0 d
n n

n

x

H y
x x

t J x y x I
+∆

=

= = −∫                (A11) 

with 1n n nx x+ = + ∆  and 1 1x = − . With ( ) ( )supply ,, 0 2H y H a zt J x y I B xµ= = π  
we get after some manipulation 

( )
, ,

2 121 exp expn
H a z H a z

n
B Bµ µ

    − π −− π
∆ = −            

          (A12a) 

1 ,

21 exp
N

N n
n H a z

Nx
Bµ=

 − π
= − + ∆ = −   

 
∑

             
 (A12b) 

This means that the spacing between consecutive loops of the current stream-
lines gets smaller and smaller the more they approach the current input contact 
while the current density goes to infinity. In other words, every current stream-
line encircles the origin infinitely often, regardless if the magnetic field is weak 
or strong. The only difference is that at weak magnetic field the loops are much 
closer to the origin than at strong magnetic field. For a weak magnetic field with 

, 0.1H a zBµ =  one gets 
28 55

0 1 2
82 110

3 4

1, 5.2 10 , 2.7 10 ,

1.4 10 , 7.1 10 , .

x x x

x x

− −

− −

= − ≅ − × ≅ − ×

≅ − × ≅ − × 

 

whereas for a strong magnetic field with , 10H a zBµ =  one gets 

0 1 2 3 41, 0.53349, 0.28461, 0.15184, 0.08100,x x x x x= − ≅ − ≅ − ≅ − ≅ −   
It also means that the current flowing across the line segment defined by the 

points ( ) ( ), 1,0x y = −  and ( ) ( ), 0,0x y =  is infinite even at arbitrarily weak 
non-vanishing magnetic field. A passive device, which is supplied by finite cur-
rent, develops infinite circulating current. The power dissipation is already infi-
nite at zero applied magnetic field due to the point-sized supply contacts, yet it 
has one additional infinite term proportional to the square of ,a zB . 

There is a remarkable difference between zero and non-zero ,a zB . At zero 
applied magnetic field the current streamlines do not encircle the origin. How-
ever, only a minute ,a zB  already changes the pattern of streamlines drastically 
by creating infinitely many spiral turns around the origin. Of course, here we 
face a gap between our simple theory and physical experience, because 
point-sized contacts are only hypothetical and in case of such huge current den-
sities one would have to account for new interactions such as the magnetic field 
of current streamlines on their neighbors. 

This self-field phenomenon was studied in Corbino disks in [11] [18] [19]. 
There it was explained that the self-field adds constructively to the applied mag-
netic field if the charge carriers flow inward, and destructively if they flow out-
ward. This holds for both polarities of charge carriers, current, and applied 
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magnetic field. If the inner contact of such a corbinotron shrinks to zero the to-
tal magnetic field and current near its center are identical to our Figure 7. An 
approximate solution is given in [11]. 

( )0 supply 24
2

, , 1
H I r

sf z a z
rB B
r

µ µ π   ≅ −    
 for 2r r          (A13) 

where ,sf zB  is the flux density generated by the current through the disk (“self 
field”), ,a zB  is the applied magnetic flux density, 0µ  is the permeability of 
free space, and 2r  is the outer radius of the disk. In the destructive case, 

supply 0H Iµ <  the total magnetic field vanishes in the center , , 0sf z a zB B+ → . 
According to Section 2 Hµ  becomes negative for positive charge carriers. In 
the constructive case supply 0H Iµ >  the total magnetic field in the center goes to 
infinity ( ), , ,sgnsf z a z a zB B B+ → ×∞  even if the applied magnetic field is very 
weak and the Hall mobility and supply current are very small. In other words, 
the self-field increases the vorticity around the center contact for the constructive 
case, while it reduces it for the destructive case. In [11] [18] [19] [20], the authors 
discuss if this mechanism can be used in diodes, inductors, and energy storages. 

If the point of the current input contact is not in the origin but somewhere 
else inside the unit disk, we can use a Möbius (bilinear) transformation to con-
formally map the unit disk on itself and the input contact onto the origin. If the 
Hall plate has some other simply-connected shape than a disk, there is always 
some conformal mapping onto the unit disk. If the current output is not on the 
outer perimeter, but also inside the unit disk, we can replace the problem by a 
superposition of two disks, where one disk has a current input contact on the 
unit circle and the other disk has a current output contact at the same location. 
A general formula for all these cases can be found in [13]. 

Appendix B 

If we cut out a circular hole around the origin and inject the current in any point 
on this insulating hole boundary, the current streamlines will not encircle the 
origin infinitely many times any more. The ring-shaped conductive region in 
Figure 8 has an inner radius 1r  and an outer radius 1. Current is injected in 
point ( ) ( )1, ,0x y r=  and extracted at ( ) ( ), 1,0x y = . Point ( ) ( ), 1,0x y = −  is 
grounded. With the ansatz (A1) we get 0 0C =  and 0A  is given by (A4). The 
radial current density has to be an odd function in ϕ  on 1r r=  and 1r = . 
This gives two equations for the unknowns , ,k k kA B C . If we develop the current 
density on 1r =  into a Fourier series like in (A5), we get the third equation. 
We do not compute the limit 0ε →  here, because finite ε  improves the con-
vergence of the series for ( )1,rJ r ϕ= . Solution of this set of three equations 
gives two sets of solutions: 

The first solution is ( ) ( )2
supply sheet ,sin , 0,k k k H a zA I R k k B C Bε ε µ= − π = = − .  

The second solution is ( ) ( )2
supply sheet ,0, sin ,k k k H a zA B I R k k C Bε ε µ= = π = . 

Both solutions do not give the correct radial current density on the inner circle  
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Figure 8. A circular Hall disk with a central circular hole. The hole is ten times smaller 
than the disk. (a) The color mapping shows the Hall geometry factor  

( ) ( ) ( )supply, , tanH H sheet HG r r I Rϕ φ ϕ θ=  (red is +1, blue is −1). Several current streamlines 

are shown in grey color. The outmost current streamline is shown in red. For 

, 10H a zBµ =  it encircles the hole Nturns = 3.665 times. The dashed lines in radial directions 

show that the Hall potential at the unit circle is identical to the Hall potential at the hole 
boundary at fixed azimuthal angle. (b) Close-up of the current streamlines at the input 
contact. The outmust current streamline in red exits the current contact at an angle of 

( )180 119.6turns turnsN N× − =   
 to the hole boundary. The figure shows the balance of 

currents (Kirchhoff’s nodal rule) near the input contact. 
 

1r r= . However, a linear combination of both solutions gives the correct radial 
current density. Thereby the first solution is multiplied by ( ) 1

11 kr
−

+  and the 
second solution is multiplied by ( ) 1

1 11k kr r
−

+ . The last unknown 0B  is ob-
tained by grounding the potential. Finally, we can perform the limit 0ε →  for 
the potential. This gives 

( ) ( ) ( )( )
( )

( )
( )

2 2
1 1supply sheet ,

1 1

1
,

1 1

1 cos1
ln

2 1

sin
1

k k kk
H a z

k
k

kk

H a z k
k

r r r r kI R B
r

k r

r r r
B k

k r

ϕµ
φ

µ ϕ

∞

=

∞

=

 − − − + − ++= − +
π +

+ + 
+ 

∑

∑
 (B1) 

The last term in (B1) is the Hall potential, which is again linear in applied 
magnetic field. The square law dependence of evenφ  on the applied magnetic 
field is identical to Appendix A. On the hole boundary and on the outer peri-
meter it holds 

( ) ( ) ( )supply sheet
1 ,1 sgn

2H H H a z

I R
r r r B ϕφ φ µ ϕ = = = = − π         (B2) 

Obviously, it is not constant versus ϕ  on the boundaries. In 1r =  the Hall 
potentials of Figure 7 and Figure 8 are identical – the hole does not change 
them. Moreover, the Hall voltage between a point on the outer perimeter and a 
point on the hole boundary vanishes, if both points are at the same azimuthal 
angle. With (B1) and (1) we get the odd current density, which flows in concen-
tric circles around the hole. 

( ) ( ), , supply ,
odd2 2

a z a z H a z

H

B B I B
t r ϕ

µ− −
= =

π

J J
J n           (B3a) 
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Both curl and divergence of the odd current density vanish in 0 1r< ≤ : 

odd 0∇⋅ =J , odd∇× =J 0 . Yet, the circulation around the point of current input 
does not vanish: 

( ) supply
odd odd ,d , d H a z

H

I
r r B

tϕ
ϕ

ϕ ϕ µ
π

=−π

Γ = ⋅ = ⋅ =∫ ∫J s n J
        (B3b) 

Equation (B3b) is in accordance with (17a). In this example, Stokes integral 
theorem does not apply odd oddd d⋅ ≠ ∇× ⋅∫ ∫J s J A



, because oddJ  is not conti-
nuous at 0r =  (its y-component jumps from negative infinite to positive infi-
nite along the x-axis through the origin). Note that this singular point is outside 
the conductive region but still inside the closed curve. With (14a, b) the loop 
stream function is 

loop supply sheet ,
ln
2H a z

rI R Bψ µ=
π                   (B4) 

It is constant on the hole boundary and it vanishes on the outer perimeter (= 
the unit circle). It does not depend on the size of the hole. Therefore (B4) also 
applies to the Hall plates of Figure 3 and Figure 7 which have no hole. 

Comparing (B1) with (B4) asserts (19). From (B1) we get 

( )( )supply
0 1 2 2

2 C r S
H

I
rt ϕ= + Σ − Σ
π

J n n
              

 (B5a) 

with the abbreviations 

( )1

1 1

cos
1

kk

C k
k

r r r
k

r
ϕ

∞

=

+
Σ =

+∑  and ( )1

1 1

sin
1

kk

S k
k

r r r
k

r
ϕ

∞

=

−
Σ =

+∑ .    (B5b) 

If all boundaries are electrodes the device is a Corbino disk with current den-
sity at zero applied magnet field 

supply
0 2 r

H

I
rt

=
π

J n

                       (B5d) 

From (B1) we get 

( )supply
,H H a z S r C

H

I
B

rt ϕφ ρµ∇ = Σ + Σ
π

n n               (B5e) 

Finally, with (B5a-e) we see that the gradient of the Hall potential is ortho-
gonal to the streamlines of 0 0−J J , 

( ) ( ) ( )
2

supply
0 0 , 0H H a z C r S S r C

H

I
B

rt ϕ ϕφ ρµ
 

− ⋅∇ = Σ −Σ ⋅ Σ + Σ = π 
J J n n n n

 (B5f) 

and therefore the Hall potential is constant along the streamlines of 0 0−J J . 
With (16) we can compute the total circulating current, if point 2 is at the current 

input and point 1 is at the perimeter. It is equal to ( )loop 1 sheet 1lnr r R rψ− = ∝ . 
Therefore the circulating current is finite for 1 0r >  and it is infinite if the size 
of this hole goes to zero (however, this divergence is only logarithmically and 
therefore weak). Then the loop stream function has an isolated singularity at the 
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central point current contact. We define the number of CCW loops loopsN  of 
the streamlines around the hole by 

( )
1

loop,1 loop,2
loop,12 loops supply

sheet 1

0 d
r

H y
x

I t J y x N I
R

ψ ψ −

=−

−
= = − = =∫

    
 (B6a) 

whereby point 2 is the positive supply contact at ( ) ( )1, ,0r rϕ =  and point 1 
is the negative one at ( ) ( ), 1,0r ϕ = . This gives 

( ) ( )loops , 1ln 2H a zN B rµ= − π                  (B6b) 

In Figure 8(a) the current through the black line L1 left of the hole is 

supply3.664679 I×  for , 10H a zBµ =  and this means that the streamlines encircle 
the hole 3.665 times. The non-integer value comes from the outmost streamline 
(in red color), which flows along the perimeter between the outer stagnation 
point and the current output contact. At the current input contact there is an 
angle of ( )turns turns180 N N× −   

  between this red streamline and the hole 
boundary, and therefore a current equal to ( )supply turns turnsI N N× −     flows in 
the innermost turn of the spiral around the hole (see Figure 8(b)). turnsN    
denotes the truncated value of turnsN . If we start at zero applied magnetic field, 
the tangent on the red streamline in the input contact has positive infinite slope. 
With rising ,a zB  the slope decreases to negative infinite slope. At 

, 12 lnH a zB rµ = − π  its slope jumps to positive infinite again and the game re-
peats until the magnetic field has doubled. Hence, the slope of the tangent jumps 
at integer multiples of ( ), 12 lna z HB rµ= − π  and with every jump the spiral 
grows by one additional turn and the outer stagnation point moves CW from 
180˚ towards 0˚ with decreasing speed (see also Figure 9). 

The spiral current pattern in Figure 9 has two stagnation points, one on the 
outer perimeter and one on the inner hole boundary. Since =J 0  in the 

 

 
Figure 9. The circular Hall disk with a central circular hole from Figure 8. In (a) the ap-
plied magnetic field has exactly such a value that the outmost current streamline (in red 
color) has negative infinite slope at the current input contact. The red streamline flows 
from the input contact CW along the hole boundary to the inner stagnation point Si , 
where it leaves the hole boundary, crosses the annular region until it reaches the outer 
boundary in the outer stagnation point So. Then it flows along the outer boundary CCW 
towards the current sink. In (b) the magnetic field is increased by 5% so that the slope of 
the tangent snaps back to a large positive value and the red streamline encircles the hole 
CCW one time until it meets the inner stagnation point Si from where its journey is iden-
tical to (a). Several other streamlines are shown in grey color. 
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stagnation points, also E  vanishes there and φ  has a saddle point. With 
0φ ϕ∂ ∂ =  and the symmetry of (B1) it follows that the stagnation point on the 

inner boundary occurs at Sϕ ϕ= −  if the stagnation point on the outer boun-
dary is at Sϕ ϕ= . 

With (B6b) we can estimate how small the hole must be that the streamlines 
encircle it at least once: for a magnetic field with , 0.1H a zBµ =  (5.7˚ Hall angle; 
this is a flux density of roughly 0.9 T in low n-doped silicon) the hole must have 
a radius 1r  smaller than 285.2 10−× . It means that for a Hall plate as large as the 
universe the hole must be smaller than 6 cm. If this Hall plate had no hole the 
current spiral around its center point contact would have infinitely many turns 
within a circle with 6 cm diameter but only a single turn outside on its way to 
the end of the universe. If the applied magnetic field is only 100 times larger we 
need a disk of only 11.3 cm diameter with a 6 cm hole to observe one turn of the 
current streamlines. Hence, the effect is extremely sensitive to the strength of the 
applied magnetic field. 

Appendix C 

The principle of reverse magnetic field reciprocity (RMFR) from [5] [6] [7] is a 
very powerful tool, which we used several times. But we have to take care if it is 
valid in two-dimensional (2D) multiply-connected regions, because in [6] [7] the 
authors used 0∇⋅ =J  to prove it for 3D regions, however, in 2D regions with 
internal current sources we have 0∇⋅ ≠J  (see (13)). The two reciprocal oper-
ating conditions are sketched in Figure 10 with positive applied magnetic field 

, 0a zB >  in (a) and negative one , 0a zB <  in (b). Thereby contact 4 is an in-
ternal current source in (b). Following [6] we write 

( ) ( )d da b b a a b b a a b b a

V V

V Vφ φ φ φ∇ ⋅ − = ⋅ − ⋅ + ∇ ⋅ − ∇ ⋅∫ ∫J J J E J E J J   (C1) 

The superscripts a, b denote quantities which occur in Figure 10(a) & Figure 
10(b). With (1) it follows b a a b⋅ = ⋅J E J E  if we use a b

a a= −B B . This is a con-
sequence of the odd symmetry of the resistivity tensor in (1) of part I, which was 
proven under general thermodynamic assumptions in [21] after a long lasting  

 

 
Figure 10. Reverse magnetic field reciprocity principle (RMFR) for a doubly connected plane 
Hall plate with the interior contact 4. In (a) the applied magnetic field is positive. In (b) it is 
negative. In (a) and (b) inputs and outputs are swapped. The output voltage is identical for 
constant supply current, if the perpendicular applied magnetic field changes its sign:  

( ) ( ) ( ) ( )3 4 1 2
a a b bφ φ φ φ− = −r r r r . 
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dispute in the early 20th century [22]. We set  
( ) ( )supply 2 supply 1

a I Iδ δ∇ ⋅ = − − + −J r r r r  and  
( ) ( )supply 4 supply 3

b I Iδ δ∇ ⋅ = − − + −J r r r r . Then (C1) equates to ( )supply 4
aI φ− r . 

Contacts 1, 2, 3 do not contribute to the volume integral, because they are not 
inside the volume but only on its boundary. If a b b aφ φ−J J  is continuously 
differentiable in a neighborhood of the conductive region we can apply Gauss’ 
integral theorem to the LHS of (C1). This gives 

( ) ( ) ( ) ( )supply 3 supply 2 supply 1da b b a a b b

A V

I I Iφ φ φ φ φ
=∂

 − ⋅ = − − − ∫ J J A r r r


 
 (C2) 

whereby contact 4 is not on the closed boundary. Comparison of (C1) and (C2) 
gives the RMFR principle: ( ) ( ) ( ) ( )3 4 1 2

a a b bφ φ φ φ− = −r r r r . 
If contact 4 is not inside the conductive region but on a hole boundary we 

have the same divergence of bJ  as above. Now contacts 3 and 4 are on boun-
daries and so the divergence of bJ  does not contribute to the volume integral, 
however, both contacts contribute to the surface integral. This gives again 

( ) ( ) ( ) ( )3 4 1 2
a a b bφ φ φ φ− = −r r r r . Thus, if we assign contact 4 to the hole boun-

dary its contribution shows up in the surface integral (C2), and if we assign it to 
the interior of the conductive region it contributes to the volume integral (C1), 
but in both cases, we get the same result. Therefore in [5] the author assigned all 
current sources and sinks to the interior. Currents through boundaries were re-
placed by interior point contacts which are infinitely close to the boundary. 

To sum up, the RMFR principle also holds for multiply-connected plane 2D 
regions. 

In a spinning current Hall scheme a Hall plate is operated in a first operating 
phase according to Figure 10(a) and in a second operating phase according to 
Figure 10(b), however, both times the same magnetic field is applied. The out-
put voltages of both phases are sampled and subtracted [23] [24] [25]. The result 
is twice the Hall voltage HV  while any offset voltage evenV  is removed. In prac-
tice this procedure has an outstanding efficiency: it reduces residual zero point 
errors of Hall plates by nearly three orders in magnitude [26] [27]. That is why it 
is used pervasively in contemporary smart Hall sensors for automotive and in-
dustrial applications, exceeding 100 million parts per year. 
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