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Abstract

Considering the mutual interference between species, a stochastic preda-
tor-prey model with impulses and Holling-II functional response is proposed
in this paper. Firstly, by constructing an equivalent system without impulses,
the existence of a globally unique positive solution is proved. Secondly, in
cases of the mutual coefficient m = 1 and 0 < m < 1, by constructing suitable
Lyapunov functional, the existence of T-periodic solution is investigated un-
der some certain conditions. Finally, numerical simulation is introduced to
verify our main results.
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1. Introduction

The interaction between predator and prey has long been one of the themes of
mathematical biology because of the ubiquity and importance of predation. Due
to the imbalance of species in the ecological environment, some species are en-
dangered and many of them have become extinct. Therefore, protecting the di-
versity of ecological species has become one of the main topics in today’s society.
This will inspire more scholars to devote themselves to this research.

It is well known that, in the ecosystem, many factors affect the dynamics of
ecological models. One of the key elements is called “functional response”,
which represents the consumption per unit of time. Holling-II functional re-
sponse is one of the most important functional responses [1]. In the past few
decades, the deterministic predator model has attracted much attention. For

example, Li and Gao [2] introduced the following predator-prey system with
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Holling II functional response:

_ Ty GY
dx_x(r1 b,x 1+det,
(1.1)

C,X

dy = y(—r2 _b2y+1+ det,
where X(t),y(t) stand for prey and predator densities at time # respectively.
Parameters I;,r,,b,b,,c, and C, are positive constants; I, and r, stand for
intrinsic growth rates of prey x(t) and predator y(t) respectively. Parame-
ters b and b, describe the strength of competition among individuals of spe-
cies X(t) or y(t).Parameters ¢, and C, represent the capture rate of pre-
dators and the reproduction rate of converting nutrients into predators, respec-
tively.

However, in order to better describe the phenomenon in population dynamics,
Hassell initially proposed a nonlinear function of the interaction size of species.
He found that as the population grew, the interference became stronger. There-
fore, he introduced the concept of mutual interference constant me (O,l] (see
e.g. [3] [4] [5]). The deterministic predator-prey model with mutual interference
and Holling-II function response can be expressed as

m
ax(t) - x(t)(rl _blx(t)_L(t)]dt,

1+X
(1.2)

() ()-5° 0+ 2y 0
1+x

In recent years, system (1.2) and its various extension forms have been exten-
sively studied by scholars (e.g. [6] [7]).

The growth of species in nature is often restricted by the environment. Be-
cause of environmental fluctuations, the parameters involved in the population
model are not constant, and they may fluctuate around some average values.
Based on this factor, more and more people begin to pay attention to the ran-
dom population system [8] [9] [10]. We assume that environmental fluctuations
mainly affect the internal growth rate r,(t) and the mortality r,(t) of preda-
tors, that is,

n(t) > 6 (t)+oy(t)B(t), —r(t) > -r(t)+o,(t)B;(t).
where B, and B, are independent Brownian motions, o (t)(i=22) de-
notes the intensity of white noise. That is, we consider the following stochastic

non-autonomous predator-prey system with Holling-II functional response and

mutual interference:

dx(t)=x(t)(rl—blx(t)—%)((t)]dt+crlx(t)dBl(t), -

o)~ -3(0-0 0+ L8y 0ot 031008, 0)

1+X
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On the other hand, the life of species often has some big abrupt changes, such
as drought, earthquake, typhoon and other big natural disasters, as well as inter-
ference from human activities, such as large-scale hunting, policy protection, etc.,
which will bring great changes to the number and density of species in a short
period of time. Therefore, the interference of impulses to the model needs to be

considered, and the following model can be established:

o) 5(0) 10 05()- 20 o (518 )

t=t,
dy(t):(—rz(t)y(t)—bz(t)y2(t)+1i2—£t(z)x(t)ym(t)]dtﬂfz(t)y(t)de(t),
x(t;)—x(tk)=akx(tk) kg
y(£)-yt)=ay)]

(1.4)

(t), b(t), c(t) and of(t)(i=12) are positive and continuous
T-periodic functions; and the time sequences satisfies 0<t, <t, <t; <---, and

where T,

I!Lr?otk =400 . In addition, Parameters ¢, [} represent the impulsive effects,
and o, >0, B >0 denote the planting of the species, and if o, <0, B, <0,
then they represent the harvest of the species. From a biological point of view,
we are only looking at the positive solution of this equation. Therefore, it’s a

natural constraint that

1+, >0, 1+ 5, >0, k=123,.-.

For the periodicity, we assume that there exists a positive integer p such that
t, =t +T, ., =a B.,=pB, keZ.Without loss of generality, we as-
sume [0,T)N{t keZ}={t,t, t;-t,}.

From the biological point of view, the population density will change with the
changes of some factors, such as rainfall, drought, plague, which is random. All
the possible outcomes from a set Q with typical element we Q. A filtration
{#},, is the smallest o-algebra & (Q), which contains Q. Throughout this
paper, let (Q, {]—"t} 50 JP’) is a complete probability space with a filtration {]—;}
satisfying the usual normal conditions. (ie, it is increasing and right continuous
while 7 contains all P -null sets), and we define f"=sup_, f(t),
f' =inf_ f(t).

The main purpose of this paper is to study the existence and uniqueness of
global positive periodic solutions as well as the permanence and extinction of
species of system (1.4).

The rest of this paper is organized as follows. In the second part, the existence
and uniqueness of global positive solution are proved. In the third part, we get
that, under certain conditions, system (1.4) exists 7-periodic solution. In the
fourth part, under some conditions, we discuss the stochastic extinction and
permanence of species. In the fifth part, we use numerical simulation to illustrate

our results. Finally we draw a conclusion to conclude this paper.
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2. Existence and Uniqueness of the Global Positive Solution

Definition 2.1 ([11]). Consider the following impulsive stochastic differential
equation (ISDE)

dx(t) = f (t,x(t))dt+g(t,x(t))dB(t),t =t,t >0,

2.1
X(t;)_x(tk):akx(tk)ytZtk,k=]_,2,3,...' (2.1)

with the initial value
x(0)=x% eR".

A stochastic process X(t) = (Xl(t), X, (t),---, X, (t))T te [0,+oo) is said to be
a solution of ISDE (2.1), if x(t) satisfies

1) x(t) is F adapted and is continuous on (0,t;) and each interval
(tote:) keN and f(t,x(t))el(R",R"), g(tx(t))eLl’(R",R");

2) x(t) obeys the equivalent integral equation of (2.1) for almost every
teR, \t, and satisfies the impulsive conditions ateach teR,,keN as;

3) For each t ,keN, X(t;) = lim x(t) and X(t;>: limx(t) exist and
x(tk’ ) =x(t,) with probability one. o o

As to the existence and uniqueness of global positive solution of system (1.4),
we have the following result.

Theorem 2.1 For any initial value (X,,Y,)e€ R?, system (1.4) has a unique
global positive solution (x(t), y(t)) for t>0 and the solution remains in
R, with probability one.

Proof. First, we construct the following stochastic differential equation(SDE)

without impulses:
1

o1, 30 ()2

i

Gt o
1+A1(t)y1(t)A2 (t)y; (t)}“ 1 (8) y: (t)dBy (1),

dy, ()=, (t)[—rz (t)+lez:|n(1+ﬁj)_b2 (O A )y, (1)

c,(t) o .
+WA1 (A () (t)y; (t)Jdt +0,(t)y, (t)dB, (1),

In(1+;)-b (A (D)% (1)

M=

1
AN

(2.2)

with the initial value (y,(0),Y,(0)=(X,Y,)). According to the classic theory
of SDE without impulse, SDE (2.2) has a unique global positive solution
y(t)=(¥,(t),y,(t)) (more details see [11]). Let x(t)=A (t)y,(t),
y(t)=A,(t)y,(t), then we claim that (x(t),y(t)) is the solution of the sys-
tem (1.4).

In fact, it is easy to check that x(t) and y(t) are continuous on (0,t,)
and (tk,tk+l)c[0,+oo),k eN,
and for t=#t, , we have
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dx(t)= A'(t)y, (t)dt+A (t)dy,(t)
A O-BOAORY-1 0 A
+oy (1) A (1) y, (t)dw(t).

Similarly, we have

dy(t):y(t)[—rz(t)—bz(t)y(t)+ (1) x(t)y”‘1(t):|dt—az(t)y(t)dwz(t).

1+x(t)

And for every ke N,

x(tk*)zIimAi(t)yl(t)z(ﬁ(1+aj)]_T IT (e ()= (Leay )x(t,),

X(tl:) :t"jk] Aty (t)= Ai(tk)yl(tIZ) =x(t).
In the same way, we have
y(t)=(1+8)y(t) y(t)=y(t)-

This completes the proof.

3. Existence of Positive T-Periodic Solution

In this section, we give the existence of the positive periodic solution of the sto-
chastic system (1.4) with impulses. For convenience of readers, we first give the
definition of the periodic solution of the impulsive stochastic differential equa-
tion in the sense of distribution and the results of the existence of periodic solu-
tions (see [12] [13]).

Definition 3.1 ([13]). A stochastic process é‘(t) = §(t, a)) is said to be peri-
odic with period 7, if for every finite sequence of numbers t;,t,,---,t,, the joint
distribution of random variables &(t,+h),&(t, +h),---,&(t, +h) is indepen-
dent of A, where h=kT (k=%1%2,---).

Consider the following periodic stochastic differential equation without im-

pulse:

dX (t) = f(t, X (t))dt+g(t, X (t))dB(t),t >0, (3.1)

where ¢ (t, X (t))

g (t, X (t))m are T-periodic in £ Then, It&’s formula can be applied to
F (t, X) where X satisfies (3.1). This yields the stochastic differential for F of
the form

L isa nx| matrix function, f(t,X(t)) and the matrix

oF (t. X (t))=[%'x)+ f(t. X)%;X)%gz(t, x)—azpaf(tz’ X)Jdt
(3.2)

oF (t,X)

+g(tX) aw ().

Lemma 3.1 ([14]). Assume that system (3.1) has a global solution, and there
exists a T-periodic function V (x,t) such that the following conditions hold:
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1) LV (t, X) < -1 on the outside of some compact set, where
2
LV (t,x) = N NV +£gg2
ot ox 2 oX
2) inf‘

(s > X238 R—o0.
Then (3.1) has a T-periodic solution.

According to Lemma 3.1, we can obtain the main result in this section. Firstly,

we can translate system (1.4) into the following two cases:
Case I. When m=1, we have

o) =500 (0B 00 2y ot s 008,

t=t,
dy(t)= y(t)(—rz (t)=b,(t) y(t)+1i2—)gt(?[)x(t)Jdt+O'2 (t)y(t)dB, (t)
X(t)=x(t) = e x(t,) k123
y(£)-vt)=Ayt)] T
(3.3)

Theorem 3.1 Assume that the following assumption hold

(H1): ¢'A) >¢ (1) A (1),
R . u{q(t)—"lf)Hrz(t>+_"22“>Jdt
oy TRT A

+£Zp“|n(1+aj)+lzpzln(l+ﬁj)> 0.
T4 T4

Then system (3.2) has a positive 7-periodic solution.

Proof. We only need to prove the existence of a periodic solution of the
equivalent system (3.3) without impulses as follows:

dy, (t)= v, (t)(rl(t)+_rljzpiln(l+aj)—bl(t)Ai(t)yl (t)

- —Cl(t) + O,
1+A () y.(t) A (1); (t)]dt (1) y; (t)dB (1), o
00,03, 5 0+ F (1,5, 0 A 03, 0
¢ (1)
WLWAl (t)y, (t)jdt +0,(t)y,(t)dB,(t),

The global existence of the solution has been ensured by Theorem 2.1. Then,
we only have to verify the conditions of Lemma 3.1.

Define a C-function V (t, X, y) : Ri — R, asfollows:
V(x,y,t)

_ul ¢ (o x ). oA ] )™
_M{ Iny+r1“+b1“Ai“( In(1+xj+ r2' yH+ o1 +MW (t) (3.5)
=V (% y)+V, (X, ) +V, (1)
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I I
c . 2r,

where p= [—t} , @ 1isa constant such that 0< & < min {1, —22} Parameter
C

2 o;
M >0 will be given later and W (t) satisfies
| 2 t 2 t
Y0 - T A O YR OR) (3.6)
' +b'A’ 2 2
It is easy to check that W (t) isa 7-periodic function. Indeed
W (t +T ) -W (t)
t+T ,
= [ W(s)ds

:_;{ﬁ[q(t)_@}[g(mGiz(t) 1ds

e [ﬁ(q(t)_@}{& (t)+ Uzzz(t)ﬂds

=0.

According to the periodicity of I (t),0;(t),i=12, W(t) is a T-periodic
function. To verify condition (2) of Lemma 3.1, we only need to show that

inf(t,x,y)e[O,Jroo)x(Rz\Uk)V (t, X, y) —Soomas K—>oo.

Here, U, :(%,k}{%,kj. All the coefficients of the quadratic term in

\Y (t, X, y) are positive, thus, condition (2) of Lemma 3.1 is satisfied.
Next we prove condition (1) of Lemma 3.1. By the It&’s formula (3.2), we have

v er ()L G ()XA(L) | o3 (1)
L(~Iny)=r,(t) T;In(1+ﬂj)+b2(t)A2(t)y oA (1 =52 (37)
L(_m(i j
+X
1 12 c (1) YA, (1
=_m{q(t)+?j§_‘1|n(1+aj)—q(t)a(t)x—%
+af t)(1+x—x2)
2(1+x)2
s{rl(t)+_l_léln(l+aj)—Glz(t)}+ﬁ(rl(t)+b1(t)A1(t))
¢ sMyAn 1
2 1+ xA (1) 1+A(t)x
s{rl(t)hrlzp“ln(uaj)—Ulz(t)}cl(t)yAz(t)
= (3.8)
u u u 1 P
+ﬁ|:l’1 +b'A +?§In(1+aj)}.
Using (3.6), (H1) and (3.7), we have
DOI: 10.4236/jamp.2019.710152 2218 Journal of Applied Mathematics and Physics
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()= 5 ) F o)ty 0 0+
G 18 a; (1)
2 (t)+—2|n(1+al—)— H
r +h'A ( i 2 (3.9)
+Mq(%iln(l+ﬁj)y+ql(?;yJ
Cz
M—2 A Tz_;ln(lJra )
where (= +01211A1 CleZ From (3.5) and (3.8), we have
LV, + LV,
12 o) ¢ 12 or (1)
<M (t)- ?Z:; (1+/3j)+ 5 T A (t)+?éln(l+aj)— 5
o3 2 )y o e )21
12 22 t C|2 12
-MA- M{rz—?gln(u/}) 2( )}+Mrl“+bl“A1“?,Z_;ln<l+aj)
M/1+chlxy C
+X
(3.10)

Here, C = MqT2|n(1+ﬂ )y+M blAl TZIn(1+a) and

=1
V, (% Y)

:(x+py)g r(t)x+ lep: (1+a) bl(t)Ai(t)x2+%Zln(1+ﬁj)y

j=1

o 07— 0+ S g g0

L xepy) [0 (02 + P03 ()]

2
u + + + + + 9 + u +
g(x+py)9rlx—b1' |X20_p10r2|y10_p20b£y20 2p10(o_2) yo

+(x+ py){ ZIn(l+a) liln(1+ﬂj)y}+§(q‘])z X0 (3.11)

< -

T
| IX2+:9 1+0 P2 " 2 .
b1A12 _p2 (rl__(o_z)jyle+cl

Cr = SUP y)crt 2 2 2

I Al 2+0 1+0
{—blAlX P (rz'_g(a;)zjyl“’+(x+ py)’ 1

where,

j=1

Pl )| 130 (1+aj)x+%i'n(1+ﬂj)v}}'
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and in (3.11), we use (X+ py)g <x’, (x+ py)g < p?y? in the second inequali-
ty. Then we have
LV (X, y) = LV, + LV, + LV,

oxy BIAXTT Pt 00 12 (3.12)
<-MA+Mg= -2 n-—(o3) |y +C,.

where C,=C+C,.
2 bll IX2+€ pl+0 | 0 . 2 Lo
Let M =zmax{2,sup(xyy)eRE {_T_T rZ_E(O-Z) Yy +C, e

To confirm the condition (1) of Lemma 3.2, we choose a sufficiently small con-

stant & such that:

1+6 I Al
0<g<it P [rz'—g(a;)zj,bl—Al , (3.13)
49 4Mq 2 4Mq
I Al
M- 425}6 +C <1, (3.14)
pl+9 9 " 2

Define a bounded closed set as follows:

D:{(X,y)eRf:SSXS ,E<y<

N |-
N |

Di:{(x,y)eRf|O<XS8}, D! ={(x.y)eR’|0<y<¢&},

Djz{(x,y)e Rflle} Dj={(x,y)eRf|y2£}
& &

>

Denote

Clearly, D¢ =D!UD?UD?UD?.
Now we prove LV (t,x,y)<-1 on each domain.
Case 1.If (t,x,y)e[0,+00)x D;, then it is easy to verify that

X Xy <ey < g(l+ yM), and

1+x
LV (t,x,y)
M A bll IX2+<9 MA pl+6 | 9 " 2 Lo
S-S e e |+ - rZ_E(UZ) +Mae |y

M4 DL A T I
+|:_T+Sup(x,y)eRf{_T_ 2 rz—E(o-z) Yy +C,

M
Combining with the definition of 7/1 >1 and (3.13), we have

I Al 2+6
LV (t,X, y)g_m_bl—xg _MS -1,
4 4 4

Thus, LV (t,X, y)S—l for al (X,y)e Di.
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Case 2. Similarly, for any (X y) e D?, owing to 1& <Xy <ex< g(1+ X2+9)
+X

we have that

LV (t,x,y)

s—%+[—%+ ng}— P (rz' —g(o-;) jy { blAi +qu}

Together with (3.13), we can also get

1+0
LV (t,x,y)< —%— P (rz' —ﬁ(ag )zjy“” <M

4

Thus, LV (t, X, y) <-1 forall (X, y) IS Dg2 .

X
Case 3. Forany (X,y)e D, since 1—y <y, itis easy to have
+X

LV (t,x,y)
A | BA e P O ) o'y
<-MA- ot X0 — - rZI_E(GZ) y19+Mql+x+C2

b A
M/1—4 >0 +C.,.

blAi pl+g | 0 u)\? 1+0 C:{ny
where C_SpryeRz{_TX 2 rz_E(o-z) y Jqum+C2 ,

and we get LV (t,X,y)<-1 in this domain from (3.14).
Case 4. Similarly, for any (X, y)e D}, we have

LV (t,x,y)

<-MA-

I Al u
_bA X2 M ClXy+C2
2 + X

2+6
&

pl+f9 9 " 2
< —M/l—4—(r2' —E(az) +C,.

_ DA 2o P 00wy e c, Xy
where C, SUpréRz{—Tx 7 rZ—E(az) Y MO G

It is clear that LV (t, X, y) < -1 in this domain.

Therefore

LV (t,x,y)<-1, forall (t,X,y)e[0,+0)xDC.

That is to say, Condition (1) of Lemma 3.1 is verified. Thus system (3.2) has a
T-periodic solution. This completes the proof.

Now we’re going to talk about another case.
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CaseILl. If 0<m<1, then we have

dx(t)=x(t)(rl(t)—bl(t)x(t)—lil)((?t)ym (t)jdt+o-l(t)x(t)dBl( ),

t=t,
dy(t)= y(t){—rz (t)—b,(t) y(t)+li2£2) x(t)y™* (t)]dt+02 (t)y(t)dB, (t),
X(t;)_x(tk)zakx(tk) et K123
y(t;)_y(tk):ﬂky(tk) ; o

(3.16)

Theorem 3.3 Assume that the following assumption holds

. :%i{q(t)_@}ﬁ_%}(& (0+@Jdt

0

13 13
+=> In(l+ea;)-=> In(1+3.)>0
T IZ:; ( J) T JZ:; ( ﬂl)
Then system (3.16) has a positive 7-periodic solution.
Proof. We only need to prove the existence of a periodic solution of the
equivalent system (2.2) without impulses. The global existence of the solution

has been ensured by Theorem 2.1. Then, we only have to verify the conditions of

Lemma 3.1.
Define a C-function V, (t,x,y):R2 >R,
V, (t,xy)
! 1-m I 1-m u u
M{bl(Az ) y —Inx+H'?‘2 y]lny+c—2|y+Ai”x+MlWl(t) (3.17)
c, 1-m b, c

Here, H >0 will be given in (3.18), and W, (t) is 7-periodic. Same as case I,
so the condition (2) of Lemma 3.1 is satisfied.
Next, by the Itd’s formula, we show that the condition (2) of the Lemma 3.1.

L(—bllA%m y" ]s bl(Aé_m) y““[r2 (t)—%iln(l+ﬂj)+—maé(t)j

c, 1-m c,

% 2-m I 2—m_ b1IA1|X
’ cy (A7) y 1+ A’

L(=In x)g—(rl(t)+_r£éln(l+aj)—@J+bfﬁ&ux+c1u (Azm)u y".
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L(V)S—bl (57) ( (t )—%éln(uﬂm m"g(t)J

e ]

PO () A (A7)

By Young inequality, there exists a positive constant A such that

L(\?)SH(Azz)' y2+b1“A1“X—[ (t)+ lep‘, n(l+a;)- @] (3.18)

Then
L(\7+ Hb/;; yjSbl”ﬂfx—(ﬁ(t)Jleé'”(l*“i)_@]
TR A B ()
Therefore,
(%)
{blAiX—{f() %]zp;m(lm,-)— f(t)JJr bﬁf%m(uﬂ) 1

b, i=1

b AXE 4+ A x{rlu +T12In(1+o:J )} Clc?z Y|:r2| +b£A£YJ
LV, (t,x,y)
=LV, (X Y)+ LV, (1)

2

Vs t
{MH b’TZT; (1+ﬁj)y+;'—.c;Af(Azm)” Xy”“}—bl'/i'xz

+b;‘A2“y+A1“x{r1” +?Zln(l+a } +B ALY |- M, 4,

ik
H u\" m blAilxz (Az) |
<M {b. A (A) Xy —4 7 o @

where
u u u u u u 1 i bI!AIXZ
Q=SUP(ny)€R3 {M1b1A1X+bzAzy+A1X|:r1 +?;'”(1+“1)} 2

_Cl(AZ) bly2_cllr2IA£y M HAZ-lj:Zln(1+ﬁJ) }

2
2c! cy b =
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2+Q

Let M, = , then —A4M,; +Q =-2. We choose a sufficiently small con-

stant 0 such that

0<s< ﬁ,m,ﬁ , (3.19)
47 4ciM, aM,

b A

45°

o (4)'b]

45°c;

-M4 - +Q <-1, (3.20)

-M, 4, - +Q, <-1. (3.21)

Here

_ BAX (Az)
Q= 2

n +M bﬂ A (M) " +Q,

A G(A) o H
4cy !

Q=27 A (A) 0" +Q.

2

The following proof is similar to the proof of m=1 and is omitted. This

completes the proof.

4. Extinction and Permanence of (1.4)

In Section 3, we showed that under certain conditions, the system (1.4) has a pe-

riodic solution. Because in system (1.4), when 0<m <1 the predator birth rate

C2 X (t) ym—l

is of the form
1+x(t)

when y — 0, provided the prey population exists. So in this section, we will

(t). Therefore, the predator birth rate goes to infinity

show that if the noise is sufficiently large, the solutions to the associated stochas-
tic model will become extinct with probability one when m=1.

Definition 4.1 [15]. Let X(t) be a solution to system (1.4).

1) If I|m X( =0 as, then species X(t) is said to be extinct;

2) If I| J s)ds>0 a.s., then species X(t) is said to be persistent in the
mean.

Theorem 4.1. For any initial value (X,, Y, )< R?, the solution
X(t)= (X(t), y(t)) of (3.2) obeys

_ In x(t) o (t) 12
limsup t < (t)- 12 +?Zln(l+aj)<0,

j=1

: Iny(t) oy (t) 1
!L@SUPTS—G(IFCZ(U— 2 +?§In(l+ﬁj)<0
that is, the solution of (3.2) is extinct exponentially with probability.

Proof. For system (3.2), using the Itd’s formula, we have
P

dinx < (rl(t)+T£ZIn (1+0:j )—@Jduq (t)dB,(t),

=
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and

j=1

dlnys(—rz(t) i n(1+8,)+c, (1) - #]dwaz(t)de(t).

Integrate both sides from 0 to # then we get

x(t)-nx() .2 j( L infera)- 2(5)st+ fou ()08, (1),
Iny(t)-Iny(0)

t

s%i‘{—rz(s) _IJ_'Z (1+ﬂ )+Cz() Gzzs)jds+%i‘gz(t)de(t)-

j=1

t
Let R (t)= Io-i (t)dB,(t),i=12,then P(t) isalocal martingale, and

0
(Uiz )u ds< (O'iz )u t.
By the strong law of martingale, we have

R(t)
Tt

o t—

lim =0 as..

t—>o

Hence we can derive

Iimsupmsrl(t)—@ Zln(1+a )<0 as.

t—>w t 2 i1

limsup

t—>o

In):(t)s_ r, (t)+ XP: (1+ﬁ)+c2() @<0 as.

L
=

LN

Thus, !im X(t) =0, tIim y(t) =0 as.
Theorem 4.2. Assume

i(ﬁ(s)— Glz(s)JdS+T1§p:In(1+aj)> 0,

j=1

2

i[—rz (s)+c, (s)—C)—ZT(S)JdHTléIn(Hﬂj )<0

then the predators of system (3.2) will eventually extinction, and prey popula-
tions go to persistent.

Proof. By Theorem 4.1, we have
! o} (s) 12 .
when [| -1, (s)+c,(s)- ) ds+?ZIn(1+ﬁj)<0,then limy(t)=0 as.

0 j=1

So predators will eventually extinction. Next, we prove the persistence of prey
quantity.
For system (3.2), by It&’s formula (3.2), we have
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d'nx=[r1(t)+$jZ:'n(1+aj)—bl(t)Ai(t)x_Cll(:)XiAz t()t)_afz(t)jdt
+o,(t)dB ().

Integrate both sides of this equation from 0 to #and divide by ¢ then

Inx(t)—Inx(0)

=%§(q(> T i) "122(5)}’ OO

_%;%ds+%iq (t)dB, (1).

%Q(G(s)_%mys:;g(us)—@}m-

By Theorem 4.1, we have

lim

t—o

=0 as.

Jo: (t)dB, (1)
t

Suppose Y(t) isbounded on 4 and lim y(t)=0 a.s, then
t
“mlj'cl(s)y(s)AZ(s)
1+ xA (s)

Then, Equation (4. 1) can be changed to

=_I( st+ ZIn(1+a )_nm jbl A (s)xds.

by ILrgt x(s)dsz_l_i:[[rl(s 012( )Jd +T2In(1+a) >0.

j=1

ds=0.

l—>oot0

So

which shows the number of prey is persistent. The proof is completed.

5. Numerical Simulation

In this section, by using the Higham [16] simulation method, we illustrate our
main results. The red and blue lines represent predators and prey, respectively.

Example 1. Let r(t)=07 , m=1, b(t)=055 , r,(t)=0.09 ,
b,(t)=0.15 , ¢(t)=c,(t)=035 , ¢,=003 , o0,=005 , p=1,
a=p$=001, T=2rn, and initial value (x(0),y(0))=(10.7) . Thus,
A=~021>0,

2n 2 p
J.(rl(t)_612('[)Jdt+_r£z;|n(l+aj)z4.4>0. From Theorems 3.1, we know
j=

0

that system (1.4) has a periodic solution. We use Figure 1 to illustrate this result
(see Figure 1).
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Figue 1. The solutions of (1.4) with smaller white noise , o, =0.03, o, =0.05, (a) the prey is persistent, (b) the predator is per-

sistent, (c) and (d) represent distribution scatter of (1.4).

Example 2. When we let o, =0.82, o, =0.85, and the other parameters are

2n 2 t p
the same as Example 1. we have J{rl(t)— 012( )Jdt +_|_£Z|n(l+ a; ) ~342>0,
0 j=1

T 2 p
j(—rz (t)+c, (t)_azT(t)]ds +lelln (1+8;) = —4.23<0, then Theorem 3.1 and
=

0
4.2 tell us that big white noise intensity can cause the predators extinction. We
use Figure 2 to explain these results (see Figure 2).
Example 3. Set r(t)=05, b(t)=045, r,(t)=05, b,(t)=04,
c,(t)=045, p=1, c,(t)=0.35, o,(t)=1.2, 0,(t)=0.85, a=4=03,
2n

2 P
m=1, T =2x, Thus, we have J(rl(t)—o-lT(t)Jdt+T£Z|n(l+aj)z—0.01> 0,
=i

0

T 2 p
I[—rz (t)+c, (t)_GZT('[)st+$Z;|n(1+ﬁj)z—0.1<0. By Theorems 4.1, we
0 =

can determine that the two species will become extinct (see Figure 3).
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Figure 2. The solution of (1.4) with bigger white noise o, =0.82, o0, =0.85. (a) the prey is persistent in the mean, (b) the pre-

dator is extinction.
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Figure 3. (a), (b): The initial value is (X(O), y(O)) = (1, 0.7) in system (1.4). Two species will become extinct.

6. Conclusions

In this paper, we propose a predator-prey model with impulsive disturbance in a
random environment. We prove that system (1.4) has a globally unique positive
solution and a positive periodic solution. In this article, our results are as fol-
lows:

a) The effects of white noise and impulse interference on the model are con-
sidered.

b) If the impulses are large enough such that the conditions of 4,4, hold,
then system (1.4) has a positive 7-periodic solution.

¢) The main results reveal that large white noise will force the population to

become extinct while the population may be persistent under a relatively small
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white noise.
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