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Abstract 
We investigate the orbital stability of the peakons for a generalized Camas-
sa-Holm equation (gCH). Using variable transformation, a planar dynamical 
system is obtained from the gCH equation. It is shown that the planar system 
has two heteroclinic cycles which correspond two peakon solutions. We then 
prove that the peakons for the gCH equation are orbitally stable by using the 
method of Constantin and Strauss. 
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1. Introduction 

In recent years, there has been great interest in the nonlinearly dispersive equa-
tions for model breaking waves. The first widely studied equation of this kind is 
Camassa-Holm (CH) equation [1]. 

3 2 0t txx x x xx xxxu u uu u u uu− − + + =                    (1) 

for ( ),u x t . This equation arises from shallow water waves theory [1] [2] and 
provides a wave breaking model for a large class of solutions in which the wave 
slope blows up in a finite time while the wave amplitude remains bounded [3] [4] 
[5] [6]. A special class of weak solutions of the equation describes the solitary 
waves at the peaked, called peakons [1] [7] [8], whose wave slope is disconti-
nuous at the wave peak. More noteworthy, the CH equation is an integrable sys-
tem [1] [9] [10], possessing a Lax pair, a bi-Hamiltonian structure, and an infi-
nite hierarchy of symmetries and conservation laws. 

An interesting nonlinear generalization of the CH equation (gCH) 

( )( ) ( ) 2 3 11 11 2 1 2 ,
2 2

p p p p
t xxt x x x xx xxxu u p p u u p p u u pu u u u u− −− = + + − − − −  (2) 
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was discussed in [11]. When 1p = , then Equation (2) is the classical CH Equa-
tion (1). 

Similar to the CH equation, the gCH Equation (2) is also the form of conser-
vation law 

( )1 2 21 0, .
2

p p
t x xx

x

m pu u u u m m u u− − − + = = − 
 

           (3) 

Therefore, integral 

dP m x
+∞

−∞
= ∫                           (4) 

is conserved (under the appropriately asymptotic decay condition on u). The 
other conservation integral is given by the Hamiltonian 

( ) ( )2 21 d , 0.
2

p
xpE u u u x p

+∞

−∞
= + ≠∫                 (5) 

This integral leads to the conservation law 

0,t xD T D X+ =                         (6) 

with 

( )2 21 ,
2

p
xT u u u= +  

( ) ( )( )221 1 ,
2 2

p
t x xX u u u E m D E mδ δ δ δ= − + −            (7) 

where 

( ) ( ) ( )1 1 1 2 21
2

p p
x xxE m E u pu u u u u uδ δ δ δ− − − = ∆ = ∆ − + − 

 
    (8) 

and 21 xD∆ = − . The complete classification of gCH Equation (2) conservation 
laws has been given [11]. 

Without loss of generality, let 2p = , then Equation (2) becomes 

( ) ( )( )2 2 2 0.t txx x xx x
u u u u u u u u− − − + − =             (9) 

Equation (9) has the peakon solution 

( )( , ) e , .x ctu x t c x ct c cϕ − += + = ∈               (10) 

As Constantin and Strauss said in [12], the peakons are solitons and therefore 
their sizes and velocities do not change as a result of collision, so that it is rea-
sonable to expect that they are stable. Because a small perturbation of a solitary 
wave can yield another one with a different speed and phase shift, the appropri-
ate notion of stability is orbital stability. That is, a wave starting close to a solita-
ry wave remains close to some translate of it at all later times. Thus the shape of 
the wave remains approximately the same for all times. The peakons were 
proved to be orbitally stable by Constantin and Strauss in [12]. The approach in 
[13] was extended to prove the orbital stability of the peakons for the other non-
linear wave equations [14]-[25]. The method of proved orbital stable of peakons 
was also extended to periodic peakons [26] [27] [28] [29] [30]. In [11], Anco and 
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Recio obtained an interesting generalization of the Camassa-Holm and 
FORQ/modified Camassa-Holm equations by deriving the most general subfa-
mily of peakon equations that possess the Hamiltonian structure shared by the 
Camassa-Holm and FORQ/modified Camassa-Holm equations. They showed 
that Equation (2) admits peakons. As a special case of Equation (2), Equation (9) 
is a generalized CH equation with cubic nonlinearity. To the best of our know-
ledge, the orbital stability of peakons of Equation (9) is not considered. In this 
paper, we will prove the orbital stability of peakons of the gCH Equation (9). 

Theorem 1 For every 0> , there is a 0δ >  such that if 
[ ) ( )( )10, ;u C T H∈   is a solution to (9) with 

( ) ( )1,0 ,
H

u ϕ δ⋅ − <


                      (11) 

then 

( ) ( )( )
( )1

2
, .

H
u t tϕ ξ⋅ − ⋅− <



                   (12) 

for ( )0,t T∈ , where ( )tξ ∈  is any point where the function ( ),u t⋅  attains its 
maximum. 

The remaining part is organized as follows. In Section 2, we analyze the pea-
kon solutions of the gCH equation by using dynamical system method. In Sec-
tion 3, the orbital stability of peakon is proved. A short conclusion is given in 
Section 4. 

2. Peakon Solutions of the gCH Equation 

In this section, we convert Equation (9) into a planar dynamical system. By 
substituting ( ) ( ),u x t ϕ τ=  with x ctτ = +  into Equation (9), then it follows 
that 

( )( )23 22 0,c cϕ ϕ ϕ ϕ ϕ ϕ ϕ′ ′′′ ′ ′′− − − − =                 (13) 

where ϕ′  is the derivative with respect to τ . Integrating Equation (13) once we 
obtain 

( )( )23 22 ,c c gϕ ϕ ϕ ϕ ϕ ϕ ϕ′′ ′ ′′− − − − =                 (14) 

where g is the integral constant. Letting 
d
d

y ϕ
τ

= , then we obtain the following 

planar dynamical system 

2 3

2

d ,
d
d 2 ,
d

y

y y c g
c

ϕ
τ

ϕ ϕ ϕ
τ ϕ

 =
 − + − + =
 −

                   (15) 

with first integral 

( ) ( )2 2 2
2

2, .gH y c y h
c

ϕϕ ϕ ϕ
ϕ

 
= − − − = − 

              (16) 
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As 0g = , we have the following planar system 

2 3

2

d ,
d
d 2 ,
d

y

y y c
c

ϕ
τ

ϕ ϕ ϕ
τ ϕ

 =
 − + − =
 −

                     (17) 

with first integral 

( ) ( )( )2 2 2, .H y c yϕ ϕ ϕ= − −                    (18) 

On the singular line 2 cϕ = , system (17) is discontinuous. To avoid the line 
temporarily we make transformation ( )2d dcτ ϕ ζ= − . Under this transforma-
tion, system (17) becomes 

( )2

2 3

d ,
d
d 2 .
d

c y

y y c

ϕ ϕ
ζ

ϕ ϕ ϕ
ζ

 = −

 = − + −


                     (19) 

System (17) and (19) have the same first integral as (18). Consequently, sys-
tem (19) has the same topological phase portraits as system (17) except for the 
singular line 2 cϕ = . Obviously, 2 cϕ =  is an invariant straight-line solution 
for system (19). When 0c > , there are three equilibrium points ( )0,0O  and 

1,2
2 ,0
2

cC
 
±  
 

 of system (19). In addition, there are four equilibrium points 

( )1,2 ,S c c±  and ( )3,4 ,S c c− ±  on the straight line 2 cϕ = . 

Let ( ),e eM yϕ  be the coefficient matrix of the linearized system (19) at 
equilibrium point ( ),e eyϕ  and define ( )det ,e eJ M yϕ= . Then 2 0OJ c= − < , 

1,2

2 0CJ c= >  and 
1,2,3,4

24 0SJ c= − < . By the theory of planar dynamical systems, 
we know that for an equilibrium point of a planar integrable system, if 0J <  
then the equilibrium point is a saddle point; if 0J >  then it is a center point; if 

0J =  and the Poincaré index of the equilibrium point is 0 then is a cusp, oth-
erwise, it is a high order equilibrium point. Therefore, O and 1,2,3,4S  are five 
saddle points and 1,2C  are two center points. Phase portrait of the system (17) 
is shown in Figure 1(a). Note that the algebraic curves defined by ( ), 0H yϕ =  
consists of two heteroclinic cycles (see Figure 1(b)), the two heteroclinic cycles 
correspond to two peakons. 

The algebraic curve defined by ( ), 0H yϕ =  gives 
2 2 .y ϕ=                             (20) 

By using the first equation of system (17) to do the integration, we obtain the 
peakon solutions with exponential function form 

( ) e .xx cϕ −= ±                         (21) 

The profiles of peakons are shown in Figure 2. 
Definition 1 Given initial data ( )1,3

0u W∈  , the function  
[ ] ( )( )1,30, ,u L T W∞∈   is said to be a weak solution to (9) if it satisfies the fol-

lowing identity: 
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Figure 1. (Color online.) Phase portrait and algebraic curve. (a) Phase portrait of the system (17); (b) The algebraic curve defined 
by ( ), 0H yϕ = . 

 

 
Figure 2. (Color online.) The profile of peakon for 1c = . 

 

( ) ( )3 3 2
0

1 5 d d ,0 ,0 d 0.
3 3

T
t x xu u p u uu x t u x x xψ ψ ψ ψ  − − ∗ + + =    

∫ ∫ ∫ 
 (22) 

for any smooth test function ( ) [ ]( ), 0,ct x C Tϕ ∞∈ × . If u is a weak solution on 
[ )0,T  for every 0T > , then it is called a global weak solution. 

Theorem 2 [11] The peaked functions of the form 

( ), e ,x ctu t x c − += ±                    (23) 
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is a global weak solution to (9), in the sense of Definition 1. 

3. Proof of Stability 

Note that a small change in the shape of a peakon can yield another one with a 
different speed. The appropriate notion of stability is, therefore, that of orbital 
stability: a wave with an initial profile close to a peakon remains close to some 
translate of it for all later times. That is, the shape of the wave remains approx-
imately the same for all times. 

Equation (9) has the conservation laws 

[ ] ( ) [ ] ( )2 2 4 2 2
1 2d , d .x xH u u u x H u u u u x= + = +∫ ∫

 

            (24) 

For the convenience of calculation, we take 1c = , then ( ) e xxϕ −= . Using 
(24), we obtain 

[ ] ( ) [ ] ( )2 2 4 2 2
1 2d 2, d 1.x xH x H xϕ ϕ ϕ ϕ ϕ ϕ ϕ= + = = + =∫ ∫

 

      (25) 

We next consider the expansion of the conservation law 1H  around the pea-
kon ϕ  in the ( )1H  -norm. 

Lemma 1 For every ( )1u H∈   and ξ ∈ , 

[ ] [ ] ( ) ( ) ( )( )1

2
1 1 4 1 .

H
H u H u uϕ ϕ ξ ξ− = − ⋅− + −



           (26) 

Proof. we calculate 

( ) ( )

[ ] [ ] ( ) ( ) ( ) ( )

[ ] [ ] ( ) ( ) ( ) ( )

( ) ( )

1

2

1 1

1 1

2 d 2 d

2 d 2 d

2 d .

H

x x

x x x x

u

H u H u x x x u x x x

H u H u x x x u x x x

u x x x

ξ

ξ

ϕ ξ

ϕ ϕ ξ ϕ ξ

ϕ ϕ ξ ϕ ξ

ϕ ξ

+∞

−∞

− ⋅−

= + − − − −

= + − − − −

− −

∫ ∫

∫ ∫
∫



 



    (27) 

Since 

( ) ( ) ( ) ( ) ( )d d ,x xu x x x u u x x x
ξ ξ

ϕ ξ ξ ϕ ξ
−∞ −∞

− = − −∫ ∫            (28) 

and 

( ) ( ) ( ) ( ) ( )d d .x xu x x x u u x x x
ξ ξ

ϕ ξ ξ ϕ ξ
+∞ +∞

− = − −∫ ∫            (29) 

Therefore, we have 

( ) ( ) [ ] [ ] ( )( )1

2
1 1 4 1 .

H
u H u H uϕ ξ ϕ ξ− ⋅− = − + −



            (30) 

This proves the lemma. 
Lemma 2 For every ( )1u H∈  , let ( ){ }max xM u x∈=



. Then 

[ ] [ ]2 4
2 1 .H u M H u M≤ −                     (31) 

Proof. Let ξ ∈  be such that ( )M u ξ=  and define 

( )
( ) ( )
( ) ( )

, ,

, .
x

x

u x u x x
g x

u x u x x

ξ

ξ

− <= 
+ >

                  (32) 
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We calculate 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

[ ]

2 22

2 2 2 2

2
1

d d d

d

2 .

x x

x

g x x u x u x x u x u x x

u x u x x u x u x

H u M

ξ

ξ

ξ

ξ

+∞

−∞

+∞

−∞

= − + +      

 = + − + 

= −

∫ ∫ ∫

∫




    (33) 

Similarly, 

( )

( ) ( ) ( ) ( )

( ) ( )

[ ]

2 2

2 22 2

4 2 2 4 4

4
2

d

d d

1 1d
2 2

.

x x

x

u g x x

u u x u x x u u x u x x

u u u x u x u x

H u M

ξ

ξ

ξ

ξ

+∞

−∞

+∞

−∞

= − + +      

 = + − + 

= −

∫

∫ ∫

∫





        (34) 

Since 

( ) ( )2 2 2 2d d ,u g x x M g x x≤∫ ∫ 
                 (35) 

we get 

[ ] [ ]2 4
2 1 .H u M H u M≤ −  

This thus completes the proof of Lemma 2. 
Lemma 3 For every ( )1u H∈  , if 1Hu ϕ δ− < , then 

[ ] [ ] ( )1 1 2 2H u H ϕ δ δ− ≤ +                   (36) 

and 

[ ] [ ] 3 2
2 2

1 2 2 6 4 2 .
2

H u H ϕ δ δ δ δ − ≤ + + + 
 

         (37) 

Proof. Identity (33) shows that for all ( )1v H∈  , 

( ) [ ] 11
1 2sup .
2 2 H

x
v x H v v

∈
≤ =


               (38) 

Equality holds if and only if v is proportional to a translate of ϕ . Note that 

[ ] [ ] ( )( )
( )
( )

1 1 1 1

1 1 1

1 1

2

2 2 .

H H H H

H H H

H u H u u

u u

ϕ ϕ ϕ

ϕ ϕ ϕ

δ δ

− = + −

≤ − + −

≤ +

          (39) 

Similarly, 

[ ] [ ]
( )( ) ( )
( )( ) ( ) ( )

( ) ( )

2 2

2 2 2 2 2 2 2 2 2

222 2 2 2 2

2

d d

d d

2 2 d .

x x x

x x x

x x x

H u H

u u u x u u x

u u u x u u x

u u x

ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

−

= − + + + − −

 = − + + − + − 

 + − + − 

∫ ∫

∫ ∫

∫

 

 


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Since 

( )( )
( ) [ ]

( ) [ ]

( )( )

1 1 1

2 2 2 2

1

1

2

d

1 2 2
2
1 2 2 2 2 2
2

x

L L L

H H H

u u u x

u u H u

u u H u

ϕ

ϕ ϕ

ϕ ϕ

δ δ δ δ

∞ ∞ ∞

− +

≤ + −

≤ − + −

≤ + + +

∫

 

and 

( ) ( ) ( )

1 1 1

22 2 2

22 2

2

( ) d 2 2 d

2

2 2 ,

x x x x x

H H HL L

u u x u u x

u u

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

δ δ

∞ ∞

   − + − + − + −  

≤ − + −

≤ +

∫ ∫ 

 

then 

[ ] [ ] ( )( )2 2
2 2

3 2

1 2 2 2 2 2 2 2
2

1= 2 2 6 4 2 .
2

H u H ϕ δ δ δ δ δ δ

δ δ δ δ

− ≤ + + + + +

 + + + 
 

     (40) 

Hence, we end the proof of the lemma. 
Lemma 4 For every ( )1u H∈  , let ( ){ }max xM u x∈=



. If 

[ ] [ ] ( )1 1 2 2H u H ϕ δ δ− ≤ +  

and 

[ ] [ ] 3 2
2 2

1 2 2 6 4 2 .
2

H u H ϕ δ δ δ δ − ≤ + + + 
 

 

for some δ , then 

( )3 21 4 2 11 6 2 .M δ δ δ δ− ≤ + + +               (41) 

Proof. In view of (31) in Lemma 2, the following inequality holds: 

[ ] [ ]2 4
2 1 0.H u M H u M− + ≤                   (42) 

Define the polynomial P by 

( ) [ ] [ ]2 4
2 1 .P y H u y H u y= − +                  (43) 

Using (25), ( )P y  takes the form 

( ) [ ] [ ] ( ) ( )2 22 4
0 2 1 1 1 ,P y H y H y y yϕ ϕ= − + = + −           (44) 

We calculate from (43) and (44) that 

( ) ( ) [ ] [ ]( ) [ ] [ ]( )2
0 1 1 2 2 .P M P M M H u H H u Hϕ ϕ= + − − −       (45) 

Note that, since [ ]1H u  is near 2 and [ ]2H u  is near 1, 

[ ]
[ ]

2

1

2 ,
2

H u
M

H u
< <  
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which along with (42), (44) and (45) yields 

( ) [ ] [ ]( ) [ ] [ ]( )2 2
1 1 2 21 .M M H u H H u Hϕ ϕ− ≤ − − −       (46) 

By (46) and the relation 

[ ]12 210 1 2 ,
2 2

H u
M δ δ≤ ≤ ≤ + +                 (47) 

we obtain 

[ ] [ ] [ ] [ ]

( )

2
1 1 2 2

3 2

1

4 2 11 6 2 .

M M H u H H u Hϕ ϕ

δ δ δ δ

− ≤ − + −

≤ + + +
 

Hence, we end the proof of Lemma 4. 
Proof of the Theorem 1 Since [ ]1H u , [ ]2H u  are both conserved by the 

Equation (9), we have 

( ) [ ] ( ) [ ] ( )1 1 0 2 2 0, , , , 0, .H u t H u H u t H u t T⋅ = ⋅ = ∈        

We apply Lemma 3 to 0u  and to δ . By the hypotheses of Lemma 4 are sa-
tisfied for ( ),u t⋅ . Hence 

( )( ) ( )3 2, 1 4 2 11 6 2 .u t tξ δ δ δ δ− ≤ + + +            (48) 

Combining (26) with Lemma 1, we find 

( ) ( )( )
( )

[ ] [ ] ( )( )
[ ] [ ] ( )

( ) ( )

1

2

1 1

1 1

3 2

,

4 1 ,

4 1 ,

2 2 4 4 2 11 6 2

H
u t t

H u H u t

H u H u t

ϕ ξ

ϕ ξ

ϕ ξ

δ δ δ δ δ δ

⋅ − ⋅−

= − + −

≤ − + −

≤ + + + + +



           (49) 

Based on the (49), for any 0> , we can take a ( )δ   such that  

( ) ( )( )
( )1

2
,

H
u t tϕ ξ⋅ − ⋅− <


 . Therefore, we end the proof of 1. 

4. Conclusion 

In this paper, we investigate the orbital stability of the peakons for a generalized 
Camassa-Holm equation (gCH) with cubic nonlinearity. Using variable trans-
formation, a planar dynamical system is obtained from the gCH equation. It is 
shown that the planar system has two heteroclinic cycles which correspond to 
two peakon solutions. We then prove that the peakons for the gCH equation are 
orbitally stable by using the method of Constantin and Strauss. The classical 
Camassa-Holm type equation models breaking waves, i.e. the solution, remain 
bounded while its slope becomes unbounded in finite time. In this paper, we do 
not investigate the breaking waves. We will study wave breaking for the gCH 
equation in the future. 
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