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Abstract 
Typical Hall plates for practical magnetic field sensing purposes are plane, 
simply-connected regions with peripheral contacts. Their output voltage is the 
sum of even and odd functions of the applied magnetic field. They are com-
monly called offset and Hall voltage. Contemporary smart Hall sensor circuits 
extract the Hall voltage via spinning current Hall probe schemes, thereby 
cancelling out the offset very efficiently. The magnetic field response of such 
Hall plates can be computed via the electric potential or via the stream func-
tion. Conversely, Hall plates with holes show new phenomena: 1) the stream 
function exists only for a limited class of multiply-connected domains, and 2) 
a sub-class of 1) behaves like a Hall/Anti-Hall bar configuration, i.e., no Hall 
voltage appears between any two points on the hole boundary if current con-
tacts are on their outer boundary. The paper studies the requirements under 
which these effects occur. Canonical cases of simply and doubly connected 
domains are computed analytically. The focus is on 2D multiply-connected 
Hall plates where all boundaries are insulating and where all current contacts 
are point sized. 
 

Keywords 
Anti-Hall Bar, Doubly Connected, Geometry Factor, Hall Plate, Multiply 
Connected, Non-Peripheral Contacts, Reverse Magnetic Field Reciprocity, 
Stream Function 

 

1. Introduction 

Conventional Hall plates have no holes. They are well understood, though the 
analytical calculation of the Hall output voltage remains challenging, particularly 
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at large magnetic field [1] [2], for contacts of finite size [3], and in the absence of 
symmetries [4]. There are also several formulae for devices with small output 
contacts at weak magnetic field [5] [6] [7] [8]. An early mention of bounded 
Hall plates with a single hole is [9], where the author computed the impedance 
matrix of symmetric circular rings with large symmetric contacts with the me-
thod of conformal mapping. This was a by-product of a calculation of the power 
delivered by an infinitely long magneto-hydrodynamic generator. It was also 
proven in a strict mathematical way that these devices give no Hall voltage on 
the inner sense contacts placed on the x-axis when current is sent through outer 
supply contacts centered on the y-axis. However, the author did not elaborate on 
the question, if this effect is due to symmetry only. Moreover it was proven that 
there is no Hall voltage between any contacts in any symmetric or asymmetric 
multiply connected conductive region if all its boundaries are conducting—we 
will pick up this thread in a follow-up paper part II. The Hall effect in double 
boundary geometries with small contacts was studied in [10] with the goal of 
reducing the zero point error (offset) of Hall plates. The authors called their rec-
tangular ring “anti-Hall bar within a Hall bar” (see Figure 1) and focused on the 
fact that current flowing through points on the outer boundary gives no Hall 
signal on the inner boundary, and vice versa, whereas the offsets measured on 
both boundaries are affected by both currents. Multiply-connected Hall-plates 
with contacts of arbitrary size on the boundaries of holes are investigated in [11] 
on an advanced mathematical level. Another aspect of Hall plates with ring to-
pology is the reversal of the Hall voltage when sense and supply contacts are on 
the inner boundaries in contrast to being on the outer boundaries. If a material 
consists of a huge number of such rings the sign of the macroscopic Hall con-
stant depends on the electrical coupling of the rings. This was predicted theoret-
ically in [12] and verified experimentally in [13]. The funny result is that see-
mingly in contrast to introductory text books the sign of the Hall voltage does 
not correctly reveal the sign of the majority charge carriers, unless one takes into 
account the exact complicated topology of such chainmail-like meta-materials. 
The same effect was observed in finite-element analyses of van der Pauw-Hall 
measurements on samples with inhomogeneities [14]. 

Discontinuous Hall effect regions exhibit similar phenomena as multiply 
connected Hall Effect regions [15]. 

This paper gives a theory on the classical Hall effect in multiply-connected 
plane and schlicht regions bounded by Jordan curves [16]. It may be simple for 
mathematicians, but engineers and physicists might not be so fluent with this 
topic. Many building blocks of the theory are well known but dispersed in dif-
ferent fields of engineering sciences such as electromagnetic field theory, con-
formal mapping theory, and Hall effect theory. Several conclusions are made and 
rules are derived, which the author has not found published elsewhere. Therefore 
it seems justified to compile all this in the current paper and present it in an eas-
ily accessible way. 
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One goal of the paper is similar to [17]: is it possible to understand multiply 
connected Hall plates with the classical theory of Maxwell? We will use a more 
general and more rigid mathematical approach than Oszwaldowski et al., but the 
conclusion is the same: yes. However, it may be cumbersome to obtain numeri-
cal values with methods of analytical calculation. Even at zero magnetic field the 
general relation between resistivity and voltages measured between peripheral 
contacts in a plane plate with a hole is difficult. Attempts and a conjecture are 
given in [18] [19]. 

In fact the authors in [17] did not give an ab initio explanation for the Hall ef-
fect in doubly connected regions. They interpreted the regions near the four 
contacts as four separate Hall crosses. The two Hall crosses at the current supply 
contacts are operated in an unusual way: current enters in one branch of the 
cross, then it is split up and exits through the neighboring branches, while the 
fourth branch is not connected. In [17] the authors found experimentally that 
these two Hall crosses add certain voltages to the left and right branches of the 
ring, which are identical to half of the Hall voltages on the left and right Hall 
crosses, respectively. Adding up all voltages gives the correct Hall voltage as ob-
served in [17] and also in [10]. However, the main question is still open: why do 
the two Hall crosses at the supply contacts add exactly the required voltages to 
match the experiments in [10]? Also the exact way how to add up the voltage 
contributions is obscure. These questions are not tackled in [17]—the following 
paper answers them in a rigorous mathematical framework. 

In this paper we do not discuss quantum Hall effect phenomena, which are 
frequently mentioned in the context of multiply connected Hall effect regions 
[20]. We stay within the realm of classical stationary flow of electric current on a 
macroscopic scale in 2D. 

Section 2 explains the “anti-Hall bar within a Hall bar” whose unexpected 
behavior bewildered several engineers with decades of experience in Hall sensor 
technology (including the author). Section 3 states the assumptions of the 
theory. Section 4 presents numerical simulations on a very general doubly con-
nected device to give us an idea of the roles of symmetry, contacts size, and 
magnetic field strength. Section 5 develops a theory for Hall plates, where all 
boundaries are insulating. Sections 6-8 apply this theory to simply-connected, 
doubly-connected, and multiply-connected plane Hall plates without interior 
current sources. Section 9 explains the role of extended contacts in the limit of 
large applied magnetic field. Section 10 sums up the main achievements of the 
paper. In Appendix A we compute the current pattern in the unit disk with and 
without hole, if point current contacts are on the unit circle. 

2. The “Anti-Hall Bar within a Hall Bar”: A Surprising  
Example Kindles Our Interest 

In [10] a rectangular Hall plate with a symmetric rectangular hole was discussed. 
We repeat the calculation with the commercial finite element (FEM) code COMSOL 
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MULTIPHYSICS. The geometry of such an “anti-Hall bar within a Hall bar” is 
shown in Figure 1(a). There the conductive region is a symmetric ring with the 
outer boundary being a 14 × 2 rectangle and the inner rectangular hole boun-
dary is 13.6 × 1 large (the units are arbitrary). We intentionally exaggerate the 
aspect ratio of the device to emphasize the astonishing result. The model is 2D 
with the thickness normalized to 1. Let us also normalize the resistivity to 

1 mρ = Ω⋅ . The resistivity tensor ρ  describing the Hall effect in this static 
conduction problem is simply 

x x

y y

E J
E J

   
=   

   
ρ  with ,

,

1
1

H a z

H a z

B
B

µ
ρ

µ
 

=  − 
ρ           (1) 

All boundaries are insulating and a current of 1 Ampere is injected into the 
device at the left outer boundary in point A. The current is extracted at the op-
posite point B also being on the outer boundary. We are interested in the poten-
tial at points C, D, E, F on the vertical symmetry line with C and F on the outer 
boundary and D and E on the inner boundary. We are free to choose one point 
as reference point for the potential and so we ground D. For good accuracy a 
fine mesh with 1.9 million elements was used. The applied magnetic field was 
swept from , 1.28H a zBµ = −  to 1.28. For the largest magnetic field the current  

 

 
Figure 1. An “anti-Hall bar within a Hall bar” is a rectangular Hall plate with a rectangu-
lar, symmetric hole and point sized contacts. In (a) the current is supplied at points A, B 
on the outer perimeter, whereas in (b) the current is supplied at points G, H on the inner 
perimeter. The output contacts are at points C, D, E, F. In (a) point D is grounded, whe-
reas in (b) point C is grounded. The supply current is 1 A and the applied magnetic field 
is strong (52˚ Hall angle). The figures show current streamlines (grey color) and the iden-
tical color coding denotes the values of the electric potential (red means +6 V, green is 0 
V, blue is −6 V, also labelled). The slanting of the contour lines is identical in (a) and (b). 
Yet in (a) and (b) the contours in the upper branch are shifted differently in horizontal 
direction against the contours in the lower branch, such that potentials in D and E are 
identical in (a) yet potentials in C and F are identical in (b). Thus, in (a) there is no Hall 
voltage between D-E, whereas in (b) there is no Hall voltage between C-F. 
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streamlines are shown in grey color and the contours of the potential are drawn 
in color. The current streamlines are parallel in the upper and lower horizontal 
parts of the device, and there the contours of the potential are also straight lines 
tilted against the current streamlines by 90˚ minus the Hall angle. This is iden-
tical to simply connected Hall plates. In Figure 2(a) we plot the potential at the 
four points C, D, E, F. At zero magnetic field the potential is identical at all four 
points due to symmetry. With rising magnetic field the potential at the lower 
point C on the outer boundary decreases while the potential at the upper point F 
on the outer boundary increases. This gives an increasing output voltage between 
C and F in exactly the same way as it occurs in simply connected Hall plates. 
However, the potentials in the points D and E at the inner boundary remain zero 
versus magnetic field. Thus, the voltage between D and E does not respond to an 
applied magnetic field of arbitrary strength. 

In Figure 1(b) we inject the current at point G and extract it at point H. Both 
points are on the inner boundary. Then the potentials in D and E on the inner 
boundary respond to applied magnetic field, whereas the voltage between points 
C and F on the outer boundary does not respond to applied magnetic field (see 
Figure 2(b)). Hence, the stunning result is that the voltage between C and F de-
pends on whether the current is supplied via points on the inner or outer boun-
dary, although the current streamlines near C and F are perfectly horizontal in 
both cases. This holds even if the aspect ratio of the device becomes infinite and 
the points of current injection move to left and right infinity—nevertheless at 
applied magnetic field the voltage between C and F changes markedly if we swap 
the current contacts between inner and outer boundaries. These numerical 
findings are in perfect agreement to experimental observations [21]. In this pa-
per we try to clarify this phenomenon. In particular we ask if this behavior is va-
lid only for certain symmetries, for single holes (single ring topologies), or for  

 

 
Figure 2. The electric potential at points C, D, E, F of the Hall plate with hole in Figure 1 ver-
sus tangent of Hall angle ( ),H a zBµ= : (a) shows the potential for current flowing through the 

outer contacts A-B in Figure 1(a), whereas (b) shows the potential for current flowing through 
the inner contacts G-H in Figure 1(b). The stunning result is that the Hall voltage vanishes on 
inner contacts D-E if current is supplied via outer contacts A-B, and vice versa. 
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point-sized contacts. 

3. Assumptions and Basic Definitions 

In this paper we deal only with plane Hall plates whose size in the (x, y)-plane is 
much larger than their small and homogeneous thickness Ht  in z-direction. All 
quantities are constant versus z-position: 0z∂ ∂ = . A magnetic flux density aB  
is applied with external means to the Hall plate. It has a component only in 
z-direction ,a a z zB=B n  ( zn  is the unit vector in z-direction) and it is homo-
geneous in the entire (x, y)-plane. It may be weak but it may also be very large. 
Then the classical Hall effect is described by 

H aρ ρµ= + ×E J J B                      (2a) 

( )
( ) ( )

2

2 2 22
,11

H a H a a H a

H a zH a B
µ µ µ

ρ µρ µ

− × + ⋅ − ×
= →

++

Ε Ε B Ε B B Ε Ε B
J

B
        (2b) 

with the specific ohmic resistivity 0ρ >  and the Hall mobility 0Hµ > . These 
two material parameters are assumed to be constant versus space and versus elec-
tric and magnetic fields. They are both assumed to be simple scalars. The positive 
mobility in (2a, b) is valid for electrons as majority carriers—for holes we have 
to use a negative mobility. We assume only a single dominant type of charge 
carrier. Equation (2b) follows from (2a) if aB  is perpendicular to the thin Hall 
plate. Its derivation is given in [22]. The electric field Ε  and the current den-
sity J  have no z-component. a×J B  denotes the vector product of J  and 

aB . a⋅Ε B  is the scalar product of Ε  and aB . 
We consider Hall plates with four contacts, the contacts having infinite con-

ductivity. Via two supply contacts we force a current supplyI  through the Hall 
plate and at the other two sense contacts we tap an output voltage outV . Perfectly 
symmetric Hall plates have zero output voltage at zero magnetic field. However, in 
practice Hall plates always suffer from unavoidable asymmetries so that in general 
one has to account for a non-vanishing output voltage in the absence of applied 
magnetic field—this is called offset. If magnetic field is applied the output vol-
tage will change. We decompose the output voltage into a sum of even and odd 
functions of the applied magnetic field. The even part is commonly called the 
offset and the odd part is the Hall voltage HV . 

( ) ( ) ( )out , even , odd ,a z a z a zV B V B V B= +                 (3a) 

( ) ( ) ( )out , out ,
even , 2

a z a z
a z

V B V B
V B

+ −
=                (3b) 

( ) ( ) ( ) ( )out , out ,
odd , , 2

a z a z
a z H a z

V B V B
V B V B

− −
= =           (3c) 

( )out ,a zV B  is measured at positive applied magnetic field and ( )out ,a zV B−  is 
measured at negative applied magnetic field. With the principle of reverse mag-
netic field reciprocity (RMFR [23] [24] [25]) one can show that ( )out ,a zV B−  is 
identical to the output voltage tapped between the supply contacts when current 
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is sent through the sense contacts at positive applied magnetic field. In a strict 
sense this holds only in an electrically linear and isothermal device (no junction 
isolation at the insulating boundaries, no velocity saturation, no self-heating, no 
self-magnetic field, and no thermo-magnetic effects). Then the Hall voltage HV  
is equal to the output of a spinning current Hall scheme [26] [27] [28], and we 
do not need to reverse the polarity of the applied magnetic field to obtain it. This 
principle is used in most smart Hall sensor ASICs because it improves the ze-
ro-point error by a factor of ~500 [29]. 

We can also measure the potential φ  with a single point-sized probe at any 
location r  in the Hall plate. Analogous to (3a-c) we define the even potential 

evenφ  and the odd potential oddφ  (=Hall potential Hφ ) 

( ) ( ) ( ), even , odd ,, , ,a z a z a zB B Bφ φ φ= +r r r               (4a) 

( ) ( ) ( ), ,
even ,

, ,
,

2
a z a z

a z

B B
B

φ φ
φ

+ −
=

r r
r               (4b) 

( ) ( ) ( ) ( ), ,
odd , ,

, ,
, ,

2
a z a z

a z H a z

B B
B B

φ φ
φ φ

− −
= =

r r
r r          (4c) 

If the location 1r  is on the first sense contact and 2r  on the second sense 
contact then ( ) ( ),12 1 2H H HV φ φ= −r r . Other authors define the Hall potential as the 
difference of potential with and without magnetic field, which differs from our defini-
tion by the magnetic field change of offset ( ) ( )( ) ( ), , ,2 0a z a z a zB B Bφ φ φ+ − − = . 
This difference is small of order ( )2

,a zO B  for small magnetic field. 
All odd functions vanish at zero applied magnetic field due to their definition. 

( ) ( )odd odd0 0, ,0 0V φ= =r                     (5) 

We denote all even functions at zero applied magnetic field with an index 0 

( ) ( )out even out,00 0V V V= =                     (6a) 

( ) ( ) ( )even 0,0 ,0φ φ φ= =r r r                   (6b) 

( ) ( )0,0 =E r E r                        (6c) 

( ) ( )0,0 =J r J r                        (6d) 

The Hall voltage depends on the supply current through the Hall plate, the 
magnetic field applied to the Hall plate, and on the material parameters and the 
geometry of the Hall plate. The literature on Hall plates casts this relation into 
the following form 

supply sheet tanH H HV I R G θ=                     (7) 

with the sheet resistance sheet HR tρ= , the Hall geometry factor HG , and the 
Hall angle Hθ . In the entire Hall plate the electric field vectors E  are rotated 
by the angle Hθ  against the current density vectors J , as can be seen in (2). 
From (2) we get ,tan H H a zBθ µ= . Small magnetic field means 0Hθ ≈  , and 
large magnetic field means 90Hθ → ±   depending on the polarity of the mag-
netic field. The Hall geometry factor summarizes all effects caused by the geo-
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metry of the Hall plate and the finite size of its contacts. It holds 0 1HG≤ ≤ . If 
all four contacts are point-sized and peripheral 1HG =  (see also (19)). The 
larger the contacts, the smaller HG . Therefore HG  describes the reduction of 
the magnetic sensitivity of a Hall plate caused by its contacts. The sense contacts 
shunt a part of the supply current away from the interior of the Hall plate so that 
not all the current is available for the Hall effect. And the supply contacts have a 
short circuiting effect on the Hall electric field which hinders the Hall voltage to 
develop unrestrained between the sense contacts. Due to an interplay between 
magnetic field and geometry at the contacts (see Section 9), in general HG  is 
also a function of Hθ . At large magnetic field 1HG →  regardless of the size of 
the contacts. That means at large magnetic field all contacts behave similar to 
point contacts. In this paper we will keep the definition (7) of the Hall geometry 
factor, but expand its range of validity to Hall plates with holes with 

1 1HG− ≤ ≤ . Note that the Hall voltage is sampled between two points 
( ) ( ),12 1 2H H HV φ φ= −r r , and therefore the Hall geometry factor also relates to 

these two points ,12H HG G= . However, we can ground one of these points and 
then the Hall geometry factor can be interpreted as a normalized Hall potential 

( ) ( ) ( )1 1 supply sheet tanH H HG I Rφ θ=r r  for ( ) ( )2 20 0Hφ φ= ⇒ =r r . 

4. Doubly-Connected Asymmetric Hall Plates  
with Large Contacts 

In Figure 3(a) we have an entirely asymmetric Hall plate with asymmetric hole. 
It has two large contacts for current supply at the outer boundary and two large 
sense contacts on the inner boundary. Figure 3(b) shows the same Hall plate, 
but now the contacts on the inner boundary became insulating edges, and in-
stead we added two large sense contacts on the outer boundary. Both figures 
show potential and current streamlines at large magnetic field ( ), 1.28H a zBµ = : 
obviously the current streamlines are not perpendicular to the contacts. In both 
cases (a) and (b) we ground the right sense contact and observe how the poten-
tial at the left sense contact responds to applied magnetic field. This is shown in 
Figure 3(c). Evidently there is a response regardless if the contacts are on the 
inner or outer boundary. The slope out ,d d a zV B  decreases at large magnetic 
field for contacts on the inner boundary (sub-linear growth), whereas it increas-
es versus magnetic field for contacts on the outer boundary (super-linear 
growth). This becomes more apparent if we compute the Hall geometry factor 

HG  according to its definition in (7), again with the rule that the sense contact 
at the RHS of global current flow between current contacts is grounded. Figure 
3(d) shows HG  for both cases of inner and outer sense contacts: in the limit of 
very strong magnetic field 1HG →  for outer sense contacts whereas 0HG →  
for inner sense contacts. Note that HG  is fairly constant for tan 1Hθ < . This 
is the condition under which one usually likes to operate Hall devices as mag-
netic field sensors, because of their linear response to applied magnetic field. 
However, for high mobility materials like graphen or InSb it may happen that  
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Figure 3. Asymmetric Hall plate with hole and with four large contacts (=thick black lines). Current contacts are on the outer 
boundary. Sense contacts are on the inner boundary in (a) and on the outer boundary in (b). The right sense contact is grounded. 
The figures (a, b) show current streamlines (grey color) at large magnetic field (52˚ Hall angle). The color coding denotes the val-
ues of the electric potential (red means positive, blue is negative potential). (c): electric potential of the non-grounded sense con-

tacts of Figures (a) and (b) versus tangent of Hall angle ( ),H a zBµ= . The straight dashed lines are to guide the eye. (d) Hall geo-

metry factor of the non-grounded sense contacts of Figures (a) and (b) versus tangent of Hall angle. 
 

tan 1Hθ > . Then one may use a doubly connected Hall plate like in Figure 3 
where the ratio of Hall voltages in (a) and (b) is a unique function of ,H a zBµ . 
This could be used in an auto-calibration scheme of a smart sensor system. To 
sum up, the behavior on inner and outer sense contacts for this asymmetric Hall 
plate with large contacts differs, but the difference is milder than in Figure 1: the 
Hall response is smaller on the inner contacts but it does not vanish altogether 
unless the magnetic field grows unboundedly. 

If we make one current contact point sized, skip the large sense contacts, and 
sample the Hall potential only with point probes, the behavior is similar. Figure 
4(a) shows the potential and the current streamlines at large magnetic field and 
Figure 4(b) shows the geometry factor for output voltages at various points on 
the inner boundary. Point 17 is grounded. All other points labeled in Figure 
4(a) along the hole boundary have non-vanishing Hall voltage. Most points 
show negative Hall geometry factor, except for points 7, 10, and 12. But the Hall 
geometry factor at all points in the hole boundary tends to zero at large Hall an-
gle. Figure 4(c) shows the Hall geometry factor for several points on the outer  
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Figure 4. (a) Hall plate similar to Figure 3, yet with point sized current injection and point sized 
sense contacts. Only the current sink contact is large. Current streamlines and potential are shown for 
large positive magnetic field (52˚ Hall angle). Several points on the boundary are indicated. One of 
them (point 17) is grounded; (b) Hall geometry factor HG  on several points on the hole boundary 

versus tangent of Hall angle ( ),H a zBµ= ; (c) Hall potential divided by tangent of Hall angle is plotted 

versus tangent of Hall angle for all indicated points on the outer boundary (for supply 1A, 1sheetI R= = Ω ). 

 
boundary. As we grounded an inner point, the Hall geometry factor for the outer 
points is not between 0 and 1 but between approximately −0.5 and 0.5 (only for 
this specific example)—therefore we plotted the Hall potential over tangent of 
Hall angle at 1 Ampere supply current and 1 Ohm sheet resistance. Anyhow, if 
one taps the output voltage between a point on the left outer boundary and a 
point on the right outer boundary its HG  goes to 1 for large magnetic fields. 

Finally, if we replace the last big contact in Figure 4(a) with a point contact, 
the situation changes drastically as shown in Figure 5: 1) the Hall potential on 
all points along the inner boundary is identical, 2) the Hall potential on all 
points along the left perimeter between the current contacts is identical, and 3) 
the Hall potential on all points along the right perimeter between the current 
contacts is identical. The Hall geometry factor between any two points on the 
inner boundary vanishes, whereas the Hall geometry factor between any point 
left of the current injection and any point right of the current injection equals 1. 
Therefore, the particular behavior of the “anti-Hall bar within a Hall bar” seems 
to have two origins: in the case of irregular geometry it is the infinitely small  
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Figure 5. (a) The same Hall plate as in Figure 3, yet with all contacts being point sized. Current streamlines 
and potential are shown for large positive magnetic field (52˚ Hall angle). Several points on the boundary are 
indicated. One of them (point 17) is grounded; (b) Hall potential divided by tangent of Hall angle is plotted 
versus tangent of Hall angle for all indicated points (for supply 1A, 1sheetI R= = Ω ): it is zero for all points on the 

hole boundary, positive for points left of the global current flow, and negative for points right of it. The differ-
ence of values between left and right points is equal to 1. 

 
contacts, and in the case of large contacts it is the symmetry according to 
Haeusler [9]. 

5. Plane Hall Plates Where All Boundaries Are Insulating 

If all boundaries are insulating the contacts must be point sized. Then it is better 
to use the stream function instead of the potential, because the boundary condi-
tions specify the stream function and not the potential (see also Appendix A). 

However, the stream function exists only in a limited class of topologies where 
the net current through every closed curve inside a multiply connected domain 
vanishes (regardless if the contacts are point sized or extended). 

d 0 stream function exists
C

s⋅ = ⇔∫ J n


              (8) 

with n  being the unit vector perpendicular to the curve. Thereby the closed 
curve may also encircle holes. If a multiply-connected Hall plate has one current 
input contact and one current output contact and both are on the boundary of 
the same hole, a stream function exists. The same holds if both contacts are on 
the outer perimeter. If the current input contact is on the boundary of a different 
hole than the current output contact, no stream function exists. If the entire 
boundary of a hole is a single current contact, no stream function exists. This 
holds also in the limit of vanishing hole size. Topologies with no stream function 
will be focused on in the follow-up part II of this publication. A proof of (8) will 
become clear later (see (18)). 

According to Maxwell’s first equation in the quasi-static case it holds 

z y

x z

y x

H y H z
H z H x
H x H y

 ∂ ∂ − ∂ ∂
 

= ∇× = ∂ ∂ − ∂ ∂ 
 ∂ ∂ − ∂ ∂ 

J H                  (9) 
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with the magnetic field H  linked to the current flow. Note that H  is the 
magnetic field that is generated by the current streamlines—it is not the mag-
netic field applied to the Hall plate 0 aµ ≠H B . Most of the literature on the Hall 
effect tacitly assumes 0 aµ H B , i.e., the magnetic field caused by the cur-
rent through the Hall plate is thought to be negligible against the externally ap-
plied magnetic field. With (9) the divergence of the current density vanishes 

0∇⋅ =J                           (10) 

because 0∇⋅∇× = ∇×∇ ⋅ =H H . In a thin plane Hall plate it holds: 1) 0zJ = , 
2) 0x yJ z J z∂ ∂ = ∂ ∂ = , and 3) ,x yJ J  generate no ,x yH H  within the con-
ductive region. Therefore zH  is the only non-zero component in the conduc-
tive region. It defines the stream function 

zHψ ρ= −                          (11) 

In (11) the resistivity makes the dimensions of stream function and potential 
equal in order to combine them to the complex potential, and the minus sign 
makes this complex potential compliant with the Cauchy-Riemann differential 
equations in the case , 0a zB =  (see (20a, b) below). 

In (9)-(11) we adopted a three-dimensional picture how J  and H  are 
linked. Due to the small thickness of the Hall plate several components of the 
vector fields vanish. The non-vanishing quantities are sufficient to define a con-
sistent two-dimensional model where zH  is a function of ,x yJ J . Such a 2D 
problem in the (x,y)-plane implicitly assumes 0z∂ ∂ =  for all quantities, and 
this implies an infinitely thick Hall plate Ht →∞  with 0zJ = . Therefore it 
assumes 0x yH H= = —not only inside the Hall plate but everywhere. Then the 
point current contacts become line contacts parallel to the z-axis. It is important 
to keep in mind that in such a 2D problem ψ ρ−  is the magnetic field zH  of 
the currents in an infinitely thick Hall plate, and not in the real, thin Hall plate 
(for the same current pattern ,x yJ J  with 0zJ =  the magnetic field in thick 
and thin Hall plates differs in 0z = , which becomes apparent if we insert the 
current density into the law of Biot-Savart to compute the magnetic field: 

( ) ( ) 3

1 d d
4π A z

A z
′ ′

′−′ ′ ′= ×
′−

∫ ∫
r rH r J r
r r

               (12) 

A′  is the area in the (x, y)-plane. For the thick Hall plate the integration goes 
:z′ −∞ →∞  whereas for the thin Hall plate it goes only 

0
: lim 2 2

H
H Ht

z t t
→

′ − →  
which is a simple multiplication by Ht . 

Since J  is obtained from zH  by spatial differentiation in (9), and zH  is 
proportional to ψ  in (11), the stream function ψ  takes over the role of a 2D 
“potential” that can be used in a way similar to the potential φ . It holds 

1 1z
x yy x

ψ ψ ψ
ρ ρ ρ

− ∂ ∂
= −∇× = +

∂ ∂
nJ n n                (13) 

, ,x y zn n n  are the Cartesian unit vectors. Note the different viewpoint: in (9) 
H  is generated by J , yet in (13) J  is generated by ψ . In fact both equations 
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just describe how the quantities , ,ψH J  are linked without causality: they do 
not differentiate between origin and reaction. 

Defining J  as the curl of ( ) zψ ρ− n  implies that J  is orthogonal to ψ∇  

1 0
y x

x y
ψ ψ

ψ
ψ ψρ

−∂ ∂ ∂ ∂   
⋅∇ = ⋅ =   ∂ ∂ ∂ ∂   

J                (14) 

This explains the name stream function, because it is constant along each 
current streamline. With Maxwell’s second equation and (2a) we get 

( ),H a z zBρ ρµ∇× = = ∇× + ∇× ×E 0 J J n              (15) 

( ) ( ) ( )z z z∇× × = ⋅∇ − ∇ ⋅ =J n n J n J 0  because of 0z ⋅∇ =n  for 2D geome-
tries and because of (10). With  

( ) ( ) 2 2
z z z zρ ψ ψ ψ ψ∇× = −∇× ∇× = −∇ ∇⋅ +∇ = ∇J n n n n  we conclude that the 

stream function must also fullfill Laplace’s equation 2 0ψ∇ = . The boundary 
conditions at extended contacts are ,H a zn B tψ µ ψ∂ ∂ = ∂ ∂  and at the insulat-
ing boundary the normal current density vanishes. Thus it holds 0tψ∂ ∂ =  
and therefore ψ  is constant on insulating boundaries. This goes along with the 
notion that along any insulating boundary there flows one specific current 
streamline and the stream function is constant on current streamlines, thus, it is 
also constant along the insulating boundary. 

Both φ  and ψ  are solutions of the Laplace equation, yet the Laplace equa-
tion is independent of the applied magnetic field. The magnetic field dependence 
of potential and current distribution is determined by the boundary conditions 
only. Hence, one might speculate that the volume is less important than the 
boundary for the Hall effect. After all, there is no Hall voltage in an infinitely 
large, unbounded Hall plate (cf. Figure 5(a) and Figure 6(c) in [30]). On the 
other hand the Lorentz force acts on the charge carriers in the whole volume. 
Thus the Hall effect appears to be a peculiar interplay between volume and 
boundary. 

If a Hall plate has only insulating boundaries and point-sized contacts where 
current is impressed, both the Laplace equation and the boundary conditions for 
the stream function do not contain the applied magnetic field any more. In such 
a Hall plate the stream function, the current density, and the current streamlines 
are constant versus applied magnetic field. For the case of a circular disk with 
peripheral point current contacts this was already stated in [30]. Now we see that 
it is also valid for multiply-connected regions with point sized contacts whenev-
er a stream function exists. 

If we express the electric field in (2a) by the potential and the current density 
by the stream function this gives 

,z H a zBφ ψ µ ψ∇ = ∇× − ∇n                   (16a) 

At vanishing applied magnetic field (16a) reads 

0 zφ ψ∇ = ∇× n                        (16b) 

For the particular case of all-insulating boundaries we do not need an index 0 
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for ψ , because it is identical with and without applied magnetic field. From 
(16a, b) we get 

( )0 , 0 ,H a z H a z groundB Bφ φ µ ψ φ φ µ ψ ψ∇ = ∇ − ∇ ⇒ = − −      (16c) 

In the ground node it holds 0 0φ φ= =  and therefore groundψ ψ= . We are 
free to choose groundψ  and so we define ground 0ψ = , which means 0ψ =  in the 
ground node. With this convention, with (4a), (16c), and with the fact that ψ  
is independent of ,a zB  the Hall potential becomes 

,H H a zBφ µ ψ= −                        (17a) 

Thus, the Hall potential is constant along current streamlines, and the Hall 
voltage between two points is simply proportional to the difference in stream 
function 

( ),12 1 2 , 1 2H H H H a zV Bφ φ µ ψ ψ= − = − −               (17b) 

Another property of the stream function is its relation to the total current 12I  
flowing across any contour (extruded into thickness direction) that starts at 
point 1 and ends at point 2. Using (13) we get 

2 2 2

12
1 1 1

2
2 1

sheet1

d d d d

d

H
H n H z

H

tI t J s t s x y
x y

t
R

ψ ψ
ρ

ψ ψ
ψ

ρ

− ∂ ∂
= = ⋅ × = +

∂ ∂

− −
= = −

∫ ∫ ∫

∫

n J t
        (18) 

whereby we used nJ = ⋅J n , z= ×n t n , 1⋅ = ⋅ =n n t t , and t  is tangential to 
the path and points from point 1 to point 2. The current 12I  flowing across the 
contour connecting the two points 1, 2 is the difference in stream function at 
these two points divided by the sheet resistance. Inserting (18) into (17b) and 
comparing with (7) gives 

1 2 12
,12

supply sheet , supply

H H
H

H a z

IG
I R B I

φ φ
µ

− −
= =                 (19) 

Thus, the Hall geometry factor between the points 1 and 2 is equal to the ratio 
of the current between the two points and the total current through the Hall 
plate. This holds for multiply connected conductive regions without extended 
contacts and without internal current sources (i.e., whenever a stream function 
exists). Obviously, 1) this ratio cannot exceed 1 and it is smaller if both points 1, 
2 are in the interior of the Hall plate with peripheral contacts, 2) it is zero along 
any insulating boundary without current contacts between points 1 and 2, and 3) 
it is ±1 if points 1 and 2 are on the same boundary and a single point-sized 
supply contact is between them on this boundary. 

In Hall plates with all insulating boundaries and point sized contacts the cur-
rent pattern does not change with applied magnetic field (see above). Therefore 
(19) implies that the Hall geometry factor is constant versus applied magnetic 
field. Consequently the Hall voltage is directly proportional to the applied mag-
netic field whenever the current through the Hall plate is kept constant. These 
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devices are linear versus applied magnetic field—within the scope of our assump-
tion that the material parameters , Hρ µ  are constant. In engineering practice one 
may partly compensate for the magnetic field dependence of the material para-
meters with the magnetic field dependence of the Hall geometry factor in Hall 
plates with extended contacts [31]. 

If the integration path in (18) is a closed loop, points 1 and 2 are identical and 
this leads to (8). Hence, we see that in multiply-connected domains a stream 
function makes sense only in the absence of internal current sinks and sources. 

The stream function jumps in point-sized current contacts according to (18), 
and so we must not use it there, because it would lead to self-contradictory pre-
dictions. Let us assume point 1 exactly at the current contact and point 2 some-
where inside the Hall plate. If we would erroneously apply (18), this gives 

2 1ψ ψ=  because obviously 12 0I =  (both points are on a current streamline 
and therefore no current flows across this streamline). This would mean that the 
stream function is constant everywhere inside the Hall plate—which of course is 
wrong. If ψ  is discontinuous in a point-sized current contact also Hφ  is dis-
continuous there according to (17a). Hence, also Hφ  makes no sense in point 
contacts. On the other hand we can sample the Hall voltage between two points 
on the same current streamline and it vanishes according to (17b). If the two 
points approach positive and negative supply contacts it still holds 0HV = . 
Hence, the Hall voltage across supply contacts vanishes. The argument holds for 
point-sized supply contacts, but the Hall voltage also vanishes across extended 
supply contacts (this can be shown with the methods developed in [32]). 

In the absence of an applied magnetic field ( ), 0z aB =  it holds 

0
x xE J

x y
φ ψρ
∂ ∂

= ⇒ =
∂ ∂

                  (20a) 

0
y yE J

y x
φ ψρ
∂ −∂

= ⇒ =
∂ ∂

                 (20b) 

These are the Cauchy-Riemann differential equations and therefore the functions 

0 0RF iφ ψ= +  and 0 0IF iψ φ= − +  are analytic functions, which are commonly 
called complex potentials. (20a, b) imply 0 0φ ψ∇ ⋅∇ = , curves of constant 0φ  
and curves of constant ψ  are orthogonal. If we combine this with (17a) we ar-
rive at the simple and well known fact that the gradient of the Hall potential is 
orthogonal to 0J . 

In the presence of an applied magnetic field E  and J  are not parallel, and 
therefore φ  and ψ  do not fulfill the Cauchy-Riemann differential equations. 
Nonetheless we can construct a complex potential whenever the stream function 
ψ  exists. There are two possibilities: either the real or the imaginary part of the 
complex potential is equal to the electric potential φ , and the remainder is de-
fined such as to satisfy the Cauchy-Riemann differential equations (enter (13), 
(16c), and J  = 0J  into (2a)). 

( )( )2 2
, ,1R I H a z H a zF iF i B Bφ µ φ µ ψ= − = + + +             (21) 
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Thus, the complex number IF  is equal to RF  rotated by 90˚. (21) is valid 
for Hall plates with small and large contacts at applied magnetic field without 
internal current sources. For point sized contacts without internal current 
sources we can write (21) for positive and negative applied magnetic field with 
identical ψ . Subtracting both we get with (4b) and (17a) 

( ) ( ) ( ), ,
,odd , even , even2

R a z R a z
R H H a z H a z

F B F B
F i B B iφ µ φ µ ψ φ

− −
= = + = − +  (22) 

(22) is again an analytical function. Since ψ  does not depend on ,a zB  in the 
entire Hall plate also evenφ  is constant versus applied magnetic field because 
they have to fullfill the Cauchy-Riemann differential equations. Comparison of 
(4a) with (16c) and (17a) gives even 0φ φ= . The contour lines of ψ  and even 0φ φ=  
are orthogonal. Contour lines of constant Hall potential are orthogonal to equipoten-
tial lines at zero applied magnetic field. Moreover, we have even 0Hφ φ φ φ φ= − = − , 
i.e., in this particular case the Hall potential is the change in potential with and 
without applied magnetic field. Finally we can write the complex potential in 
Hall plates with point contacts like this 

( )0 , , 0R I H a z H a zF iF B i Bφ µ ψ µ φ ψ= − = − + + .            (23) 

Hence, the complex potential has no quadratic dependence on applied mag-
netic field. This gives a simple relation between complex potentials with and 
without applied magnetic field. 

( ) ( ) ( )0 , 01 cos expR R H a z R H HF F i B F iµ θ θ= + = .          (24) 

(24) is compatible with (C9) in [15]. If we define a complex electric field by 

x yE E iE= −  it holds 

( ) ( ) ( ) ( ) ( )0d d exp
d d cosR I H

H

E z
E z F z i F z i

z z
θ

θ
= − = =          (25) 

with z x iy= + . If we define a complex current density by x yJ J iJ= −  it holds 

( ) ( ) ( ) ( ) ( )0 0
1 1cos expH HJ z i E z E z J zθ θ
ρ ρ

= − = =         (26) 

0E  and 0J  are the complex electric field and the complex current density, 
respectively, at zero applied magnetic field. The leftmost equality in (26) is iden-
tical to (2a). If we take the conjugate of (26) we see that the current density is 
equal to the electric field rotated CCW by the Hall angle (and scaled in length 
and dimension). 

In the review process of this paper the author became aware of [33]. In section 
5 of [33] some of the above given arguments are used to explain the “anti-Hall 
bar” of [10] for irregular shapes and point-sized contacts. In [33] the authors 
based their arguments on the assumption that for point contacts the current 
density does not change with applied magnetic field—which holds only for cas-
es, where a stream function exists (they did not explicitly refer to the concept of 
a stream function). 

https://doi.org/10.4236/jamp.2019.79136


U. Ausserlechner 
 

 

DOI: 10.4236/jamp.2019.79136 1984 Journal of Applied Mathematics and Physics 
 

6. Hall Plates without Holes and with Point Current Contacts 
on the Boundary 

Riemann’s mapping theorem says that all simply connected bounded plane do-
mains can be mapped onto the unit disk with a conformal transformation. Such 
a mapping is described by an analytical function and it preserves angles. The 
potentials at corresponding points are identical and also the currents into cor-
responding contacts are identical. The Hall angle between E  and J  is also 
identical, but E  and J  themselves are generally not identical. If we are only 
interested in the potential, we can limit the discussion to the circular unit disk of 
Figure 6 where the current contacts are placed symmetrical to the x-axis and the 
rightmost point (x, y) = (1, 0) is grounded—in accordance with our previous 
rule this point is at the RHS if we move along a current streamline. The current 
contacts split the boundary in two parts, left and right of the current flow. The 
Hall potential must be constant on each of these two segments, because no cur-
rent passes through the segments. Since we grounded a point on the right seg-
ment, the Hall potential and thus the Hall geometry factor vanish there. On the 
left segment the Hall geometry factor is 1HG =  according to (19), because for 

supply 0I >  it holds 0yJ >  on the x-axis and this gives 
2 1 1

12 supply
1 1 1

d d d
x x

H z H z y x y H y
x x

I t t J x t J x I
= =

=− =−

= ⋅ × = ⋅ × = − = −∫ ∫ ∫n J s n n n    (27) 

The Hall geometry factor between any two points inside the disk is smaller 
than 1. It can be computed in closed form (see Appendix A, compare also Fig-
ures 5 and 6 in [30]). 

 

 

Figure 6. A circular Hall unit disk with point-sized current contacts at azimuthal angles ± 30˚. supply ,1A, 1 , 1sheet H a zI R Bµ= = Ω = . 

Point 1 is grounded. The integration path in (16) between points 1 and 2 is dashed. (a) Shows the current streamlines in grey color 
and the electric potential in Volts according to the color map. The potential at the point-sized contacts is finite due to the finite 
mesh size in the FEM model; (b) Shows current streamlines in grey color and the Hall potential in Volts according to the color 
map. It shows that the Hall potential is constant on the current streamlines. 
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7. Hall Plates with One Hole and with Point Current Contacts 
on the Same Boundary 

These are plane domains with the shape of a ring. After Riemann’s mapping 
theorem, a ring of general shape can always be mapped onto the annular region 
between two concentric circles [34] [35]. One radius is arbitrary but the ratio of 
both radii is fixed by the so-called modulus of the doubly connected region. The 
modulus is a measure of the size of the hole, and it relates to the resistance be-
tween inner and outer boundary at zero magnetic field, if both boundaries are 
thought to be contacts at different potentials (like in a Corbino disk). We set the 
outer radius equal to 1 and the inner radius is 10 1r< < . 

First we assume that all current contacts are on the outer circle as shown in 
Figure 7. At zero applied magnetic field the stream function can be computed 
analytically as an infinite sum (see Appendix A). Since the hole is at a constant 
value of the stream function, it is encircled by a current streamline and the Hall 
potential is constant there. The difference of the Hall potential at the hole boun-
dary and at the outer segments agrees with the percentage of current, which is 
flowing left and right of the hole. The closer the current contacts are together, 
the more current passes by at this side of the hole. If the contacts are right of the 
hole as in Figure 7 and if we ground the right segment of the outer circle (which 
is at the RHS of the current streamlines), then the Hall geometry factor on the 
hole boundary approaches 1 as the current contacts approach the ground node 
in point 1. The Hall potential of the hole boundary is independent of the size of 
the hole: no matter if the central hole is small or large, there is always the same  

 

 

Figure 7. A circular Hall unit disk with insulating hole boundary and with peripheral point-sized current contacts at azimuthal 
angles ± 30˚. 1 supply ,0.4, 1 A, 1 , 1sheet H a zr I R Bµ= = = Ω = . Point 2 is grounded. The integration path between points 1 and 2 for compu-

ting the Hall potential on the hole boundary is the black dashed line. (a) Shows the current streamlines in grey color and the electric 
potential in Volts according to the color map. The potential at the point-sized contacts is finite due to the finite mesh size in the FEM 
model; (b) Shows current streamlines in grey color and the Hall potential in Volts according to the color map. It shows that the Hall 
potential is constant on the current streamlines. Note also two close current streamlines which encircle the hole. The battery and 
the current return path are also shown outside the sample. The hatched regions inside and outside the current return loop show 
that zH  is homogeneous there and it equals the values on the boundary (if the geometry extends infinitely in the direction perpen-
dicular to the drawing plane). Also inside the hole zH  is homogeneous and equal to the value on the hole boundary. 
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current partitioning between left and right, which depends solely on the spacing 
of contacts (see Appendix A). 

With the principle of RMFR [23] [24] [25] we can swap supply and sense 
contacts. Then the Hall potential on the outer boundary is constant if both cur-
rent contacts are located on the inner boundary. If both current contacts are ei-
ther on the inner boundary or on the outer boundary and the Hall potential is 
tapped between two points inside the annulus, its value is readily given by (17a, 
A5a). 

Since the current streamlines do not change with applied magnetic field, we 
can cut the Hall plate of Figure 7 along the specific current streamline, which 
encircles the hole, in two parts without changing the pattern of current flow (see 
Figure 8). The supply currents of both disjunct and simply connected regions 
are equal to the current partitioning in the original device. The current density 
fields exactly match before and after cutting. We know that the Hall potential is 
constant along current streamlines. Therefore it is constant along the cut line 
and along the hole before and after cutting, because the current streamlines were 
not changed by the cut. Before the cut we had a single ground node—after the  

 

 

Figure 8. A circular Hall unit disk with insulating hole and with point-sized current con-
tacts at azimuthal angles ± 30˚ is split up in its left and right current path around the hole. 
The current partitioning is 1 to 5 (see also (A6)). The figures show the current stream-
lines in grey color and the potential at , 1H a zBµ =  in (a) and the Hall potential in (b) 

(blue denotes minimum, red is maximum). The current streamlines at arbitrary magnetic 
field are not disturbed by the cut. The Hall potentials in the split parts are identical to the 
ones in the complete ring region, because the split parts were grounded in such a way as 
to establish continuity of the Hall potential like in the original device (see also Appendix 
A for details of analytical computation). 
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cut we have two disjunct Hall plates and we have to ground both of them. If we 
ground them along the cut line we re-establish original continuity of Hall poten-
tial across the cut line as it was in the original device before cutting. But this 
means that the two parts of the hole are also tied to the very same Hall potential, 
which gives zero Hall voltage between two points of the original hole boundary. 
On the left boundary of the left device the Hall geometry factor is 1 because it is 
left of the current flow and we grounded the opposite boundary, and on the right 
boundary of the right device it is −1 because it is right of the current flow and we 
grounded the opposite boundary. The current through the left device is supplyIζ  
and the current through the right device is ( ) supply1 Iζ−  with 1 6ζ =  denot-
ing the current splitting in Figure 8 ( 30 1 6 180α = = ×  , cf. Appendix A). 
Thus, the Hall voltage between contacts on the original outer boundaries is 

( )( ) ( )( )sheet supply supplytan 1 1 1H HV R I Iθ ζ ζ= + − − − , which is identical to the 
original Hall plate sheet supplytanH HV R Iθ=  with 1HG = . This also solves the 
riddle of the “anti-Hall bar within a Hall bar” of Section 2. 

8. Hall Plates with Several Holes and with Point Current 
Contacts on the Same Boundary 

As long as all current contacts are on boundaries and the net current into each 
boundary is zero, the problem can be described by a stream function. In the case 
of point contacts this stream function is constant versus applied magnetic field, 
as in the previous sections. If several hole boundaries have identical value of the 
stream function, there is no Hall voltage between them. An example is shown in 
Figure 9, where we played with the position of the current contacts on the large  

 

 

Figure 9. A rectangular Hall plate with three holes with insulating boundaries. Point-sized current contacts are at the boundary of 
the largest hole. Point 1 is grounded. Two solid straight black lines L1, L2 are the integration paths between small holes and large 
hole for computing the current through them. (a) Shows the current streamlines in grey color and the electric potential in color 
map, both at zero magnetic field; (b) Shows current streamlines in grey color and the Hall potential in color map for non-zero 
magnetic field. The battery and the current return path are also shown inside the large hole. The hatched regions in the large hole 
show that zH  is homogeneous and the same as on the hole boundary there. The red current flowline encircles both small holes. 
Thus, there is no Hall voltage between points on the hole boundaries of the square hole and of the triangular hole. All displayed 
quantities were obtained in an FEM simulation with COMSOL MULTIPHYSICS (Color maps: blue means negative values, red 
means positive values). 
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hole boundary until the current through the straight black lines L1, L2 became 
equal. Thus there is a single streamline (in red color) being split in two parts by 
the first hole, then joining up again to a single streamline and being split up 
again in two parts by the second hole. Therefore, the Hall potential is identical 
on the boundaries of the square and triangular holes. On the outer boundary the 
Hall potential is also constant but not equal to the one on the hole boundaries. 

9. Hall Plates with Extended Contacts at Large Hall Angle 

In Figure 3 and Figure 4 we saw that extended contacts tend to behave similar to 
point sized contacts for large Hall angles. This is explained in Figure 10, where 
the conductive region covers the upper half plane and current flows from infinity 
to an extended contact at the bottom in 1 1x− < < . At zero applied magnetic 
field the current enters the contact perpendicularly. However, with increasing 
magnetic field the current streamlines tilt against the perpendicular direction by 
the Hall angle. In the limit of 90˚ Hall angle the current streamlines are forced to 
flow parallel to the contact—thus, they flow in the same tangential direction as if 
the contacts were insulating boundaries. Then all current is pushed to the very 
end of the contact, where we have a current crowding as if it were a point-sized 
contact. Thereby, the sign of the Hall angle decides if the current is pushed to the 
left or to the right end of the contact. Near the “active” end of the contact the 
current density has semi-circular contour lines like with real point-sized contacts. 

This behavior can be studied analytically by conformal mapping of the z-plane 
in Figure 11(a) onto the w-plane in Figure 11(b). In the z-plane the current 
flows in the upper half plane from infinity ( z i= ∞ + ×∞ ) to the contact between 

1 0z i= − + ×  and 1 0z i= + × . This latter contact is grounded: its electric po-
tential is tied to 0 V. With the Schwartz-Christoffel mapping 

( ) ( ) ( )π 1 2 π 1 2d 2 exp cos 1 1
d π

H H
H H

w i i z z
z

θ θθ θ − − −= + −          (28) 

 

 

Figure 10. Semi-infinite Hall effect region y > 0 with solid black current output contact in the center of the straight lower boun-
dary. The figures show current streamlines in grey color and the magnitude of the current density in color mapping: large values 
are red, low values near zero are blue, values larger than red are clipped and appear white. The color coding is identical for all 
three figures. These are results of a 2D FEM simulation with COMSOL MULTIPHYSICS. (a) At zero magnetic field; (b) At 

, 10H a zBµ = − ; (c) At , 10H a zBµ = . At large Hall angles the current streamlines are nearly parallel to large parts of the elongated 

contact. The current is squeezed into the left end point of the contact at positive magnetic field and into the right end point of the 
contact at negative magnetic field. Near the end points the current density has semi-circular contour lines, which is similar to 
point-sized contacts. Due to the point-like behavior of the contacts the current density is larger at large Hall angles. 
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Figure 11. Conformal mapping of the Hall effect region in the upper half z-plane in (a) onto the 
semi-infinite slanted strip in the w-plane in (b) according to (24). In the w-plane current density, 
electric field, and electric potential are homogeneous. 

 
the upper half z-plane is mapped onto the strip of infinite length in the w-plane. 
The strip is slanted by the Hall angle, and the contact is between 1 0w i= − + ×  
and 1 0w i= + × . Due to the slanting the electric potential is constant on hori-
zontal lines. This gives a homogeneous electric field in negative v-direction. The 
current density is homogeneous and parallel to the long sides of the strip. 
Therefore the complex potential is 

( ) supply sheet 22cosI
H

wF w I R
θ

=                   (29) 

It holds ( ) ( )I IF w F z=  if w and z are linked by (28). With (25) it follows 

( ) ( ) ( )π 1 2 π 1 2
supply sheet

d d 1 tand 1 1
d d d π

H HI I HF F iwE z i i I R z z
z w z

θ θθ − − −+
= = = − + −  (30) 

and finally we get the current density with (26) 

( ) ( ) ( )π 1 2 π 1 2
supply

1 1 1
π

H H

H

J z I z z
t

θ θ− − −= − + −            (31) 

For infinite positive applied magnetic field π 2Hθ →  and  
( ) ( ) 11 1

supplyπ 1HJ z I t z −− −→ − − . This is identical to a negative point current source 
in 1 0z i= + × . The current density is constant on semi-circles around this point 
and it points towards 1 0z i= + × . At infinite negative applied magnetic field 

π 2Hθ → − . Then the center of the semi-circles moves to 1 0z i= − + × . The 
numerical example in Figure 10(c) has a Hall angle of 84.3˚ which means strong 
but not infinite magnetic field. Therefore the semi-circles are valid only in the 
neighborhood of the end points of the grounded contact. At larger distance the 
current streamlines deviate from the pattern given by point sources. There they 
are accurately given by (31). 

10. Discussion 

This paper answers the question “Under which circumstances does the Hall vol-
tage—tapped between two contacts on a boundary in a multiply-connected Hall 
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plate—vanish?”. This question was kindled by the Hall/Anti-Hall bar configura-
tions in [10]. For symmetrical circular ring domains with extended electrodes on 
perpendicular axes on both boundaries a rigorous solution via conformal map-
ping has been known since long ago [9]. For the much larger group of asymme-
trical, multiply-connected Hall plates the present paper works out a rigorous 
theory based solely on the classical laws of macroscopic flow of electric current. 
For the first time the three necessary requirements are identified: 1) a stream 
function must exist, 2) all boundaries must be insulating, and 3) the current 
across any contour starting at one sense contact and ending at the other sense 
contact must vanish. The first requirement means that the net current through 
all closed boundaries must vanish (e.g., current input and output contacts must 
be at the boundary of the same hole or they must be both on the outer perime-
ter). The second requirement means that all contacts are point-sized. The third 
requirement means that no Hall voltage drops along any current streamline. If 
the Hall plate has boundaries without current contacts, there is always a current 
streamline flowing along these boundaries, and therefore the Hall potential on 
these boundaries has no spatial change. 
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Appendix A 

Here we compute the current pattern for the Hall plate with insulating hole 
boundary and point-sized supply contacts at the outer boundary (see Figure 7). 
In principle one can do the calculation with the potential φ  or with the stream 
function ψ . However, with the potential one encounters the following problem: 
If we make a Fourier separation ansatz for φ  we need to fullfill the conditions 
for the radial current density rJ rφ= ∂ ∂  at the insulating boundaries. Thereby, 
we have to differentiate the series term wise, which reduces the convergence of 
the series drastically—it even diverges at 1r = . Whenever we do not manage to 
find a closed formula for the sum of the φ -series we should avoid boundary 
conditions that use derivatives of φ . Conversely, for the stream function we do 
not need derivatives at the insulating boundary, which facilitates the calculation. 

We use polar coordinates ( ),r ϕ . The current input contact is located in 
1,r ϕ α= = − , the current output is in 1,r ϕ α= =  with 0 πα< < . The annu-

lar conductive region is in 1 1r r≤ ≤  with 10 1r< < . For the stream function 
ψ  we make the ansatz (see [36]) 

( )( ) ( )( )0 0 0
1

ln 1 sin cosk k
k k k

k
A r B C A r B r C k kψ ϕ ϕ ϕ

∞
−

=

= + + + + +∑ .  (A1) 

From periodicity requirement ( ) ( ), , 2πr r rψ ϕ ψ ϕ= + ∀  it follows 0 0C = . 
The outer boundary is split up in a left segment ( ) ( )π, ,πϕ α α∈ − − ∪  and a 
right segment ( ),ϕ α α∈ − . In both segments the stream function has to be 
constant according to (18), because no current flows through the boundary. Ac-
cording to our rule (see (16c)) we set its value at the grounded segment to zero: 

right 0ψ = . At the left segment its value is leftψ . With (18) we get 

right left supply
supply0

sheet

lim d
2H z r

H

I
t I

R t

α ε

ϕε
ϕ α ε

ψ ψ
ϕ

ε

− +

→
=− −

− −
− = ⋅ × = −∫n n n .      (A2) 

rn  and ϕn  are the unit vectors in radial and azimuthal directions, respec-
tively. On the inner insulating boundary without current contacts it has some 
constant value holeψ ψ ϕ= ∀ , which leads to 2

1 1k
k kB A r k= − ∀ ≥ . Thus, ψ  is 

given on all boundaries (Dirichlet problem) and it is an even function in ϕ . 
Therefore 0 1kC k= ∀ ≥ . 

With 0∇⋅ =E  it follows from Gauss’ theorem 
π

π
d 0r r

ϕ
φ ϕ

=−
∂ ∂ =∫  for 

1 1r r< < . With (16c) it follows at arbitrary applied magnetic field:  
π

π
d 0r r

ϕ
ψ ϕ

=−
∂ ∂ =∫ . With (A1) this gives 0 0A = . Thereby it is allowed to diffe-

rentiate the ansatz (A1) term-wise because with kA  obtained below in (A4b) 
the term-wise differentiated series converges uniformly in 1 1r r< <  [37]. 

0B  is obtained from computing the mean of ψ  on the outer perimeter 

( ) ( ) ( )
π

0 supply sheet
π

1 d 2π 2 π 2 πleftr B I R
ϕ

ψ ϕ α ψ α
=−

= = = − = − −∫ .    (A3) 

and kA  is obtained by the Fourier series expansion of ψ  on the outer perime-
ter 
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( ) ( )

( )

π π
2 2

1
π π

π

supply sheet
π

1 cos d 1 cos d

1 cos d

k
kr k r A k

I R k

ϕ ϕ

α

ϕ ϕ α

ψ ϕ ϕ ϕ ϕ

ϕ ϕ

=− =−

−

=− =

= = −

= + −

∫ ∫

∫ ∫
     (A4a) 

supply sheet 2
1

sin 2
π 1k k

kA I R
k r

α α
α

⇒ =
−

.              (A4b) 

Finally, the stream function (with and without applied magnetic field) is given 
by 

2
1

supply sheet 2
1 1

sin1 2 cos 1
π 1

k k k

k
k

r r r kI R k
kr

α αψ ϕ
α

−∞

=

  −
= + −  

−   
∑ .     (A5a) 

The series can be summed up if the hole vanishes 

( )
( )

( )
( )1 supply sheet0

sin sin1 π arctan arctan
π 1 cos 1 cosr

r r
I R

r r
α ϕ α ϕ

ψ α
α ϕ α ϕ=

 − +
= − + +  − − − + 

. (A5b) 

The stream function is finite everywhere, and it is continuous except in the 
current contacts where it jumps only along the boundary. Now we compute the 
current that flows at the RHS of the hole. The current density on the x-axis is 

1 r ϕρ ψ−= ∂ ∂J n . With (18) and Figure 7 we get 

1 1

2 1 1

12 supply
1

d d d 1
π

x x

H z H z y y x H y
x r x r

I t t J x t J x I α= =

= =

 = ⋅ × = ⋅ × = − = − − 
 ∫ ∫ ∫n J s n n n . (A6) 

Point 2 is the ground node in ( ) ( ), 1,0r ϕ =  and point 1 is on the hole boundary 
in ( ) ( )1, ,0r rϕ = . We used the sum ( )1

1 sin π 2k kα α∞ − = −∑  for 0 πα< ≤ . 
With (19) the Hall geometry factor for one probe on the hole boundary against 
grounded point 2 is 

,12 1 πHG α= −                        (A7) 

Thus, the Hall geometry factor on the hole boundary is 1 for 0α →  , 0.5 for 
90α =  , and 0 for 180α →  . This symmetry agrees with common sense. Inte-

restingly, the current 12I  at the RHS of the hole is independent on the size of 
the hole 1r . This also holds for the Hall voltage measured between a point on 
the hole and a point on the outer boundary. 

On the hole boundary the sum in (A5a) vanishes and we get 

( )1 hole supply sheet, 0 1
π

r r I R αψ ϕ ψ  = = = = − 
 

.           (A8) 

On the right segment of the outer boundary we have in accordance with (A2) 

( ) right1, 0rψ ϕ α ψ= < = =                  (A9a) 

and on the left segment of the outer boundary we have 

[ ]( ) left supply sheet1, ,r I Rψ ϕ α α ψ= ∉ − = = − .           (A9b) 

The Hall geometry factor between points on left and right segment of the out-
er boundary is simply 1, independent of the hole and its size. 
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We call the path along which the specific current streamline flows, which se-
parates the annulus into left and right branches of current flow around the hole, 
the separation curve. It meets the inner circle at a right angle and it meets the 
outer circle in the current contact at the angle α . This is obvious if we note that 
the current flows isotropically out of the current contact (which is proven below) 
and the fraction πα  takes the left detour around the hole. If we want to com-
pute the separation curve, we have to solve ( ) hole,rψ ϕ ψ=  which gives 

2
1

2
1 1

sin cos 0
1

k k k

k
k

r r r k k
kr
α ϕ

−∞

=

−
=

−∑ .               (A10) 

We used this in Figure 8 where we computed 16 uniformly spaced points on 
the separation curve by solving (A10) numerically and input the curve into the 
geometry model of an FEM simulation. Then we cut the ring along this separa-
tion curve into two simply connected regions. A fine mesh of 3 million elements 
was made. The resulting currents through the straight horizontal lines in the 
circular ring matched up to 0.3 ppm with the currents through the simply con-
nected devices in the center and at the RHS of Figure 8. The Hall voltage was 
computed between left and right points on the boundary in y = 0 for a strong 
magnetic field with 45˚ Hall angle. It matched up to 2 ppm for simply and 
doubly connected regions. 

With ψ  we know the Hall potential Hφ  according to (17a), but not the po-
tential 0 Hφ φ φ= + . The potential at zero applied magnetic field is obtained by 
integrating the Cauchy-Riemann differential equations (20a, b). 

2
1

0 supply sheet 2
1 1

2 sind sin
π 1

k k k

k
k

r r r kr I R k
r kr
ψ α αφ ϕ

ϕ α

−∞

=

+∂ −
= =
∂ −∑∫ .   (A11a) 

0φ  is finite except in the current contacts. It is zero on the x-axis and odd in 
ϕ  and α . If the ring degenerates to a disk 1 0r →  we can sum it up in terms 
of elementary functions 

( )
( )1

2

0 supply sheet 20

1 2 cos1 ln
2π 1 2 cosr

r r
I R

r r
ϕ α

φ
ϕ α=

+ − −
=

+ − +
.        (A11b) 

For 1 0r →  the streamline supply sheetI Rψ ω=  with 1 0ω− ≤ ≤  is a circle 
with radius ( )sin sin πα α ω+  having its center at ( )sin π sin πx ω α ω= +  
and 0y = . This can be shown by entering the points on this circle into (A5b), 
eliminating y, and differentiating w.r.t. x, which gives zero. Hence, along this 
circle the stream function is constant. The circular stream function crosses the 
x-axis in ( ) ( )cos 2 π 2 cos 2 π 2x α ω α ω= − + + . 

We draw a small circle of radius 0rδ →  around the negative current con-
tact in ( ) ( )cos ,sinα α− =r . At points within this circle we compute the current 
density with (A5b) and (13). A series of the current density in powers of rδ   

has the dominant term ( )( ) ( ) ( )( )02

supply π HI t O− − − = − − − + − 
 

J r r r r r r . This  

proves that the current flows isotropically into the negative supply contact. If 
two current streamlines are given by 1 1 supply sheetI Rψ ω=  and 2 2 supply sheetI Rψ ω=  
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a current 1 2 supplyIω ω−  flows between them according to (18), and in the cur-
rent contact the two streamlines define an aperture angle of 1 2 πω ω− . 

A first streamline ( ) supply sheet1 π I Rψ α= − +  goes through the origin (com-
pare with (A5b)). Then it holds 1 πω α= − +  and the radius of this circle is 
equal to ( )1 2cosα . A second streamline is for πω α= −  which has infinite 
radius. This is a vertical line through the current contacts. Comparison of first 
and second streamlines says that the current flowing left of the center is equal to 
the current flowing right of the current contacts. 

The complex potential in the disk without hole can be computed more ele-
gantly without recurring to series developments. Thereby one writes down the 
current density J  in the upper half plane when a current enters the half plane  

in 1x = − : ( )( ) ( )( )21 1 2
supplyπ 1 1H x yI t x y x y− −= + + + +J n n . Thus, the potential 

at zero magnetic field is ( )21 1 2
0 supplyπ ln 1HI t x yφ ρ − −= − + + . Then the complex  

potential is obtained as the analytic function whose real part is 0φ . This gives 
( )1 1

0 supplyπ ln 1Hi I t zφ ψ ρ − −+ = − +  with z x iy= + . With the mapping  
( )( ) ( )cot 2 1 1z i w wα= − − +  the upper half of the z-plane is mapped inside 

the unit disk in the w-plane with the current input at ( )expw iα= − . Subtract-
ing the contribution of the outgoing current at 1x =  one gets the complex po-
tential at zero magnetic field 

( ) ( )
supply sheet

0
1 1ln 1 ln 1

π tan 2 1 tan 2 1
I R i z i zi

z z
φ ψ

α α

    − − − −
+ = − − +        + +    

  (A12) 

which matches (A5b, A11b). 
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