

The Aleksandrov Problem in Non-Archimedean 2-Fuzzy 2-Normed Spaces

Meimei Song, Haixia Jin*

Science of College, Tianjin University of Technology, Tianjin, China Email: *173106301@stud.tjut.edu.cn

How to cite this paper: Song, M.M. and Jin, H.X. (2019) The Aleksandrov Problem in Non-Archimedean 2-Fuzzy 2-Normed Spaces. Journal of Applied Mathematics and Physics, 7, 1775-1785. https://doi.org/10.4236/jamp.2019.78121

Received: July 19, 2019 Accepted: August 16, 2019 Published: August 19, 2019

Copyright © 2019 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative **Commons Attribution International** License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/ Θ

Open Access

Abstract

We introduce the definition of non-Archimedean 2-fuzzy 2-normed spaces and the concept of isometry which is appropriate to represent the notion of area preserving mapping in the spaces above. And then we can get isometry when a mapping satisfies AOPP and (*) (in article) by applying the Benz's theorem about the Aleksandrov problem in non-Archimedean 2-fuzzy 2-normed spaces.

Keywords

Non-Archimedean 2-Fuzzy 2-Normed Space, Isometry, Benz's Theorem

1. Introduction

Let X, Y be two metric spaces. For a mapping $f: X \to Y$, for all $x_1, x_2 \in X$, if *f* satisfies,

$$d_{Y}(f(x_{1}), f(x_{2})) = d_{X}(x_{1}, x_{2})$$

where $d_{X}(\cdot,\cdot), d_{Y}(\cdot,\cdot)$ denote the metrics in the spaces X, Y, then f is called an isometry. It means that for some fixed number p > 0, assume that f preserves distance p; *i.e.*, for all x_1, x_2 in X, if $d_x(x_1, x_2) = p$, we can get $d_{y}(f(x_{1}), f(x_{2})) = p$. Then we say p is a conservative distance for the mapping f. Whether there exists a single conservative distance for some f such that f is an isometry from X to Y, is the basic issue of conservative distances. It is called the Aleksandrov problem.

Theorem 1.1. ([1]) Let X,Y be two real normed linear spaces (or NLS) with dim X > 1, dim Y > 1 and Y is strictly convex, assume that a fixed real number p > 0 and that a fixed integer N > 1. Finally, if $f: X \to Y$ is a mapping satisfies

1) $||x_1 - x_2|| = p \Rightarrow ||f(x_1) - f(x_2)|| \le p$ 2) $||x_1 - x_2|| = N \cdot p \Rightarrow ||f(x_1) - f(x_2)|| \ge N \cdot p$

for all $x_1, x_2 \in X$. Then *f* is an affine isometry. we can call Benz's theorem.

We can see some results about the Aleksandrov problem in different spaces in [2]-[10]. A natural question is that: Whether the Aleksandrov problem can be proved in non-Archimedean 2-fuzzy 2-normed spaces under some conditions. So in this article, we will give the definition of non-Archimedean 2-fuzzy 2-normed spaces according to [11] [12] [13] [14], then by applying the Benz's theorem to fix the value of p and N to solve problems.

If a function from a field K to $[0,\infty)$ satisfies

- (T₁) $|a| \ge 0, |a| = 0 \iff a = 0;$
- (T₂) |ab| = |a||b|;
- (T₃) $|a+b| \le \max\{|a|, |b|\}.$

for all $a, b \in K$, then the field *K* is called a non-Archimedean field.

We can know |-1| = |1| = 1, $|a| \le 1$ for all $a \in N$ from the above definition. An example of a non-Archimedean valuation (or NAV) is the function $|\cdot|$ taking |0| = 0 and others into 1.

In 1897, Hence in [15] found that p-adic numbers play a vital role in the complex analysis, the norm derived from p-adic numbers is the non-Archimedean norm, the analysis of the non-Archimedean has important applications in physics.

Definition 1.2. Let X be a vector space and dim $X \ge 2$. A function $\|\cdot, \cdot\|: X \to [0, \infty)$ is called non-Archimedean 2-norm, if and only if it satisfies

- (T₁) $||x_1, x_2|| \ge 0$, $||x_1, x_2|| = 0$ iff x_1, x_2 are linearly dependent;
- (T₂) $||x_1, x_2|| = ||x_2, x_1||$;
- (T₃) $||rx_1, x_2|| = |r|||x_1, x_2||;$
- (T₄) $||x_1 + x_2, y|| \le \max\{||x_1, y||, ||x_2, y||\}$

for all $x_1, x_2, y \in X, r \in K$. Then $(X, \|\cdot, \cdot\|)$ is called non-Archimedean 2-normed space over the field K.

Definition 1.3. An NAV $|\cdot|$ in a linear space X over a field K. A function $F: X \times \mathbb{R} \rightarrow [0,1]$ is said to be a non-Archimedean fuzzy norm on X, if and only if for all $x, x_1, x_2 \in X$ and $s, t \in \mathbb{R}$,

- (F1) F(x,s) = 0 with $s \le 0$,
- (F2) F(x,s) = 1 iff x = 0 for all s > 0,
- (F3) $F(cx,s) = F\left(x,\frac{s}{|c|}\right)$, for $c \neq 0$ and $c \in K$,
- (F4) $F(x_1+x_2,s+t) \ge \min\{F(x_1,s),F(x_2,t)\},\$
- (F5) F(x,*) is a nondecreasing function of $s \in R$ and $\lim_{s\to\infty} F(x,s) = 1$.

Then (X, F) is known as a non-Archimedean fuzzy normed space (or F-NANS).

Theorem 1.4. Let (X, F) be an F-NANS. Assume the condition that:

(F6) F(x,s) > 0 for all $s > 0 \Rightarrow x = 0$.

Define $||x||_{\alpha} = \inf \{s : F(x,s) \ge \alpha\}, \alpha \in (0,1)$. We call these *a*-norms on *X* or the fuzzy norm on *X*.

Proof: 1) Let $||x||_{\alpha} = 0$, it implies that $\inf \{s : F(x,s) \ge \alpha\} = 0$, then for all $s \in R$, s > 0, $F(x,s) \ge \alpha > 0$, so x = 0;

Conversely, assume that x = 0, by (F2), F(x,s) = 1 for all s > 0, then $\inf \{s : F(x,s) \ge \alpha\} = 0$ for all $\alpha \in (0,1)$, so $||x||_{\alpha} = 0$.

2) By (F3), if $c \neq 0$, then

$$\left\|cx\right\|_{\alpha} = \inf\left\{s: F\left(cx,s\right) \ge \alpha\right\} = \inf\left\{s: F\left(x,\frac{s}{|c|}\right) \ge \alpha\right\}$$

Let
$$t = \frac{s}{|c|}$$
, then
 $\|cx\|_{\alpha} = \inf \{ |c|t : F(x,t) \ge \alpha \} = |c| \inf \{ t : F(x,t) \ge \alpha \} = |c| \cdot \|x\|_{\alpha}$

If c = 0, then

$$\left\|cx\right\|_{\alpha} = 0 = c\left\|x\right\|_{\alpha}$$

3) We have

$$\max \left\{ \|x\|_{\alpha}, \|y\|_{\alpha} \right\}$$

= max {inf {s, F(x, s) ≥ α}, inf {t, F(x, t) ≥ α}}
= inf {max {s,t}, F(x, s) ≥ α, F(x, t) ≥ α}
≥ inf {s+t, F(x+y, s+t) ≥ F(x+y, max {s,t})
≥ min {F(x, s) ≥ α, F(x, t) ≥ α} ≥ α}
≥ inf {r, F(x+y, r) ≥ α} = ||x+y||_{\alpha}

Example 1.5. Let $(X, \|\cdot\|)$ be a non-Archimedean normed space. Define

$$F(x,s) = \begin{cases} \frac{s}{s + \|x\|}, & s > 0, \\ 0, & s \le 0. \end{cases}$$

for all $x \in X$, Then (X, F) is a F-NANS.

Definition 1.6. Let Z be any non-empty set and $\mathfrak{I}(Z)$ be the set of all fuzzy sets on Z. For $Z_1, Z_2 \in \mathfrak{I}(Z)$ and $\lambda \in K$, define

$$Z_1 + Z_2 = \left\{ \left(z_1 + z_2, \mu_1 \land \mu_2 \right) | \left(z_1, \mu_1 \right) \in Z_1, \left(z_2, \mu_2 \right) \in Z_2 \right\}$$

and

$$\lambda Z_1 = \left\{ \left(\lambda z_1, \mu_1 \right) \mid \left(z_1, \mu_1 \right) \in Z_1 \right\}$$

Definition 1.7. A non-Archimedean fuzzy linear space $\hat{X} = X \times (0,1]$ over the field K, we define the addition and scalar multiplication operation of X as following: $(x_1, \mu_1) + (x_2, \mu_2) = (x_1 + x_2, \mu_1 \wedge \mu_2)$, $\lambda(x_1, \mu_1) = (\lambda x_1, \mu_1)$, if for every $(x_1, \mu_1) \in X$, we have a related non-negative real numebr, $||(x_1, \mu_1)||$ is the fuzzy norm of (x_1, μ_1) in such that

(T₁) $\|(x_1, \mu_1)\| = 0 \Leftrightarrow x_1 = 0, \mu_1 \in (0, 1];$

- (T₂) $\|\lambda(x_1, \mu_1)\| = |\lambda| \|(x_1, \mu_1)\|;$
- (T₃) $\|(x_1, \mu_1) + (x_2, \mu_2)\| \le \max \{\|(x_1, \mu_1 \land \mu_2), (x_2, \mu_1 \land \mu_2)\|\};$
- (T₄) $\|(x_1, \bigvee_t \mu_t)\| = \bigwedge_t \|(x_1, \mu_t)\|$ for all $\mu_t \in (0, 1]$.

for every $(x_1, \mu_1), (x_2, \mu_2) \in X, \lambda \in K$, then we say that X is an F-NANS.

Definition 1.8. Let X be a non-empty non-Archimedean field set, $\mathfrak{I}(X)$ be the set of all fuzzy sets on X. If $f_1 \in \mathfrak{I}(X)$, then

 $f_1 = \{(x_1, \mu_1) : x_1 \in X, \mu_1 \in (0,1]\}$. Clearly, $|f_1(x_1)| \le 1$, so f_1 is a bounded function. Let $K \in \mathbb{Q}$, then $\mathfrak{I}(X)$ is a non-Archimedean linear space over the field K and the addition, scalar multiplication are defined as follows

$$f_1 + f_2 = \{(x_1, \mu_1) + (x_2, \mu_2)\} = \{(x_1 + x_2, \mu_1 \land \mu_2) | (x_1, \mu_1) \in f_1, (x_2, \mu_2) \in f_2\}$$

and

$$\lambda f_1 = \left\{ \left(\lambda x_1, \mu_1 \right) \mid \left(x_1, \mu_1 \right) \in f_1 \right\}$$

If for every $f \in \mathfrak{I}(X)$, there is a related non-negative real number ||f|| called the norm of f in such that for all $f_1 = (x_1, \mu_1), f_2 = (x_2, \mu_2) \in \mathfrak{I}(X)$

(T₁) ||f|| = 0 iff f = 0. For

$$\begin{split} \left\| f \right\| &= \left\{ \left\| \left(x_1, \mu_1 \right) \right\| \right\} = 0 \\ \Leftrightarrow x_1 &= 0, \mu_1 \in (0, 1] \\ \Leftrightarrow f &= 0. \end{split}$$

 $\begin{aligned} (\mathbf{T}_{2}) \quad \|\lambda f\| &= |\lambda| \|f\|, \lambda \in K \text{ . For} \\ &\|\lambda f\| &= \left\{ \|\lambda (x_{1}, \mu_{1})\| \right\} = \left\{ |\lambda| \|(x_{1}, \mu_{1})\| \right\} = |\lambda| \|f\| \\ (\mathbf{T}_{3}) \quad \|f_{1} + f_{2}\| &\leq \max \left\{ \|f_{1}\|, \|f_{2}\| \right\} \text{ . For} \\ &\|f_{1} + f_{2}\| = \left\{ \|(x_{1}, \mu_{1}) + (x_{2}, \mu_{2})\| \right\} \\ &= \left\{ \|(x_{1} + x_{2}), (\mu_{1} \wedge \mu_{2})\| \right\} \\ &\leq \max \left\{ \|(x_{1}, \mu_{1} \wedge \mu_{2})\|, \|(x_{2}, \mu_{1} \wedge \mu_{2})\| \right\} \\ &\leq \max \left\{ \|f_{1}\|, \|f_{2}\| \right\} \end{aligned}$

Then the linear space $\Im(X)$ is a non-Archimedean normed space.

Definition 1.9. ([4]) A 2-fuzzy set on X is a fuzzy set on $\Im(X)$.

Definition 1.10. A NAV $|\cdot, \cdot|$ in a linear space $\mathfrak{I}(X)$ over a field K. If a function $F: \mathfrak{I}(X)^2 \times \mathbb{R} \to [0,1]$ is a non-Archimedean 2-fuzzy 2-norm on X (or a fuzzy 2-norm on $\mathfrak{I}(X)$), iff for all $f_1, f_2, f_3 \in \mathfrak{I}(X)$, $s, t \in \mathbb{R}$,

- (F1) $F(f_1, f_2, s) = 0$ for $s \le 0$;
- (F2) $F(f_1, f_2, s) = 1$ iff f_1, f_2 are linearly dependent for all s > 0;
- (F3) $F(f_1, f_2, s) = N(f_2, f_1, s);$
- (F4) $F(cf_1, f_2, s) = N\left(f_1, f_2, \frac{s}{|c|}\right)$, for $c \neq 0$ and $c \in K$;
- (F5) $F(f_1, f_2 + f_3, s + t) \ge \min \{F(f_1, f_2, s), F(f_1, f_3, t)\};$

(F6) $F(f_1, f_2, *)$ is a nondecreasing function of R and $\lim_{s\to\infty} F(f_1, f_2, s) = 1$;

Then $(\Im(X), F)$ is called a non-Archimedean fuzzy 2-normed space (or FNA-2) or (X, F) is a non-Archimedean 2-fuzzy 2-normed space.

Theorem 1.11. Let $(\Im(X), F)$ be an FNA-2. Suppose the condition that: (F7) $N(f_1, f_2, s) > 0$ for all $s > 0 \Rightarrow f_1$ and f_2 are linearly dependent.

Define $||f_1, f_2||_{\alpha} = \inf \{t : N(f_1, f_2, s) \ge \alpha, \alpha \in (0, 1)\}$. We call these *a*-2-norms on $\mathfrak{I}(X)$ or the 2-fuzzy 2-norm on *X*.

Proof: It is similar to the proof of Theorem 1.4. \Box

2. Main Result

From now on, if we have no other explanation, let dim $\Im(X) \ge 2$,

 $\dim \mathfrak{I}(Y) \geq 2. \quad \blacktriangle = \left\| f - h, g - h \right\|_{\alpha}, \quad \blacktriangledown = \left\| \psi(f) - \psi(h), \psi(g) - \psi(h) \right\|_{\beta}$

Definition 2.1. Let $\mathfrak{I}(X), \mathfrak{I}(Y)$ be two FNA-2 and a mapping $\psi : \mathfrak{I}(X) \to \mathfrak{I}(Y)$. If for all $f, g, h \in \mathfrak{I}(X)$ and $\alpha, \beta \in (0,1)$, we have

$$\left\|\psi(f) - \psi(h), \psi(g) - \psi(h)\right\|_{\beta} = \left\|f - h, g - h\right\|_{\alpha} \quad (\nabla)$$

then ψ is called 2-isometry.

Definition 2.2. For a mapping $\psi : \Im(X) \to \Im(Y)$ and $f, g, h \in \Im(X)$

1) If $\blacktriangle = 1$, then $\forall = 1$, we say ψ satisfies the area one preserving property (AOPP).

2) If $\blacktriangle = n$, then $\forall = n$, we say ψ satisfies the area *n* for each *n* (AnPP).

Definition 2.3. We say a mapping $\psi : \Im(X) \to \Im(Y)$ preserves collinear, if f, g, h mutually disjoint elements of $\Im(X)$, then exist some real number t we have

$$\psi(g) - \psi(h) = t(\psi(f) - \psi(h))$$

Next, we denote $\|\psi(f) - \psi(h), \psi(g) - \psi(h)\|_{\beta} \le \|f - h, g - h\|_{\alpha}$ (*).

Lemma 2.4. Let $\mathfrak{I}(X)$ and $\mathfrak{I}(Y)$ be two FNA-2. If $\blacktriangle \leq 1$, a mapping $\psi : \mathfrak{I}(X) \rightarrow \mathfrak{I}(Y)$ satisfies (*) and AOPP, then we can get (∇) where $\blacktriangle \leq 1$.

Proof: 1) Firstly, we prove that f preserves collinear. We assume that $\blacktriangle = 0$, according to (*), we get

$$\psi(f) - \psi(h), \psi(g) - \psi(h) \Big|_{\beta} = 0$$

then $\psi(f) - \psi(h)$ and $\psi(g) - \psi(h)$ are linearly dependent. So we obtain that ψ preserves collinear.

2) Secondly, we prove that when $\blacktriangle \leq 1$, we can get (∇) . If

▼<▲

Let
$$\omega = h + \frac{f - h}{\|f - h, g - h\|_{\alpha}}$$
, then $\|\omega - h, g - h\|_{\alpha} = 1$, so

$$\left\|\psi(\omega) - \psi(h), \psi(g) - \psi(h)\right\|_{\beta} = 1 \quad (\Delta)$$

Since

$$\left\| \omega - f, g - h \right\|_{\alpha} = \left\| \frac{f - h}{\left\| f - h, g - h \right\|} - (f - h), g - h \right\| = 1 - \blacktriangle$$

according to (*), we have

$$\left\|\psi(\omega)-\psi(f),\psi(g)-\psi(h)\right\|_{\beta} \le \left\|\omega-f,g-h\right\|_{\alpha} = 1-\blacktriangle$$

Since *f* preserves collinear, so there exists a real number *s* such that

$$\psi(\omega) - \psi(h) = s(\psi(f) - \psi(h))$$

and

$$\psi(\omega) - \psi(f) = (s-1)(\psi(f) - \psi(h))$$

So, we get

$$\begin{split} & \left\|\psi\left(\omega\right) - \psi\left(h\right), \psi\left(g\right) - \psi\left(h\right)\right\|_{\beta} \\ &= \left|s\right| \checkmark \\ &\leq \left|s - 1\right| \lor + \checkmark \\ &= \left\|\psi\left(\omega\right) - \psi\left(f\right), \psi\left(g\right) - \psi\left(h\right)\right\|_{\beta} + \checkmark \\ &< 1 - \blacktriangle + \bigstar = 1 \end{split}$$

This contradicts with Δ .

Lemma 2.5. Let $\mathfrak{I}(X)$ and $\mathfrak{I}(Y)$ be two FNA-2. If a mapping $\psi : \mathfrak{I}(X) \to \mathfrak{I}(Y)$ satisfies AOPP and preserves collinear, then

1) ψ is an injective;

2) if $\phi(f) = \psi(f) - \psi(0)$, then $\phi(f+g) = \phi(f) + \phi(g)$ and $\phi(\lambda f) = \lambda \phi(f)$ with $0 < \lambda < 1$.

Proof: 1) We prove ψ is injective. Let $f, g \in \mathfrak{I}(X)$, since dim $\mathfrak{I}(X) \ge 2$, there exists an element $h \in \mathfrak{I}(X)$ such that f - h, g - h are linearly independent. Hence $\blacktriangle \neq 0$.

Let $\gamma = h + \frac{g - h}{\|f - h, g - h\|_{\alpha}}$, then $\|f - h, \gamma - h\|_{\alpha} = 1$, and ψ satisfies AOPP,

so

$$\left\|\psi(f) - \psi(h), \psi(\gamma) - \psi(h)\right\|_{\beta} = 1$$

we can see $\psi(h) \neq \psi(f)$. So the mapping ψ is injective.

2) Let f, g, h mutually disjoint elements of $\Im(X)$ and $f = \frac{g+h}{2}$, so $f-h=g-f(\star)$. Since ψ is injective and preserves collinear, there exist $s \neq 0$ such that

$$\psi(g) - \psi(f) = s(\psi(h) - \psi(f))$$

Since dim $\mathfrak{I}(X) \ge 2$, there exist an element $f_1 \in \mathfrak{I}(X)$ such that

$$\|g-f, f_1-f\|_{\alpha} \neq 0$$
. Let $\eta = f + \frac{f_1-f}{\|g-f, f_1-f\|_{\alpha}}$, then $\|g-f, \eta-f\|_{\alpha} = 1$ and
 $\|\psi(g)-\psi(f), \psi(\eta)-\psi(f)\|_{\beta} = 1.$

So,

$$\left\|\psi(h)-\psi(f),\psi(\eta)-\psi(f)\right\|_{\beta}=\left|\frac{1}{s}\right|.$$

Since (\star) , we get $||h - f, \eta - f||_{\alpha} = 1$ and $||\psi(h) - \psi(f), \psi(\eta) - \psi(f)||_{\beta} = 1.$

According to the mapping ψ is injective, so s = -1, and

$$\psi\left(\frac{g+h}{2}\right) = \frac{\psi(g) + \psi(h)}{2}$$

Let $\phi(f) = \psi(f) - \psi(0)$, so we have

$$\phi\left(\frac{g+h}{2}\right) = \frac{\phi(g) + \phi(h)}{2}$$

Therefore

$$\phi\left(\frac{f}{2}\right) = \phi\left(\frac{f+0}{2}\right) = \frac{\phi(f)}{2}$$

and

$$\phi(f+g) = \phi\left(\frac{2f+2g}{2}\right) = \frac{\phi(2f)}{2} + \frac{\phi(2g)}{2} = \phi(f) + \phi(g)$$

So ϕ is additive.

From the lemma 2.4, we know that if $\blacktriangle \leq 1$, then ϕ satisfies 2-isometry.

$$0 = \left\|\lambda f, f\right\|_{\alpha} = \left\|\psi(\lambda f) - \psi(0), \psi(f) - \psi(0)\right\|_{\beta} = \left\|\phi(\lambda f), \phi(f)\right\|_{\beta}$$

so $\phi(\lambda f)$ and $\phi(f)$ is linearly dependent *i.e.* $\phi(\lambda f) = s\phi(f)$. Next we assume $||f,g||_{\alpha} = \lambda$,

$$\frac{1}{\lambda} \|f,g\|_{\alpha} = \left\| \frac{f}{\lambda} - 0, g - 0 \right\|_{\alpha} = 1$$

and

$$1 = \left\| \phi\left(\frac{f}{\lambda}\right) - \phi(0), \phi(g) - \phi(0) \right\|_{\beta}$$
$$= \left\| \phi\left(\frac{f}{\lambda}\right), \phi(g) \right\|_{\beta}$$
$$= \frac{1}{|s|} \left\| \phi(f), \phi(g) \right\|_{\beta}$$
$$= \frac{1}{|s|} \left\| f, g \right\|_{\alpha}$$

Thus
$$\lambda = |s|$$
, if $s = -\lambda$, then $\phi(\lambda f) = -\lambda \phi(f)$, but

$$\begin{split} \left| \lambda - 1 \right| \left\| f, g \right\|_{\alpha} &= \left\| \lambda f - f, g - 0 \right\|_{\alpha} \\ &= \left\| \phi(\lambda f) - \phi(f), \phi(g) - \phi(0) \right\|_{\beta} \\ &= \left\| -\lambda \phi(f) - \phi(f), \phi(g) - \phi(0) \right\|_{\beta} \\ &= (\lambda + 1) \left\| \phi(f), \phi(g) \right\|_{\beta} \\ &= (\lambda + 1) \left\| f, g \right\|_{\alpha} \end{split}$$

so $|\lambda - 1| = (\lambda + 1)$. It contradicts with $0 < \lambda < 1$. Thus $\phi(\lambda f) = \lambda \phi(f)$. \Box

Lemma 2.6. Let $\mathfrak{I}(X)$ and $\mathfrak{I}(Y)$ be FNA-2. If $\blacktriangle \leq 1$, a mapping $\psi : \mathfrak{I}(X) \to \mathfrak{I}(Y)$ satisfies (*) and AOPP, then we can get for all $f, g, h \in \mathfrak{I}(X)$, we can get (∇) .

Proof: From lemma 2.4, we know ψ preserves collinear.

For any $f, g, h \in \Im(X)$, there exist two numbers $m, n \in \mathbb{N}^*$ such that $\blacktriangle \leq \frac{m}{2}$.

$$n \le \frac{1}{n}$$

So,

$$\left\|\psi\left(\frac{f}{m}\right)-\psi\left(\frac{h}{m}\right),\psi\left(g\right)-\psi\left(h\right)\right\|_{\beta} \le \left\|\frac{f-h}{m},g-h\right\|_{\alpha} \le \frac{1}{n}$$

and

$$\left\|\left(\frac{f}{m}\right) - \phi\left(\frac{h}{m}\right), \phi(g) - \phi(h)\right\|_{\beta} \le \frac{1}{n}$$

By lemma 2.5, we have

$$\left\|\frac{1}{m}\left(\phi(f) - \phi(h)\right), \phi(g) - \phi(h)\right\|_{\beta} \le \frac{1}{n}$$
$$\left\|\phi(f) - \phi(h), \phi(g) - \phi(h)\right\|_{\beta} \le \frac{m}{n}$$

Thus

$$\left\|\psi(f)-\psi(h),\psi(g)-\psi(h)\right\|_{\beta}\leq \frac{m}{n}$$

Lemma 2.7. Let $\mathfrak{I}(X)$ and $\mathfrak{I}(Y)$ be two FNA-2. If a mapping $\psi:\mathfrak{I}(X) \to \mathfrak{I}(Y)$ satisfies AOPP and (*) for all $f, g, h \in \mathfrak{I}(X)$ with $\blacktriangle \leq 1$, then ψ satisfies AnPP.

Proof: Let $f, g, h \in \mathfrak{I}(X)$ and $n \in \mathbb{N}$. Let

$$\blacktriangle = n, \ g_i = h + \frac{i}{n} (g - h)$$

and

$$\|f-h, g_{i+1}-g_i\|_{\alpha} = 1, \ i = 0, 1, \dots, n-1.$$

So,

$$\left\|\psi\left(f\right)-\psi\left(h\right),\psi\left(g_{i+1}\right)-\psi\left(g_{i}\right)\right\|_{\beta}=1,\ i=0,1,\cdots,n-1.$$

DOI: 10.4236/jamp.2019.78121

We know ψ preserves collinear. So there exist a number $t \in \mathbb{R}$ such that

$$\psi(g_2) - \psi(g_1) = t(\psi(g_1) - \psi(g_0))$$

Therefore

Then we have $t = \pm 1$. By lemma 2.5, t = 1, so

$$\psi(g_2) - \psi(g_1) = \psi(g_1) - \psi(g_0).$$

In the same way, we can get

$$\psi(g_{i+1}) - \psi(g_i) = \psi(g_i) - \psi(g_{i-1}), \ i = 0, 1, \dots, n-1.$$

Hence

$$\psi(g) - \psi(h) = \psi(g_n) - \psi(g_0)$$

= $\psi(g_n) - \psi(g_{n-1}) + \psi(g_{n-1}) - \psi(g_{n-2}) + \dots + \psi(g_1) - \psi(g_0)$
= $n(\psi(g_1) - \psi(g_0))$

Therefore

$$= \left\| \psi(f) - \psi(h), n(\psi(g_1) - \psi(g_0)) \right\|_{\beta}$$
$$= n \left\| \psi(f) - \psi(h), \psi(g_1) - \psi(g_0) \right\|_{\beta} = n$$

Theorem 2.8. Let $\mathfrak{I}(X)$ and $\mathfrak{I}(Y)$ be two FNA-2. If a mapping $\psi:\mathfrak{I}(X) \to \mathfrak{I}(Y)$ satisfies AOPP and (*) for all $f, g, h \in \mathfrak{I}(X)$ with $\blacktriangle \leq 1$, then ψ is 2-isometry.

Proof: Since lemma 2.4, we just need to prove that (∇) with $\blacktriangle > 1$.

We can assume that when $\blacktriangle > 1$, for all $f, g, h \in \Im(X)$, we have $\blacktriangledown < n_0 + 1$. and there exist a number $n_0 \in \mathbb{N}^*$ such that

Let
$$\tau = f + \frac{n_0 + 1}{\|f - h, g - h\|_{\alpha}} (f - h)$$
, then
 $\|\tau - f, g - h\|_{\alpha} = n_0$

and

$$\|\tau - h, g - h\|_{\alpha} = n_0 + 1 - \blacktriangle$$

+1

Since ψ preserves collinear, there exist a number $c \in \mathbb{R}$ such that

$$\psi(\tau) - \psi(f) = c(\psi(h) - \psi(f))$$

Since 2),

$$n_{0} + 1 = \left\| \psi(\tau) - \psi(f), \psi(g) - \psi(h) \right\|_{\beta}$$
$$= \left| c \right| \checkmark$$
$$\leq \left| c - 1 \right| \checkmark + \checkmark$$
$$= \left\| \psi(\tau) - \psi(h), \psi(g) - \psi(h) \right\|_{\beta} + \checkmark$$
$$< n_{0} + 1 - \blacktriangle + \bigstar = n_{0} + 1$$

which is contradiction, so

$$\mathbf{V} \ge n_0 + 1$$

Therefore, we get (∇) with $\blacktriangle > 1$. Hence

$$\left\|\psi\left(f\right)-\psi\left(h\right),\psi\left(g\right)-\psi\left(h\right)\right\|_{\beta}=\left\|f-h,g-h\right\|_{\alpha}$$

for all $f, g, h \in \mathfrak{I}(X)$. \Box

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- Benz, W. and Berens, H. (1987) A Contribution to a Theorem of Ulam and Mazur. Aequationes Mathematicae, 34, 61-63. <u>https://doi.org/10.1007/BF01840123</u>
- Bag, T. and Samanta, S.K. (2003) Finite Dimensional Fuzzy Normed Linear Spaces. *The Journal of Fuzzy Mathematics*, 11, 687-705.
- [3] Chu, H.Y., Park, C.G. and Park, W.G. (2004) The Aleksandrow Problem in Linear 2-Normed Spaces. *Journal of Mathematical Analysis and Applications*, 289, 666-672. https://doi.org/10.1016/j.jmaa.2003.09.009
- [4] Somasundaram, R.M. and Beaula, T. (2009) Some Aspects of 2-Fuzzy 2-Normed Linear Spaces. *Bulletin of the Malaysian Mathematical Sciences Society*, **32**, 211-221.
- [5] Zheng, F.H. and Ren, W.Y. (2014) The Aleksandrow Problem in Quasi Convex Normed Linear Space. Acta Scientiarum Natueralium University Nankaiensis, No. 3, 49-56.
- [6] Huang, X.J. and Tan, D.N. (2017) Mapping of Conservative Distances in p-Normed Spaces (0 https://doi.org/10.1017/S0004972716000927
- Ma, Y.M. (2000) The Aleksandrov Problem for Unit Distance Preserving Mapping. *Acta Mathematica Science*, 20B, 359-364. <u>https://doi.org/10.1016/S0252-9602(17)30642-2</u>
- [8] Wang, D.P., Liu, Y.B. and Song, M.M. (2012) The Aleksandrov Problem on Non-Archimedean Normed Spaces. *Arab Journal of Mathematical Science*, 18, 135-140. <u>https://doi.org/10.1016/j.ajmsc.2011.10.002</u>
- Ma, Y.M. (2016) The Aleksandrov-Benz-Rassias Problem on Linear n-Normed Spaces. *Monatshefte für Mathematik*, 180, 305-316. https://doi.org/10.1007/s00605-015-0786-8
- [10] Huang, X.J. and Tan, D.N. (2018) Mappings of Preserves n-Distance One in N-Normed Spaces. *Aequations Mathematica*, 92, 401-413. <u>https://doi.org/10.1007/s00010-018-0539-6</u>
- [11] Xu, T.Z. (2013) On the Mazur-Ulanm Theorem in Non-Archimedean Fuzzy n-Normed Spaces. *ISRN Mathematical Analysis*, 67, 1-7. <u>https://doi.org/10.1155/2013/814067</u>
- [12] Chang, L.F. and Song, M.M. (2014) On the Mazur-Ulam Theorem in Non-Archimedean Fuzzy 2-Normed Spaces. *Mathematica Applicata*, 27, 355-359.
- [13] Alaca (2010) New Perspective to the Mazur-Ulam Problem in 2-Fuzzy 2-Normed Linear Spaces. *Iranian Journal of Fuzzy Systems*, 7, 109-119.

- [14] Park, C. and Alaca, C. (2013) Mazur-Ulam Theorem under Weaker Conditions in the Framework of 2-Fuzzy 2-Normed Linear Spaces. *Journal of Inequalities and Applications*, 2018, 78. <u>https://doi.org/10.1186/1029-242X-2013-78</u>
- [15] Hensel, K. (1897) Über eine neue Begründung der Theorie der algebraischen Zahlen. Jahresbericht der Deutschen Mathematiker- Vereinigung, 6, 83-88.