@, Journal of Applied Mathematics and Physics, 2019, 7, 1755-1774
@%?® scientific N .
Q http://www.scirp.org/journal/jamp
¢S Research -
94% Publishing ISSN Online: 2327-4379

ISSN Print: 2327-4352

Stability of High-Order Staggered-Grid Schemes
for 3D Elastic Wave Equation in Heterogeneous
Media

Atish Kumar Joardar!23, Wensheng Zhang1.2*

'Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
2School of Mathematical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
3Department of Mathematics, Islamic University, Kushtia, Bangladesh

Email: *zws@lsec.cc.ac.cn, atishjoardar@gmail.com

How to cite this paper: Joardar, AK. and  Abstract

Zhang, W.S. (2019) Stability of High-Order

Staggered-Grid Schemes for 3D Elastic Wave N this paper, we firstly derive the stability conditions of high-order stag-
Equation in Heterogeneous Media. Journal  gered-grid schemes for the three-dimensional (3D) elastic wave equation in
of Applied Mathematics and Physics, 7,
1755-1774.
https://doi.org/10.4236/jamp.2019.78120

heterogeneous media based on the energy method. Moreover, the plane wave
analysis yields a sufficient and necessary stability condition by the von Neu-

mann criterion in homogeneous case. Numerical computations for 3D wave
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1. Introduction

Numerical simulation of wave propagation has important applications in many

High-Order, Stability, Energy Estimate

scientific fields such as geophysics and seismic inversion. There are several types
of numerical methods to solve the wave equations, for example, the finite dif-
ference method, the finite element method [1] [2] [3] [4], the spectral element
method [5], the discontinuous Galerkin method [6] [7] and the finite volume
method [8] [9]. Each of the above numerical methods has its own advantages
and disadvantages. In this paper, we consider the finite difference method.

The finite difference method is a very popular method because of high com-
putational efficiency. In fact, it has been applied to wave simulation for several
decades [10] [11] [12] [13]. Since perfect numerical simulation depends on both
stability and the order of accuracy, the high-order schemes and the corresponding
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stability are an important research topic of this field. In particularly, we may list a
few here. In [14], Cohen and Joly construct and analyses a family of fourth-order
schemes for the acoustic wave equation in nonhomogeneous media. In [15], Sei
analysis the stability of high-order difference schemes for the 2D elastic wave
equation in heterogeneous media. The stable difference approximation for the
3D elastic wave equation in the second-order formulation in heterogeneous me-
dia has been investigated in [16]. In [17], a new family of locally one-dimensional
schemes with fourth-order accuracy both in space and time for the 3D elastic
wave equation is constructed and the stability is derived. The constructed new
schemes in [17] only involve a three-point stencil in each spatial direction to
achieve fourth-order accuracy. In this paper, based on the energy method, we
study the stability analysis for the high-order staggered-grid schemes of the 3D
elastic wave equation in heterogeneous media. To our knowledge, there is no
work in this respect and our result is new.

The reminder of the paper is organized as follows. In Section 2, we present the
governing equation and the high-order difference schemes in heterogeneous on
staggered-grid grids. In Section 3, the stability analysis for the high-order dif-
ference schemes in heterogeneous is presented. In Section 4, the plane wave
analysis in homogeneous case is investigated. In Section 5, we present numerical
comparisons for 3D elastic wave simulation. Finally the conclusion and discus-

sions are given in Section 6.

2. High-Order Spatial Discretization

We consider the following three-dimensional (3D) elastic wave equations in iso-

tropic heterogeneous media

o’u o au . ov .ow) d( ov  ou) o éu  ow

— = (/1+2,u)—+/1—+/1— —— | U=t pu— || y—+u—|=f,
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v o ov ou 0 ov au ow) o ov ow

PG| Mt u— |- — (/l+2,u)—+/1—+/1— —— | g—+u—|=1,, (1)
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where (u,v,w)(X,t) are the displacement vector at location X =(X,y,z) and
time ¢ p(x) is the density, l(x) >0 and ,u(x) >0 are the Lamé parame-
ters, f=(f,f,,f,) isthe external force.

Using the stress tensor, we can formulate the above system (1) as a first order

in the following ways

%u (o™ oY or”
P + + =0,
ot OX oy oz
2 Xy vy yz
pa_;/_ or +67 +8T _0, 2)
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where
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Let AX, Ay and Az be the spatial steps of X,Y,Z directions respectively.
Now discretization of (2) with the second-order accuracy in space gives

XX XX Xy Xy Xz Xz

T -7 - -7
@(i K)- i+%,j,k i%,j,k ~ i,j+%,k i,j—%,k - i,j,k+% i,j,k% o @
otz AX Ay Az '
Xy Xy yy W yz _ Y
62V(. 'k) Ti+%,j,k Ti—%,j,k Ti,j+%,k Ti,j—%,k Ti,j,k+% Ti,j,k—% o (5
p_2 Il Jl - - — =0, 5
ot AX Ay Az
Xz o yz v 2 _ .z
2w .. Flie G Gtk T fite Gwer That
P : (IIJ!k)_ 2 2 _ 2 2 2 2 =0. (6)
ot AX Ay Az

For computing this, we need the values of u, v and w at the grid
1.1 1 . . .
|+E,j+5,k+5 . One convenient way is to choose averaging the corres-

ponding vales. For example,

(U Ui Uigaae TUe Ui TU Gk
— + + f
2 2 2

1.1, 1=
i+=, j+= k+=
gk 3

However, such choices have no physical meaning. Another way is to compute
u,v,w directly on staggered grids. In particular, we replace Equations (4)-(6)
with Equations (7)-(9):

XX XX Xy Xy Xz Xz

T -7 T -7 -
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2 2 AX Ay
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-2 @@ 27

Az

=0.

Obviously, the schemes (7)-(9) are the second-order accuracy in space. In or-
der to construct high-order accuracy scheme in space, we first define the follow-
ing functional spaces. Now we introduce the differentiation operator D, on

half integer grids with O (AXZL) order as follows:

ou L A
il ~Du ., =>210u -u , 10
(axl,j,k X, j k §AX|: i+|—%,j,k i|+;j,k:| (10)
or
ou L4
(&jhz,j,k - Dxui%i,k - E‘E[u”"j'k _ui"”'j’k]’ (1

where f, is difference coefficients on the staggered grids, which can be calcu-
lated by a fast algorithm [18] [19] [20] by Matlab tool. Obviously, the approxi-
mation (10) or (11) has O(AXZL) order accuracy. For example, when f =1

9
for L =1 it has the second-order accuracy O(AXZ). And when g ry and

Jia :2—14 for L=2 it has the fourth-order accuracy O(AX4). The general

analytical expression of f, is given in Appendix. Similarly, we can define the
operators D, and D,. Here, the subscript of the operator refers to the direc-
tion of differentiation.

Now, we can construct the semi-discrete schemes of system (1)

o°u
(p¥+ D, ((/1+2,u) D.u +/1Dyv+ﬁDZW)+ D, (yDXv+,uDyu)

(12)
+DZ(,uDZu+,uDXW)j(i,j,k):O,
2
(p%+DX(,uDXv+,uDyu)+Dy((/1+2,u)Dyv+/1Dxu+/1Dzw)
(13)
.1 .01
+D, (,uDZv+yDyw)j(|+§,j+5,kj=0,
o’w
P +D, (uD,u+uD,wW)+D, (uD,v+uD,w)
(14)

+D, ((/1+2,u) D,w+AD,u +Z,Dyv))(i +%, ik +%j =0.

Applying the central difference approximation for time with the second-order

accuracy, we obtain the full-discrete schemes of system (1), we obtain
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2 272
(17)

+D, (,uDZv+,uDyw)+ D, ((ﬂ+2,u)DZw+ﬂDXu +2Dyv)}n . 1=0,

i+E,j,k+E
where n denotes the time index and At the time step.

3. Stability Analysis

We now turn to the study of the numerical stability of the schemes (15)-(17). We
are going to proceed by the energy method in analogy with continuous energy
given by:

E=E.+E,, (18)

1 auY (ovY [(owY
e, =sz“5] (&)%) }dx"ydz'
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Kau avj2 (au aw)2 [av aw”
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oy Ox oz oOx oL oy

dE
In a source-free infinite medium, the energy is conservative, e, — =0. The

dt

with

1

1 l
n+=
2=E, 2y E . In order to compute

discrete energy at time (n +%) At is E
n+1 n+1
E. ? and E, ? and analyze the stability, we define the following functional

spaces

0
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x IHi—%ij,(H%ij]x[jAy,(j+1)Ay]x[kAz,(k+1)Az] (X’ Y Z)}’
where
1, (xy.z)e[ab]x[c,d]x[e f],
0, (xv.z)e[ab]x[c,d]x[e f],

where 0 represents the integer grid (i, j,k) and * the half integer grid

labpodpe.r) (X Y:2) = {

i+% or j+% or k+%. The other functional spaces L., L, L L?:oo’

L., L.. can be defined similarly. For saving space, we omit their definitions.

Let the scalar inner product be defined in L3, by

0

(f.9.0h) 0= 2 ik AXAYAZ.
ij.k

i, jk=—o0

Other inner products such as (f,g,h), ., (f,g, h)O** and so on have similar

1 1
n+= n+=
meaning. In the following, we compute E. 2 and E 2 respectively.
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2 At At ), At At
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At”yAt " At
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{ At At
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2 2 b2
Vn+1 n Wn+l + Wn Wn+1 + Wn
D +| 2uD ,D
Y ’ 2 ’ 2
0*0 *00
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un+l +un Wn+1 +Wn un+1 +un Wn+1 +Wn
+| uD, + uD, ,D, D,
2 2 2 2 o0
Vn+1 + Vn Wn+1 + Wn vn+l + vn Wn+1 + Wn
+| uD, 4D, ,D, D,
2 2 2 2 "
. . . Te_g"2
We have conservation of the discrete energy, that is: =0. The

At

1
stability of the scheme will be proven if the potential energy E; 2 and the ki-

1 1
n+> e
netic energy E. ? are positive. Since E, ? is obviously positive, we need to

n+=
find out under what conditions E_, ? is positive.

The problem can be reformulated as: Vuell,, Vel and Vwe L},

with
| =(AD,u+AD,v+AD,w,D,u+D,v+D,w)

*00

+(;zDXv+yDyu, D,v+ Dyu) +(uDu+uDw,Du+D,w),

00
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we look for the corresponding conditions. Since
At?
TI <(pU Uy +(PV,V),.0 + (oW W), (19)
we can bound 7as follows:
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(
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y
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*00 *hok

I3

Obviously, 1 <2(l,+1,+1;). In the following we estimate I, 1, and I,

respectively. Since
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Thus we obtain
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/1+,u)
4 4 |+I—— j.k
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Then for Vu e L3, we have

4
I, < u,u) -, Yue . (21)
1 [AX Ay AZ ](Z|ﬂl|) ,0 )ooo LOOO
Similarly, we have
<[ 24 Z|ﬂ|| (pvv)., . Welly, (22)
AXE AY? g =0
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-1 ﬂ'+'u)|+l,j+l,k (/1+’u)|+1] 1,k
(SIal] meca ;
il etk 'Oi+1,j+1,k
22 2’2 (23)
lul+|,j+ k Iul—l,j+£k lui+l j+l k+|—1 ’ui+1 ]+1 k—I-*—l
" 2 2 : 2 :
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, L -1 L (’1+/”)i+%,j,k+| (/1+'u)i+%,j,k—l+1
C; = Z|,B|| maXZ|:B||
= R il ket 2pi+3 jkel
272 2" (25)
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Substituting (21), (22) and (24) into (19), we have

Journal of Applied Mathematics and Physics

DOI: 10.4236/jamp.2019.78120 1763


https://doi.org/10.4236/jamp.2019.78120

A. K. Joardar, W. S. Zhang

1 1 1Y)& )V 1
CZAtZ[F+A_)/2+F][|Z;|'BI|] SE. (26)

where ¢=max{c,,C,,C,} . Thus we obtain the sufficient stability condition for
the numerical scheme (15)-(17). If the grid is uniform, ie. AX=Ay=Az=h,
then (26) gives

cAts%h(lz:ij_l.

Therefore we summarize the conclusion above into the following theorem.

Theorem 1. A sufficient stability condition for the numerical schemes

(15)-(17) is
[T 1 1 _2(&.)

If AXx=Ay=Az=h, then it reduces to
L -1
cAts%h(ZMﬂ] : (28)
=1

where ¢=max{c,,C,,C;},and ¢, C, and ¢, are given by (20), (23) and (25)
respectively.

4. Plane Wave Analysis

We turn to Fourier analysis [21] and we will derive the dispersion relation and
by the von Neumann criterion we will get a necessary and sufficient stability
condition. In homogeneous case for (12)-(14), the full-discrete schemes can be

written as

p(um-2u" “‘M)i,j,k +At{(A+2u)Du" + AD,DV" + AD,D,W"

(29)
+uD,DV" + uDu" + uD?u" + uD,DW" | (i, j, k) =0,
+1 -1 2 2 2
p(v” —2v" +V" )i%j%‘k +At {,uDXv” +uD, D" +(A+24)DyV"
1 1 (30)
+AD,Du" + AD,D,w" + uD?V" +,uDZDyWn}[i 5 j 5 kj =0,
p(w”+l 2w’ +W”’1)i+£’ Wl +At? {ﬂDx D,u" +uD{w" + uD,D,V"
2 2
(31)

+uDiW" +(A+24) D;W" + AD,Du" +1D2Dyv”}(i +%, j,k+%):0.

wt—k-x)

We assume that u = de'l is a solution of Equation (29)-(31), where

i=v-1, @ isthe angular frequency, d =(d,,d,,d;) amplitude, and
k = (k;,ky, k; ) = k| (cos @sin g,sin §sin 4, cos ¢)

is the wave vector. Here 6 is the propagation angle and ¢ the propagation
azimuth. The two angles determine the movement direction of the plane wave in
the 3D space.

Substituting the plane wave solution into Equations (29)-(31), we obtain the
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following relations:

d,sin [wAtj
2

{ﬂf”[mm(@' )

1=1

+—(Zﬂ, sm (21- ] (ZL:,B, sin| (21 -1 k—th }dl (32)
AP 2 pg kh) < k,h
+F{ o2 ( 2l - Tj;ﬂl sm( 21-1 Tj}dz
At? /1+,u k_ L ksh
F{ 52 ﬁsm( (21- 2 jgﬂ sm( (21-1) 2 j}d3
dzsinz(m—mj
2

At?
:h—2

gl
Ah_t;{l;” 2/}, sin ((2| —1)%“)2@ sm[(ZI —1)%]} d,

+;(Zﬁ.sm 2| ] z(gﬂ.sm 2' 1) Dz}ds (34)
s pnfa e 2o
AL {ﬂ;uzﬁl (( ) jil ((2'_1)%}0'2'

By introducing the matrix B with elements (bij ) defined by

e [ )]

1=1

+%[IZ:,B| sin((Zl —D%DZ +%(Zﬁ. Si"((Z' —1)%]]2}

b, <b, = ! {Muzﬂls.n((m 1) hjgﬁ,sin((Zl—l)%J},

P
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G

S0 A{Eam(a- %m

o220 D)

1=1

by, = by, = o {’1;”;@ sm[(ZI )%hjiﬁ, 3'”((” %)}

1=1

A+2u @
by, = hz{ 5 [Zﬂ,sm 2I ZD

{2 o 2]

we can write the relations (32)-(34) as the following matrix form

Bd = sin (wﬁt)d. (35)

The eigenvalues of B then express @ as a function of K, which is the dis-
persion relation. There are three eigenvalues for matrix B. One eigenvalue is
corresponding to the longitudinal or compressional wave, the double eigenva-
lues are corresponding to the transverse or shear wave. Thus we have the fol-

lowing two different relations

(a)At) C At
sin >

e
A(k)=gﬁ, sin((ZI —1)%], C, =\/@, C. =J§.

here C, and C; are the velocities of compressional and shear waves. Note

k )+ A% (k, )+ A% (ky ),
(36)

S, At\/AZ k)+ A2 (k) + A2 (Ky),

where

that C, is always larger than C,. With the dispersion relations (36), we can
apply the von Neumann stability criterion. A necessary stability is that the ei-

genvalues of B must be lower than 1. Thus we have

S At\/AZ )+ AZ (K, )+ A% (k;) <1. (37)

It is easy to verify that

m kseR\/Az )+ A2 (K, )+ A% (K, )

S O DR 7 N
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Therefore we obtain the following theorem.
Theorem 2. In the homogeneous case, a sufficient and necessary stability

condition for the numerical schemes (29)-(31) is given by
3(& )
Ats%(zmg : (39)
=1

Proof Combining Equations (37) and (38), we obtain (39). Moreover, the ma-
trix B is symmetric in homogeneous case. So the condition (39) is a sufficient
and necessary condition. The proof is complete.

We now define the normalized phase error E, as follow:

c,-C w(k)
__¢ -
E¢—C—v, C¢—T, (40)
klh
which is a function of H E%, where C, indicates C, or C, which is re-
T

lated to different kinds of compressional wave and shear wave.

The stability condition P =CAt/h is defined by Courant-Friedrichs-Lewy
(CFL) condition which bounds the interval for stability. We plot some disper-
sion curves based on Equation (40). Without loss of generality, we present dis-
persion curves for some special propagation angle and azimuth. Figure 1 is the
normalized phase error for fixed 6 =45 and ¢ =45 with different values of
CFL condition and it shows that the phase error drops as increasing the order of
accuracy. Figure 2 shows the normalized phase error for € =30" and different
values of ¢ for different order or L. The figures for other propagation angle 6

and azimuth ¢ are similar we omit them for saving space.

5. Numerical Computations

Wave simulation ignited by a point source is usually adopted in geophysical ap-
plications. For convenience, we simulate 3D elastic wave propagation in a ho-
mogeneous cubic model. The computational domain is [0, 2000 m]s. The source

is located in the center of the model and its time function is given by
s(t)=sin (300t)e’(3°°‘)3 , (41)

which is loaded on the u component. The compressional velocity is 4000 m/s
and the shear velocity 2500 m/s. The time step is At =0.001s and the space
step is h=10m . Figure 3 shows the 3D snapshot of u component at propaga-
tion time 0.2 s. For brevity, we present some 2D slices of the 3D snapshots of u, v;
and w components. The xz sections of 3D snapshots of u, v; and w components
at propagation time 0.2 s are shown in Figures 4-6 respectively. We omit other
sections for space. In our computations the scheme with fourth-order accuracy
in space is applied. We remark that the comparisons between the numerical so-
lution and the exact solution can be found in [17]. From Figures 4-6, we can
clearly see the two types of waves, ie. the compressional wave and the shear

wave, which is consistent with the physical phenomenon.
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Figure 1. The normalized phase error for different CFL number at the stability
limit P, =CAt/h. The propagation angles 0 =45 and ¢=45 are fixed.
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Figure 2. The normalized phase error for different CFL number at different

propagation angle ¢ . The propagation angle 6=30" is fixed.
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Figure 3. The 3D snapshot of u
component at propagation time 0.2 s.
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Figure 4. The xz-section of 3D snapshot of # component
at propagation time 0.2 s.

x/sample points
100

50 150 200

50

100

z/sample points

150

200

Figures 5. The xzsection of 3D snapshot of ¥component
at propagation time 0.2 s.
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Figure 6. The xzsection of 3D snapshot of wcomponent
at propagation time 0.2 s.

6. Conclusion

The staggered-grid difference method is a very important technique to solve
wave equations numerically because of its high efficiency and the character of
energy preservation. It has been well applied to seismic wave propagation for
more than two decades. Based on the energy estimate method, we implement the
stability analysis for the high-order staggered-grid schemes of the inhomogene-
ous 3D elastic wave equation. The stability result is controlled by the space va-
rying parameters and the difference coefficients. The plane wave analysis in ho-
mogeneous media is completed and by the von Neumann criterion a necessary
and sufficient stability condition is obtained. The analysis is helpful to design the
computational parameters such as the time step and the space steps. Numerical
computations are given to verify the effectiveness of the schemes. The key point
of this paper is the theoretical analysis. In the future, we will consider more nu-

merical computations for inhomogeneous media.
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Appendix: Expression of the Coefficient g,

The calculation of difference coefficients on both regular and staggered-grid gr-
ids has been investigated by several authors [15] [18] [19] [20]. In this appendix
we present the analytical expression of the difference coefficient £, in (10) or
(11). In order to calculate the coefficient [, we consider an explicit stag-

gered-grid difference expression for a function f (x):

of 1& 1 1
&Nﬁéﬂ' [f (x+|h—5h)— f (x—lh+§hﬂ,

where £ is the step size, L is a positive number and /5, are the difference coeffi-

cients. Now consider f = f,e*

i=+-1 and f, isa constant then we have
L
axy psin((2-1)a).
=

Then Taylor’s series expansion gives

a~ i[ﬁi(m —1)2”‘1ﬂ,a2'“].

and « =kh/2, where k is the wave number,

m=1 (2m —1)! =

Now equating the coefficient of « both sides we get
L

1 m-1 —_ 1, m=1
ﬁz[(zl—l) ]ﬁ.={0, M=23.L.

1=1
We can rewrite this equation in the following form

3 L (2L-1) 18, 1
3 . (2L-1) 3B, 0

PLerogz (2L—1)2L_2 (2L-1) B, 0
Now solving the above system, we get the following solutions

(G | (em-1y’ |I:1,~--,L.

e (21-1)° —(2m-1)’|

21-1 1<m<L,m=l
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