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Abstract 
In this work, we establish relations between DNA sequences with missing 
subsequences (the forbidden words) and the generalized Cantor sets. Various 
examples associated with some generalized Cantor sets, including Hao’s 
frame representation and the generalized Sierpinski Set, along with their 
fractal graphs, are also presented in this work. 
 

Keywords 
DNA Sequences, Generalized Cantor Set 

 

1. Introduction 

Researchers have been interested in the relationships between fractals and DNA 
structures for years. Just recently, Anitas and Slyamov [1] studied multiscale 
fractal representing DNA sequences using small-angle scattering analysis. Catta-
ni and Pierro [2] conducted a multifractal analysis of binary images of DNA in 
order to define a methodological approach to the classification of DNA se-
quences. Badea and her collaborators [3] characterized the geometry of some 
medical images of tissues in terms of complexity parameters such as the fractal 
dimension (FD). Carlo Cattani presented analysis of DNA based on the indica-
tor matrix together with some elementary approach to a fractal estimate of DNA 
sequences in the book [4] edited by Elloumi and Zomaya. Albrecht-Buehler [5] 
identified explicitly the GA-sequences as a class of fractal genomic sequences. 
Ainsworth [6] investigated how the cell’s nucleus holds molecules that manage 
human’s DNA in the right location. In a book edited by Crilly, Earnshaw and 
Jones, Voss applied standard spectral density measurement techniques to dem-
onstrate the ubiquity of low frequency noise and long range fractal correlations. 
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The study of the genome or DNA sequences through fractal analysis is very 
interesting. DNA sequences can be seen as sequences over the alphabet 

{ }, , ,a c g tΣ = . Subsequences that do not appear in DNA are considered as for-
bidden words. A visualization method of the forbidden words in [7] [8] [9] [10] 
[11] has been designed by B.-L. Hao since 2000. This method is now called Hao’s 
frame representation. Recently, C.-X. Huang and S.-L. Peng discussed this me-
thod in detail, and many beautiful graphics were provided in [12] [13]. From 
these geometric intuitions, it can be observed that these forbidden words dem-
onstrate certain fractal properties. In fact in this work we generated some amaz-
ing fractal graphs associated with DNA sequences with forbidden words as 
shown in Figure 1. 

It is important to explore the fractal generating mechanism that is associated 
with the forbidden words in the sequence. H. J. Jeffrey [14] [15] and P. Tiňo [16] 
[17] tried to associate the forbidden words with the IFS (Iterated Functions Sys-
tems) using chaos game algorithm. Denote ∗Σ  as the set of all finite sequences 
over Σ . Then how to find a generating formula or the mapping : wσ ∗Σ → ∈Σ , 
where w is a sequence that does not contain forbidden subsequences, or corres-
ponding iteration method? As was pointed out by P. Tiňo, the IFS is a multi-
fractal and therefore the generating formula would be relatively complicated. 

In order to detect the structures of some symbolic sequences, one has to find 
the properties of their topology and metric and be able to visualize these se-
quences. To do this, we have to provide a type of graphical representation to-
gether with their topology and metric properties so that we can directly reveal 
their corresponding fractal graphs. This kind of representation method is im-
portant and necessary. 

For an alphabet with cardinal 3, the well known CGR method (that is, Chaos 
Game Representation method) was first introduced by M.F. Barnsley by consi-
dering the points in an equilateral triangle. The substrings of a string were 
shown graphically (see [18]). For an alphabet { }, , ,a c g tΣ =  with cardinality 4, 
the CGR method was later generalized by H.J. Jeffrey so that the DNA sequences 
can be visualized (see [14] [15]). The authors have transformed the DNA se-
quences into pseudo random walk in a 2-dimensional plane or in a 3-dimensional 
space [19] [20] [21]. We notice here that an iterated function system can be ap-
plied to construct a graphical representation of some DNA sequences [16] [17]. 
The points in the unit square [ ] [ ]0,1 0,1×  can be used to denote the substrings 
of the DNA sequences. Consequently, the four vertices of the unit square are la-
belled as , , ,a c g t . 

In application, the frame representation method proposed by Hao et al. is 
more intuitive and visual [9] [10]. The unit square [ ] [ ]0,1 0,1×  is divided 
equally with vertical and horizontal lines so that there are 4k  congruent small 
squares with side length 2 k−  and area 4 k− . For the alphabet { }, , ,a c g tΣ =  
with cardinality 4, each small square of side length 2 k−  is used to denote the 
string in kΣ  ( )1,2,3,k =   regularly (See 1-, 2- and 3-frame graphs in Figures 
2(a)-(c)). 
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Figure 1. Graphs of some forbidden words. 
 

 
(a)                    (b)                   (c) 

Figure 2. The frame representation method of B.L. Hao et al. (a) 
1-frame graph; (b) 2-frame graph; (c) 3-frame graph. 

 
With the frame representation method of B.L. Hao, the repetition topology 

structure of the subsequences (i.e. the strings in kΣ ) of a DNA sequence can be 
easily visualized and efficiently drawn. The avoided or the under-represented 
short strings in the genome sequence form the forbidden words. These forbid-
den words are the reasons or the basis of the constructed fractals. 

P. Tino [16] [17] proved the equivalence of the CGR method and the frame 
representation method of B.L. Hao et al. He noted that the cardinality of an al-
phabet can be generalized to a square integer ( 2bΣ =  simultaneously for some 
integer b). We will in this paper extend the above methods and relax the restric-
tion to the cardinality of an alphabet. 

The order of this paper is as follows. In Section 2, we will first convert the 
problem into the discussion on certain type of generalized Cantor set, which can 
naturally correspond to multifractals, and then in Section 3, we will induce 
Hao’s frame representation according to the principle that the correspondence 
between line segment and unit square is one-to-one [22]. Several examples, 
along with their fractal graphs, of some generalized Cantor sets are given at the 
end of this paper. 

2. Forbidden Words and the Generalized Cantor Set 

Rewrite the alphabet as { }0,1, 2,3Σ = . We first give the following definition.  
Definition 2.1 Let { }0,1,2,3Σ = . Denote B as the set consist of l finite se-

quences with length ( )1k ≥ :  

{ }11 1 21 2 1, , , , , 1, , , 1, , .k k l lk ijB t t t t t t t i l i k= ∈Σ = =            (1) 

Then call the infinite sequences over Σ   
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1 2 1 1 1, , and , 1,2n n i i ks a a a a a a a B i+ + −= ∈Σ ∉ =            (2) 

the DNA sequence with no forbidden words B, a.k.a. allowed sequence.  
It is known that when [ ]0,1x∈  is expanded in ternary representation, the 

subset in [ ]0,1   

{ }{ }3 1 20 . , 0, 2nC x x x x x= = ∈   

is called the Cantor set. Similarly, with quaternary expansion, we give the fol-
lowing definition.  

Definition 2.2 When [ ]0,1x∈  is represented in quaternary expansion  

4 1 2
1

0 . , ,
4

n
n nn

n

a
x a a a a

∞

=

= = ∈Σ∑                   (3) 

we call  

{ }4 1 2 1 10 . , , , 1, 2, , 1G n n i i i kC x a a a a a a a B i k+ + −= = ∈Σ ∉ = ≥      (4) 

the generalized Cantor set.  
Apparently, the discussions on DNA sequences (1) (2) that contain no for-

bidden words B can be converted into the discussion on the generalized Cantor 
set GC . 

Let 1
1 14 4i k

k i ik ikb t t t−
−= + + + , { }0,1, , 4 1i k

kb ∈ − , 1,2, ,i l=  , and  

{ }1 2, , , ,l
k k kB b b b′ =                          (5) 

Then, the condition 1 1 , 1, 2,i i i ka a a B i+ + − ∉ =   in Definition 2.2 can be re-
written as  

1 2
14 4 , 1,2,k k

i i i ka a a B i− −
+ + ′+ + + ∉ =   

Theorem 2.1 The generalized Cantor set GC  can be inducted by using an 
iteration method.  

Proof. In fact, for the ( )1k − th step of the quaternary expansion of [ ]0,1x∈ , 
there is  

1 11
1 11 1= , 0 1, , , .

4 4 4
k k

k kk k

a xax x a a− −
−− −+ + + ≤ ≤ ∈Σ          (6) 

Let  

1
1 1= , 0 1, and 4 .

4 4
kk k

k k k k
a x

x x a a a B−
− ′+ ≤ ≤ ∈Σ + + ∉         (7) 

Substitute (7) into (6),  

11
1, 0 1, 4 .

4 4 4
kk k

k kk k

a xax x a a B− ′= + + + ≤ ≤ + + ∉          (8) 

In general, we let  

1
1 , 0 1, and 4 .

4 4
ki k i k

i k i k i k i k i
a x

x x a a a B−+ +
− + + + + ′= + ≤ ≤ ∈Σ + + ∉     (9) 

and as i →∞ , we obtain the generalized Cantor set GC  (2.2).  

1 1

1,
4 4 4

k k
j j
j j k

j j

a a

= =

 
+ 

 
∑ ∑ , ja ∈Σ  are 4k  intervals in [ ]0,1  with length 1

4k . 
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From the iteration Equation (7) in the theorem, the iteration acts differently on 
the l subintervals than on the 4k l−  intervals. Hence we have [11]. 

Corollary 2.3 The generalized Cantor set GC  is multifractal.  
Proof. In the construction of the generalized Cantor sets GC , measures on 

removed portions are redistributed to the neighboring sections repeatedly. Thus 

GC  is multifractal.  
Obviously, the generalized Cantor sets are applicable for all p-carry represen-

tation (p is an integer). 

3. The Hao’s Frame Representation of the Generalized  
Cantor Set CG 

The theoretic foundation of the construction of DNA sequences can be seen in 
[12]. The subintervals in the quaternary expansion of [ ]0,1x∈  can be 
one-to-one corresponding to the subsquares that are obtained by repeatedly 
equally dividing the unit square (and its subsquares) into 4 smaller subsquares. 
Cantor sets are created in one dimension in [ ]0,1  while Sierpinski sets are con-
structed in two dimension within [ ] [ ]0,1 0,1× . Using the corresponding rela-
tionship between the unit interval and the unit square, we can convert the dis-
cussion on the generalized Cantor sets into the discussion on the generalized 
Sierpinski sets on the unit square.  

Let 0 , 1ξ η≤ ≤ . The binary expansion of ( ),ξ η  is  

( ) { }
1 1

, , , , 0,1 .
2 2

n n
n nn n

n n

c d
c dξ η

∞ ∞

= =

 = ∈ 
 
∑ ∑                 (10) 

The expansion can be related to the quaternary expansion of [ ]0,1x∈  as 
follows:  

( ) ( )
( ) ( )
( ) ( )
( ) ( )

0 : , 0,0
1 : , 1,0

2
2 : , 0,1
3 : , 1,1

i i

i i
i i i

i i

i i

c d
c d

a c d
c d
c d

 =
 == + =  =
 =

                (11) 

Thus the forbidden words i
kb  in B′  can be represented as  

( ) ( ) ( )
{ }

1 1 1 1

1 1

14 2 4 2 2 ,

, , , , 0,1 , 1, 2, ,
k k k k

k k

i k
k i i i i i i

i i i i

b c d c d c d

c d c d i l
− −

−= + + + + + +

∈ =



 

        (12) 

Definition 3.1 Let 0 , 1ξ η≤ ≤  and the binary expansion of ( ),ξ η  is (10). 
Then call  

( ) { }

( ) ( ) ( )1 1 1 1

1 1

1

, , , , 0,1 ,
2 2

4 2 4 2 2
k k k k

n n
G n nn n

n n

k
i i i i i i

c d
S c d

c d c d c d B

ξ η

− −

∞ ∞

= =

−

  = = ∈  
 

′+ + + + + + ∉ 


∑ ∑



    (13) 

the generalized Sierpinski set that corresponds to the the generalized Cantor set 
( )4GC .  
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Theorem 3.1 The generalized Sierpinski set GS  can be inducted by iterating 
method.  

Proof. The ( )1k − th binary expansion of ( ),ξ η  is  

( )
1 1

1 1
1 11 1

1 1
, , , 0 , 1.

2 2 2 2

k k
n k n k

k kn k n k
n n

c dξ η
ξ η ξ η

− −
− −

− −− −
= =

 = + + ≤ ≤ 
 
∑ ∑          (14) 

Let  

( ) { }

( ) ( ) ( ) { }

1 1

1
1 1 1 1

, , , , 0,1 , 0 , 1,
2 2 2 2

4 2 4 2 2 , , 0,1

k k k k
k k k k k k

k
k k k k k k

c d
c d

c d c d c d B c d

ξ η
ξ η ξ η− −

−
− −

 = + + ∈ ≤ ≤ 
 

′+ + + + + + ∉ ∈

    (15) 

Substitute (15) into (14), we have  

( )

( ) ( ) ( )
1 1

1
1 1 1 1

, , ,
2 2 2 2

4 2 4 2 2

k k
n k n k
n k n k

n n

k
k k k k

c d

c d c d c d B

ξ η
ξ η

= =

−
− −

 = + + 
 

′+ + + + + + ∉

∑ ∑



 

Generally, let  

( ) { }

( ) ( ) ( )

1 1

1
1 1

, , , 0 , 1, , 0,1 ,
2 2 2 2

4 2 4 2 2

k i k i k i k i
k i k i k i k i k i k i

k
i i k i k i k i k i

c d
c d

c d c d c d B

ξ η
ξ η ξ η+ + + +

+ − + − + + + +

−
+ − + − + +

 = + + ≤ ≤ ∈ 
 

′+ + + + + + ∉

 

Noticing the corresponding relationship between numbers and the subsquares, 
naturally we have Hao’s frame representation. The second-order Hao’s frame 
representation can be inducted from the corresponding relationship illustrated 
in Figure 3. 

The next few examples illustrate analytic structure of some DNA sequences 
along with the fractal graphs of the relevant generalized Cantor sets. 

Example 3.2 Let { }0,1, 2,3Σ = , { }00,11,22B = . Then { }0,5,10B′ = . Hence 
the arithmetic expression of the generalized Cantor set is  

{ }4 1 2 10 . , 0,1, 2,3 and 4 0,5,10, 1,2,n n i ix a a a a a a i+= ∈ + ≠ =    

And the symbolic sequence is  

1 2 1, , , 1, 2,n n i ia a a a a a B i+∈Σ ∉ =    

which is shown graphically in Figure 4.  
Example 3.3 Let { }0,1,2,3Σ = , { }10,20,30B = . Then { }4,8,12B′ = . 

Hence the arithmetic expression of the generalized Cantor set is  

{ }4 1 2 10 . , 0,1, 2,3 and 4 4,8,12, 1,2,n n i ix a a a a a a i+= ∈ + ≠ =    

And the symbolic sequence is  

1 2 1, , , 1, 2,n n i ia a a a a a B i+∈Σ ∉ =    

with graphs Figure 5:  
Example 3.4 Let { }0,1,2,3Σ = , { }011,022,100,133,200,233,311,322B = . 

Then { }5,10,16,31,32,47,53,58B′ = . Hence the arithmetic expression of the 
generalized Cantor set is  

{ } 2
4 1 2 10 . , 0,1, 2,3 and 4 4 , 1,2,n n i i ix a a a a a a a B i+ ′= ∈ + + ∉ =    
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And the symbolic sequence is  

1 2 1, , , 1, 2,n n i ia a a a a a B i+∈Σ ∉ =    

which are shown below 
Similarly, we could produce the following amazing fractal graphs shown in 

Figure 6, Figure 7, of different DNA sequences with various forbidden words. 
 

 

Figure 3. Hao’s frame representation of 2k = .  
 

 

Figure 4. { }0,5,10B′ = . 

 

 

Figure 5. { }4,8,12B′ = .  

 

 

Figure 6. { }5,10,16,31,32,47,53,58B′ = .  
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Figure 7. Other examples.  

4. Conclusion 

We established relations between the generalized Cantor sets and some DNA 
sequences with missing words. And we have associated Hao’s frame representa-
tions and the generalized Sierpinski set with the generalized Cantor sets. The 
authors are interested in applying the analytical representation method to study 
the graphical results of space filling research works (cf. [23] [24] [25]). 
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