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Abstract 
In the paper [1], the geometrical mapping techniques based on Non-Uniform 
Rational B-Spline (NURBS) were introduced to solve an elliptic boundary 
value problem containing a singularity. In the mapping techniques, the in-
verse function of the NURBS geometrical mapping generates singular func-
tions as well as smooth functions by an unconventional choice of control 
points. It means that the push-forward of the NURBS geometrical mapping 
that generates singular functions, becomes a piecewise smooth function. 
However, the mapping method proposed is not able to catch singularities 
emerging at multiple locations in a domain. Thus, we design the geometrical 
mapping that generates singular functions for each singular zone in the phys-
ical domain. In the design of the geometrical mapping, we should consider 
the design of control points on the interface between/among patches so that 
global basis functions are in 0C  space. Also, we modify the B-spline func-
tions whose supports include the interface between/among them. We put the 
idea in practice by solving elliptic boundary value problems containing mul-
tiple singularities. 
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1. Introduction 

It has been introduced to solve multiple crack problems by using various nu-
merical methods. First, converting the multiple crack problems into Fredholm 
integral equation using two elementary solutions was introduced in [2]. A nu-
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merical method by using both Fredholm integral equation method and the 
weighted residual method was introduced in [3]. Numerical methods based on 
Galerkin approximation such as the finite element methods, boundary element 
methods, and meshless method were also applied to solve them [3]-[10]. 

In this paper, we solve the elliptic boundary value problems with multiple 
singularities based on the mapping method [1]. But, the mapping technique 
proposed is not able to catch singularities emerging at multiple locations in a 
domain. In order to resolve the drawback, we introduced the enriched Isogeo-
metric Analysis (IGA) in [11]. In the paper [11], we approximate the solution on 
the small circular zone centered at the crack tip or point singularity by enriching 
the finite approximation space generated by the singular mapping introduced in 
the mapping method. However, it is hard to evaluate the inverse functions of the 
singular mapping, and the NURBS mapping so that tracking the domains of in-
tegrals whose integrand is involved both B-spline function from the singular 
mapping and NURBS function from the NURBS geometrical mapping, is an ad-
ditional work. Also, the conditional number of the stiffness matrix could be an 
issue for the enriched IGA. In order to alleviate these problems, we design the 
geometrical map having multiple singularities by using the singular mappings 
only. To do that, we divide the physical domain into multiple patches which may 
have a singularity for each, and then design the geometrical maps by the map-
ping methods for each patch having a singularity. Here, we consider the design 
of control points on the interface between/among patches. Because this is related 
to the smoothness of the global basis functions. Also, we modify the B-spline 
functions whose supports include the interface between/among them due to the 
compatibility condition. In this paper, the potential of the mapping method 
proposed with multiple patches regarding to handling the multiple fatigue-cracks 
propagation in various types of plate will be shown by solving the elliptic boun-
dary value problems with multiple singularities or cracks. 

In Section 1 and 2, we briefly review definitions and terminologies that are 
used throughout this paper. We follow those in the book [12], and we thus refer 
to these texts for details. And then we introduce the mapping method that gene-
rates singular functions by using B-spline or NURBS in Section 3. In Section 4, 
we introduced the patchwise mapping method by solving elliptic boundary value 
problems containing multiple singularities. Finally, the conclusions is in Section 5. 

2. Nomenclature 

In this section, we introduce B-spline, NURBS, and design geometrical map-
pings referring to [12]. 

2.1. B-Splines 

A knot vector { }1 2, , , mU u u u= 
 is a nondecreasing sequence of real numbers 

in the parameter space [ ],a b , and the components iu  are called knots. An 
open knot vector of order 1p +  is a knot vector that satisfies 
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1 1 2 1 ,p p m p m p mu u u u u u+ + − − −= = < ≤ ≤ < = =    

in which the first and the last 1p +  knots are repeated. 
The B-spline functions ( ),i kB ξ  of order 1k p= +  corresponding to the 

knot vector { }1 2, , , mU u u u= 
 are piecewise polynomials of degree p which 

are constructed recursively by the Cox-de Boor recursion formula: 

( )

( ) ( ) ( )

1
,1

, , 1 1, 1
1 1

1 if ,
0 otherwise,

,

i i
i

i i k
i k i k i k

i k i i k i

u u
B

u u
B B B

u u u u

ξ
ξ

ξ ξ
ξ ξ ξ

+

+
− + −

+ − + +

≤ <
= 


− −
= +

− −

 

for ( )1 i m k≤ ≤ −  For example, the piecewise quadratic polynomial B-spline 
functions ( ),5iB ξ  corresponding to the open knot vector 

{ }0,0,0,0,0,0.15,0.5,0.75,0.9,1,1,1,1,1U =  

are depicted in Figure 1. 
The B-spline functions are useful in design as well as finite element analysis 

because they have the following properties: variation diminishing, convex hull, 
non-negativity, piecewise polynomial, compact support, and partition of unity. 

A B-spline curve is defined as follows: 

( ) ( ),
1

,
n

i k i
i

Bξ ξ
=

= ∑C P  

where n m k= −  and { }iP  are control points that make B-spline functions 
draw a desired curve as shown in Figure 2(a). 

Let { }1, , mU v vη ′= 
 be an open knot vector and let pη  and 1k pη′ = + , 

respectively, be the polynomial degree and order of B-spline functions ( ),j kB η′ . 
Then a B-spline surface is defined by 

( ) ( ) ( ), , ,
1 1

, ,
n n

i k j k i j
i j

B Bξ η ξ η
′

′
= =

= ∑∑S P
 

 

 
Figure 1. B-spline functions ( ),5iB ξ , 1,2, ,9i =   of order 5k =  corresponding to the knot 

vector { }0,0,0,0,0,0.15,0.5,0.75,0.9,1,1,1,1,1U = . 
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Figure 2. (a) B-spline curve and control points on the open knot vector  
{ }0,0,0,0.15,0.42,0.76,0.76,0.91,0.91,1,1,1 . (b) B-spline basis functions corresponding to the 

B-spline curve shown in (a). (a) B-spline curve and control points; (b) B-spline basis functions. 
 

where n m k′ ′ ′= −  and ,i jP  are control points that make a bidirectional control 
net as shown in Figure 2(b). 

2.2. Nonuniform Rational B-Spline (NURBS) 

In this section, we review the non-uniform rational B-splines (NURBS), NURBS 
curve and surface, and primary properties of NURBS. 

2.2.1. NURBS Curve 
A pth-degree NURBS curve is defined by 

( )
( )

( )

,
1

,
1

,

n

i k i i
i

n

i k i
i

B w
a b

B w

ξ
ξ ξ

ξ

=

=

= ≤ ≤
∑

∑

P
C

                

(1) 

where the { }iP  are the control points, the { }iw  are the weights, 1k p= + , 
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and the ( ){ },i kB ξ  are the pth-degree B-spline basis functions defined on the 
nonperiodic (and non-uniform) knot vector 

2
1 1

, , , , , , , , .p m k
p p

U a a u u b b+ −
+ +

  =  
  
 

    

We assume that 0, 1a b= = , and 0iw >  for all i. Setting 

( ) ( )

( )
,

,

,
1

i k i
i k n

j k j
j

B w
R

B w

ξ
ξ

ξ
=

=

∑
                     

(2) 

allows us to rewrite Equation (1) in the form 

( ) ( ),
1

n

i k i
i

Rξ ξ
=

= ∑C P
                       

(3) 

The ( ){ },i kR ξ  are the rational basis functions; they are piecewise rational 
functions on [ ]0,1ξ ∈ . 

2.2.2. NURBS Surface 
A NURBS surface of degree pξ  in the ξ  direction and degree pη  in the η  
direction is a bivariate vector-valued piecewise rational function of the form 

( )
( )

( ) ( )

, , , ,
1 1

, , ,
1 1

( )
, , 0 , 1

n n

i k j k i j i j
i j

n n

i k j k i j
i j

B B w

B B w

ξ η
ξ η ξ η

ξ η

′

′
= =

′

′
= =

= ≤ ≤
∑∑

∑∑

P
S

          

(4) 

The { },i jP  form a bidirectional control net, the { },i jw  are the weights, and 
the ( ){ },i kB ξ  and { },j kB ′  are the nonrational B-spline basis functions defined 
on the knot vectors 

( )1 1
11

0, ,0, , , ,1, ,1 ,p m p
pp

U u u
ξ ξ

ξξ

+ − +
++

  =  
  
  



 

( )1 1
11

0, ,0, , , ,1, ,1 .p m p
pp

V v v
ξ η

ηη

+ ′− +
++

  =  
  
  



 

Introducing the piecewise rational basis functions 

( ) ( ) ( )

( ) ( )
, , ,

,

, , ,
1 1

, i k j k i j
i j n n

s k t k s t
s t

B B w
R

B N w

ξ η
ξ η

ξ η

′
′

′
= =

=

∑∑
 

the surface Equation (4) can be written as 

( ) ( ), ,
1 0

, , .
n n

i j i j
i j

Rξ η ξ η
′

= =

= ∑∑S P  

An example of the NURBS surface is shown in Figure 3. 

2.3. Weak Solution in Sobolev Space 

Let Ω  be a connected open subset of d . We define the vector space ( )m Ω   
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Figure 3. An example of B-spline surface with control net in three dimensional space. 

 
to consist of all those functions φ  which, together with all their partial deriva-
tives ( )1

1
d

d
αααφ φ∂ = ∂ ∂  of orders 1 d mα α α= + + ≤

, are continuous on 
Ω . A function ( )mφ ∈ Ω  is said to be a m -function. If Ψ  is a function 
defined on Ω , we define the support of Ψ  as 

( ){ }supp | 0 .x xΨ = ∈Ω Ψ ≠  

For an integer 0k ≥ , we also use the usual Sobolev space denoted by 
( )kH Ω . For ( )ku H∈ Ω , the norm and the semi-norm, respectively, are 

( ){ }

( ){ }

1 2
2

, , ,

1 2
2

, , ,

d , max ess.sup : ;

d , max ess.sup : .

kk k
k

kk k
k

u u x u u x x

u u x u u x x

α α
α

α

α α
α

α

≤Ω ∞ ΩΩ
≤

=Ω ∞ ΩΩ
=

 
= ∂ = ∂ ∈Ω  
 

 
= ∂ = ∂ ∈Ω  
 

∑ ∫

∑ ∫

 

Suppose we are concerned with an elliptic boundary value problem on a do-
main Ω  with Dirichlet boundary condition ( ),g x y  along the boundary 
∂Ω . Let 

{ } ( ){ }1 1( ) : and : 0 .w H w g w H w
∂Ω ∂Ω

= ∈ Ω = = ∈ Ω =   

The variational formulation of the Dirichlet boundary value problem can be 
written as: Find u∈  such that 

( ) ( ), , for all ,u v v v= ∈                      (5) 

where   is a continuous bilinear form that is  -elliptic ([13]) and   is a li-
near functional. The solution to (5) is called a weak solution which is equivalent 
to the strong (classical) solution corresponding elliptic PDE whenever u is 
smooth enough. The energy norm of the trial function u is defined by 

( )
1 2

eng

1 , .
2

u u u =   
  

Let h ⊂  , h ⊂   be finite dimensional subspaces. Since the NURBS 
basis functions do not satisfy the Kronecker delta property, in this paper we ap-
proximate the nonhomogenuous Dirichlet boundary condition by the least 
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squares method as follows: h hg ∈  such that 
2

d minimum.hg g γ
∂Ω

− =∫  

We can write the Galerkin form (a discrete variational equation) of (5) as fol-
lows: Given hg , find h h hu w g= + , where h hw ∈ , such that 

( ) ( ), , for all ,h h h h hu v v v= ∈    

which can be rewritten as: Find the trial function h hw ∈  such that 

( ) ( ) ( ), , , for all test functions .h h h h h h hw v v g v v= − ∈   
      

(6) 

2.4. Variational Formulation of Equilibrium Equations of Elasticity 

In elasticity, the displacement field is denoted by { } ( ) ( ){ }T
, , ,x yu u x y u x y= , 

and the stress field is denoted by { } { }T
, ,x y xyσ σ σ τ= . Let { } { }T

, ,x y xyε ε ε γ=  be 
the strain field. Then the strain-displacement and the stress-strain relations are 
given by 

{ } [ ]{ } { } [ ]{ }, ,D u Eε σ ε= =                   (7) 

respectively, where [ ]D  is the differential operator matrix, 

[ ]

0

0

x

D
y

y x

 ∂
 
∂ 
 ∂

=  ∂ 
 ∂ ∂
 
∂ ∂ 

 

and [ ]E  is the 3 3×  symmetric positive definite matrix of material constants. 
Material constants are classified by the property of the material. For an isotropic 
elastic body, 

[ ] 2

1 0
1 0 for plane stress,

1
10 0

2

EE
ν

ν
ν

ν

 
 
 

=  −  −
 
 

 

[ ]
2 0

2 0 for plane strain.
0 0

E
ζ µ ζ
ζ ζ µ

µ

+ 
 = + 
  

 

Here, 

( ) ( )( )
, ,

2 1 1 1 2
E Eνµ ζ
ν ν ν

= =
+ + −

 

where E is the Young’s modulus of elasticity and ν  ( )0 1 2ν≤ ≤  is Poisson’s 
ratio. 

The equilibrium equations of elasticity are 

[ ] { }( ) { }( ) ( )T , , 0, , ,D x y f x y x yσ + = ∈Ω              (8) 

https://doi.org/10.4236/jamp.2019.77107


H. Kim 
 

 

DOI: 10.4236/jamp.2019.77107 1579 Journal of Applied Mathematics and Physics 
 

where { } ( ) ( ){ }T
, , ,x yf f x y f x y=  is the vector of internal sources representing 

the body force per unit volume. 
The equilibrium Equation (8) can be expressed in terms of the displacement 

field { }u  through the relations (7). Then we consider the following system of 
elliptic differential equations in terms of the displacement field, 

[ ] [ ][ ]{ }( ) { }( ) ( )T , , 0, , ,D E D u x y f x y x y+ = ∈Ω           (9) 

subject to the boundary conditions, 

[ ]{ }( ) { }( ) { }( ) ( ) ( ){ }
{ }( ) { }( ) ( ) ( ){ }

T

T

, , ,

, , ,

x y N

x y D

N s T s T s T s T s s

u s u s u s u s s

σ = = = ∈Γ

= = ∈Γ



      

(10) 

where N DΓ Γ = ∂Ω , 

[ ]
0

,
0

x y

y x

n n
N

n n
 

=  
 

 

{ }T
,x yn n  is a unit vector normal to the boundary ∂Ω  of the domain Ω . 

For the Galerkin approximation to the equilibrium equations in terms of the 
displacement field (9), the variational form of (9) through (10) is: 

find the vector { }u  such that ( ) { } { }1, ,x yu u H u u∈ Ω =  on DΓ , and 

{ } { }( ) { }( ) { } ( )1
0, , for all ,u v v v H= ∈ Ω 

           
(11) 

where 

{ } { }( ) [ ]{ }( ) [ ] [ ]{ }( )T
, d d ,u v D v E D u x y

Ω
= ∫  

{ }( ) { } { } { } { }T Td d d
N

v v f x y v T s
Ω Γ

= +∫ ∫
            

(12) 

The finite element approximation of the solution of (11) is to construct ap-
proximations of each component of the vector { }u . 

3. Mapping Method 

We introduce a geometrical mapping from the parameter space [ ] [ ]ˆ 0,1 0,1Ω = ×  
to 2  that generates singular basis functions [1]. 

3.1. B-Spline Curves That Generates Singular Basis Functions 

In particular, we first show how a B-spline curve ( ) [ ] [ ]: 0,1 0,1η × →F   han-
dles effectively one-dimensional singularities. Let { }0, ,0,1, ,1Uη =  

 be an 
open knot vector of order 1k pη′ = + . Then the B-spline functions ( ),j kB η′  
corresponding to Uη  are 

( ) ( ) 11
, 1 for 1, , .

1
p jj

j k

p
B j k

j
ηηη η η − +−

′
  ′= − = − 



         
(13) 

Here, ,j kB ′ , 1, ,j k ′=  , are also called the Bernstein polynomials of degree 
pη . Let 

( ) ( )0,0 , for 1, , 1, and 0,j kj k γ′′= = − =P P  
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be control points, for a constant γ . Then the B-spline geometrical mapping 

( ) ( ),
1

k

j k j
j

Bη η
′

′
=

= ∑F B
                                      

(14) 

( )( ) ( )( ) ( )( )1, , ,0,0 0,0 0,k p k k kB B B
η

η η η γ′ ′ ′ ′= + + +

        
(15) 

( )0, pηγη=
                                          

(16) 

maps the parameter space [ ]0,1  onto the physical space { } [ ] 20 0,γ× ⊂   and 
its inverse is 

( ) ( )1 11 0, 1 .p py yη ηη γ−= =F  

Thus, the approximation space { }1
,span | 1, ,h

i kB i k−
′′ ′′= = F , where k ′′  

is an integer greater than or equal to k ′  and ,i kN ′′  are the Bernstein polyno-
mials (B-spline functions) of degree 1k ′′ −  and contain the following singular 
as well as smooth functions: 

1 , 0,1, , 1.py l kη ′′= −  

In other words, the geometrical mapping F  is able to generate the singulari-
ty of type rλ , where 0 1 1pηλ< = < . 

For example, if 2pη = , then the Bernstein polynomials of degree 2 are 

( ) ( )2 2
1,3 2,3 3,31 , 2 1 , .B B Bη η η η= − = − =  

and 

( ) ( ) ( )1 2 30,0 , 0,0 , 0,γ= = =P P P  

are control points. Then the geometrical mapping obtained by these control 
points and its inverse, respectively, are 

( ) ( ) ( )2 10, and 0, 1 .y yη γη γ−= =F F  

Suppose { },5span | 1, ,5h
jB jη = =   where ,5jB  are the Bernstein polyno-

mials corresponding the the open knot vector { }0,0,0,0,0,1,1,1,1,1U =  of order 
5, then h

η  contains 41, , ,η η
. Hence the approximation space  

{ }1
,5span : 1, ,5h

y jB j−= = F  for isogeometric analysis contains 
3 2 21, , , , .y y y y  

3.2. NURBS Surface That Generates Singular Basis Functions 

The argument which is the construction of geometrical mapping that generates 
singular basis functions, can be extended to NURBS surface from the parameter 
space [ ] [ ]ˆ 0,1 0,1Ω = ×  to 2Ω ⊂  . To end this, we construct a NURBS surface 
to deal with monotone singularity of type ( )qr ψ θ , where q is a rational num-
ber with 0 1q< < , ( )ψ θ  is a piecewise smooth function, ( ),r θ  is the polar 
coordinates. the construction of the NURBS surface from Ω̂  to the unit disk in 
[1] is generalized in this section. We refer to this reference for the details. 

We now consider a NURBS surface from the parameter space Ω̂  to the 
physical domain Ω . Consider the knot vectors: 
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

1
11 1 1

0, ,0, , , ,1, ,1 , 0,0, ,0,1,1, ,1 .l
pp p p

U U
ξξ η η

ξ ηζ ζ
++ + +

      = =   
      
    

  

     

(17) 

where { },1 ,2 ,, , ,i i i i pξ
ζ ξ ξ ξ=  , , , 1i j i jξ ξ += , 1, ,i l=  , 1, , 1j pξ= − , and 

1 2 lζ ζ ζ≠ ≠ ≠ . 
Let m and m′  be the number of knots in the knot vectors Uξ  and Uη , re-

spectively. Also, let k and k ′  be 1pξ +  and 1pη + , respectively. Here, if the 
function to be approximated has a singularity of type ( )qr  with  
0 1q qq n m< = < , where ,q qn m ∈ , then the polynomial degree of B-spline 
functions corresponding to Uη  is qp mη = . 

Let ( ),i kB ξ , 1, ,i m k= −  be the B-splines corresponding to the knot vec-
tor Uξ  and let ( ),j kB η′ , 1, , 1j pη= +  be the B-splines corresponding to 
the knot vector Uη . Here, the B-spline functions ,j kB ′ , 1, , 1j pη= + , cor-
responding to the open knot vector Uη  are the Bernstein polynomials of degree 
pη . 

Consider the control points ,i jP  and the weights ,i jw  for 1 i n m k≤ ≤ = − , 
1 1j pη≤ ≤ + , that are listed in Table 1. We now construct a NURBS surface 
from the parameter space Ω̂  onto Ω  as follows: 

( ) ( ), ,
1 1

, , .
n k

i j i j
i j

Rξ η ξ η
′

= =

= ∑∑F P
                  

(18) 

Here ( ), ,i jR ξ η , 1 i n≤ ≤ , 1 1j pη≤ ≤ + , are NURBS basis functions defined 
by 

( ) ( ) ( )
( )

, , ,
, , ,

,
i k j k i j

i j

B B w
R

W
ξ η

ξ η
ξ η

′=
                

(19) 

where 

( ) ( ) ( ), , ,
1 1

, .
n k

s k t k s t
s t

W B B wξ η ξ η
′

′
= =

= ∑∑  

Since ( ),j kB η′  is the Bernstein polynomial and ( ), 0,0i jP =  unless j k ′= , 
substituting Equations (13) into (19) the NURBS surface mapping (18) becomes 

( ) ( ) ( ), , ,
1

, , .
n

p
i k i k i k

i
p B w Wη
ηξ η η ξ ξ η′ ′

=

 =   
∑F P

 
 

Table 1. Control points ,i jP  and weights ,i jw . 

 1 j pη≤ ≤  1j pη= +  

i ,i jP  ,i jw  ,i jP  ,i jw  

1 ( )0,0  1β  ( )1 1,x y  1β  

2 ( )0,0  2β  ( )2 2,x y  2β  


 


 


 


 


 

m k−  ( )0,0  m kβ −  ( ),m k m kx y− −  m kβ −  
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Now, we derive the derivative of the mapping ( ),ξ ηF  by using formulas in 
Chapter 4.5 in [12]. 

Let 

( ) ( ) ( )
( )

( )
( )

, , ,
, ,

, ,
W

W W
ξ η ξ η ξ η

ξ η
ξ η ξ η

= =
F A

F  

where ( ),ξ ηA  is the numerator of ( ),ξ ηF . 

Denoting ( ) ( ) ( )
1 2

1 2

1 2

, , ,
α α

α α
α αφ ξ η φ ξ η

ξ η

+∂
=
∂ ∂

, the derivative of ( ),ξ ηF  can be 

expressed as 

( ) ( )
( )

( ) ( ) ( )
( )

( )1 2 1 2

1 2

, ,
, , , ,

, ,
W

W W

α α α α
α α ξ η ξ η ξ η

ξ η ξ η
   

= =   
      

A F
F  

Then 

( )( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 21 2

2 1
1

2

1 2
1 2

1
1 2 1 2

2 1 2
1 2

,,

,0 ,01

0

, ,1 2

0 0

0,0 , ,0 ,1

1

0, ,2 1

1 1 1

, , ,

i i

i

i j i j

i j

i i

i

j j

j i j

W

W
i

W
i j

W W
i

W
j i

α αα α

α α
α

α

α α
α α

α
α α α α

α α α
α α

ξ η ξ η ξ η

α
η

α α

α

α α

−

=

− −

= =

−

=

−

= = =

=   
  ∂

=   ∂   
   

=    
   

 
= +  

 
   

+ +   
   

∑

∑ ∑

∑

∑ ∑

A F

F

F

F F

F ( ) ( )1 2, ,2 i j i jW
j

α αα − − 
 
 

∑ F
 

(20) 

Solving the Equation (20) for ( ),ξ ηF , we obtain 

( )( )

( )
( ) ( ) ( )

( ) ( )

( ) ( )

1
1 2 1 2 1 2

2
1 2

1 2
1 2

, , ,0 ,1

1

0, ,2

1

, ,1 2

1 1

1,
,

i i

i

j j

j

i j i j

i j

W
iW

W
j

W
i j

α
α α α α α α

α
α α

α α
α α

α
ξ η

ξ η

α

α α

−

=

−

=

− −

= =

  
= −  

 
 

−  
 

   
−    

    

∑

∑

∑ ∑

F A F

F

F
       

(21) 

We employ the lemma below from Chapter 3 in [12] in order to determine 
( )( )1 2,, α αξ ηA  and ( )( )1 2,,W α αξ η . 
Lemma 1 Let ( )0

i i=P P , and ( ) ( ) ( ) ( ) ( )0 0
,

1

n

i k i
i

C C Bξ ξ ξ
=

= = ∑ P . Then 

( ) ( ) ( ) ( )1
1 1

1,
1

n

i k i
i

C B
α

α α
αξ ξ

−

−
=

= ∑ P  

with 

( )
( ) ( )( )

1
1 1

1

1

1 11
1 1

, 0

, 0

i

i
i i

i k i

k
u u

α
α α

α

α
α

α− −
+

+ +

=
 −=  − > −

P
P P P  

and the knot vector corresponding to ( ) ( )0C ξ  is 
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( )


1

11

10, ,0, , , ,1, ,1 .k m k
kk

U u uα

αα
+ −

−−

  =  
  
  



 

Applying the lemma 1 into (21), we have 

( )

( ) ( ) ( )1
21 2 1

1

,
, ,

12

!
,

!

n
p

i k i k
i

p
B

p
η

α
αηα α α

α
η

η ξ
α

−
−

′−
=

 
=  −  

∑A P  

where 

( )
( ) ( )( )

1
1 1

1

, 1

1 11,
1, , 1

, 0

, 0.

i k

i k
i k i k

i k i

k
u u

α
α α

α

α
α

α

′

− −′
′ ′+

+ +

=
 −=  − > −

P
P P P  

The derivative of the total weight function ( ),W ξ η , also, can be described in 
detail by substituting the Bernstein polynomial into ( ),j kB η′ . 

( )( )

( )( ) ( ){ }( )

( )( )

( ) ( )

( ){ }( )

( )

1 2

21

1 2

2 2

,

1
, ,

1 1

, ,1
1 2

1
, ,

2 2

,

1
1

!
1

!

!
1 .

1 !

n k k jj
i k i j

i j

n p
i k i

i

p
k j pj

i j i k
j

W

p
B w

j

p
B w

p

pp
w w

j p

η

η
η

α α

αα η

α αη

η

α αηη

η

ξ η

ξ η η

ξ η
α

η η η
α

′
′−−

= =

−

=

′− −−
′

=

  
= −  −  


= −

−
 
+ − + − −   

∑ ∑

∑

∑

 

3.3. Numerical Example of Mapping Method for Solving  
an Isotropic Elasticity Containing Single Singularity 

The mapping method proposed was implemented in the paper [1], and the pa-
per showed that the mapping technique using NURBS geometrical mappings 
constructed by an unconventional choice of control points are effective for nu-
merical solutions of elliptic boundary value problems containing a single singu-
larity. In this subsection, we solve an elastic problem containing a singularity to 
show that the proposed method is also applicable to implement elastic problems. 

Throughout this paper, we measure the error ( )hu u−  of the computed solu-
tions obtained by isogeomtric analysis using the proposed mapping method in 
the following norms: 
• The relative error in the maximum norm in %: 

( )
,rel

% 100
h

h
u u

u u
u

∞

∞
∞

−
− = ×  

• The relative error in 2L  norm in %: 

( ) 2

2
2

,rel
% 100

h
h L

L
L

u u
u u

u

−
− = ×  

• The relative error in energy norm in %: 
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( )

1
2 2 2
eng eng

2eng,rel
eng

% 100h
u u

u u
u

 −
 − = × 
  

 

Assuming that the Young’s modulus 1000E =  and the Poisson’s ratio 
0.3ν =  in a sector of the unit circle whose the central angle is 270˚, plane strain 

isotropic elastic body, we consider that the following analytic stress field, 

( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1

1

1

2 1 cos 1 1 cos 3 ,

2 1 cos 1 1 cos 3 ,

1 sin 3 1 sin 1 ,

x

y

xy

r q

r q

r q

λ

λ

λ

σ λ λ λ θ λ λ θ

σ λ λ λ θ λ λ θ

τ λ λ λ θ λ λ θ

−

−

−

 = − + − − − − 
 = − + − − − − 
 = − − + + −      

(22) 

where 2 3λ = , and 
( )
( )

cos 1 0.75π
cos 1 0.75π

q
λ

λ

−  =
+  

. Then, the stress field (22) satisfies  

the equilibrium equations of elasticity on the sector shaped domain LΩ . And 
the displacement field has the singularity of the form ( )2 3r φ θ  where ( )φ θ  is 
a smooth function. 

For the design of the physical domain LΩ , we set 2, 3p pξ η= =  and  
{ } { }1 21 3,1 3 , 2 3,2 3ζ ζ= =  in the knot vector (17) so that the open knot 

vector corresponding to ξ -direction is as follows: 

{ }0,0,0,1 3,1 3,2 3,2 3,1,1,1Uξ =                (23) 

We construct the open knot vector corresponding to η -direction using the 
form of the knot vector Uη  in (17): 

{ }0,0,0,0,1,1,1,1 ,Uη =                     (24) 

which make Bernstein polynomials in [ ]0,1  on the parameter space. We 
choose ( )0,0  for control points ( ) ( ), , 1, , 7 , 1, , 3i j i k j pη= = = = P , and set 
the other control points as depicted in Figure 4(a). Then the NURBS surface 
mapping 

( ) [ ] [ ]ˆ ˆ, : , 0,1 0,1 ,L L L LF ξ η Ω Ω Ω = ×  

and the inverse of the design mapping generates the singularity of the form 
( )1 3r φ θ  along the radial direction on the LΩ  in Figure 4(a). 

In order to enrich the NURBS or B-spline basis functions without failing the 
structure of the mapping technique, we employ refinements [14], [15] in the 
NURBS functions which are used to design the physical domain as depicted in 
Figure 4(a). In particular, we use p-refinement to enrich the basis functions 
corresponding to both the open knot vectors (24) and (23). Note that inserting 
new knots to increase the number of basis functions along the η -direction may 
cause malfunction regarding the production of singular functions [11]. 

Figure 4(b) and Table 2 depict the relative errors of the displacement u and v 
in the maximum norm(blue and red line, respectively), and in the 2L  norm 
(green and purple, respectively) versus the number of degrees of freedom. Fig-
ure 4(c) and Table 3 depict that the relative errors of the stress field { }σ  in 
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the maximum norm versus the number of degrees of freedom. Both Figure 4(b) 
and Figure 4(c) show that the proposed mapping method captures the singular-
ity effectively, and follows the theoretical results in [1]. Figure 5 exhibits the rel-
ative errors of the strain energy of the stress field. 

4. Patchwise NURBS Mapping Method for Solving Elliptic 
Boundary Value Problems Containing Multiple Singularities 

In the case of that a physical domain contains multiple cracks, we re-design the  
 

 
Figure 4. (a) The NURBS surface ( ),LF ξ η  maps from the parameter space [ ] [ ]ˆ 0,1 0,1LΩ = ×  to the sector shaped domain LΩ . 

The coordinates of the primary control points 
1, , 1, ,7i p i

η+
= P  are described. (b) Relative errors of the displacement field { }u  

in the maximum norm and 2L  norm for (22) (c) Relative errors of the stress field { }σ  in the maximum norm for (22). (a) The 

scheme of the NURBS surface LF  that generates singular functions; (b) Relative errors of the displacement field { }u ; (c) Relative 
errors of the stress field { }σ . 
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Table 2. The relative errors (%) of the elasticity containing singularity on the sector 
shaped elastic material (22): relative errors (%) of displacement field. 

p pξ η=  DOF ,rel

hu u
∞

−  
,rel

hv v
∞

−  
2 ,rel

h

L
u u−  

2 ,rel

h

L
v v−  

2 60 3.816E−00 2.333E−00 3.142E−00 2.103E−00 

3 96 1.435E−00 1.945E−01 6.447E−01 1.812E−01 

4 176 2.284E−01 1.017E−01 1.659E−01 8.127E−02 

5 280 7.493E−02 1.142E−02 2.754E−02 1.069E−01 

6 408 1.822E−02 6.621E−03 7.580E−03 3.255E−03 

7 560 5.590E−03 6.702E−04 1.180E−03 5.394E−04 

8 736 1.264E−03 4.110E−04 3.269E−04 1.306E−04 

9 936 3.618E−04 5.643E−05 4.977E−05 2.551E−05 

10 1160 8.230E−05 2.636E−05 1.364E−05 5.271E−06 

11 1408 2.154E−05 3.159E−06 2.054E−06 1.164E−06 

12 1680 4.766E−06 1.446E−06 5.569E−07 2.153E−07 

13 1976 1.230E−06 3.281E−07 8.242E−08 5.206E−08 

14 2296 1.688E−07 1.783E−07 2.231E−08 8.811E−09 

 
Table 3. The relative errors (%) of the elasticity containing singularity on the sector 
shaped elastic material (22): The computed strain energy and the relative errors (%) of 
the stress field { }σ . The row “∞ ” indicates the exact values. 

p pξ η=  DOF ,rel

h
x xσ σ

∞
−  

,rel

h
y yσ σ

∞
−  

,rel

h
xy xyτ τ

∞
−  Strain Energy 

2 60 6.334E+03 9.922E+03 1.483E+04 88.98117013046564 

3 96 3.670E+02 1.818E+02 2.030E+02 89.14930415746228 

4 176 2.556E+02 3.853E+02 9.833E+02 89.15648698854705 

5 280 6.185E+01 5.250E+01 1.091E+02 89.15771576771605 

6 408 2.072E+01 3.242E+01 8.419E+01 89.15782485559064 

7 560 5.732E−00 3.710E−00 6.687E−00 89.15782012258868 

8 736 1.457E−00 2.070E−00 5.457E−00 89.15781818638276 

9 936 5.276E−01 3.246E−01 5.544E−01 89.15781843245076 

10 1160 1.049E−01 1.372E−01 3.657E−01 89.15781850351074 

11 1408 3.942E−02 2.152E−02 3.261E−02 89.15781849595437 

12 1680 6.713E−03 7.708E−03 2.116E−02 89.15781849355913 

13 1976 2.915E−03 1.782E−03 2.515E−03 89.15781849380155 

14 2296 6.877E−04 9.680E−04 2.107E−03 89.15781849389655 

 ∞     89.15781849384732 
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Figure 5. Relative errors of the strain energy of the stress field (22) on the sector shaped 
elastic body. 

 
geometrical mapping by using both standard NURBS mappings and the pro-
posed mappings. Then it simplifies things to describe these sub-domains by dif-
ferent patches. We describe how to construct the set of global basis functions 
crossing interfaces between patches. Throughout the following examples, we 
show that the patchwise mapping method is effective in dealing with a problem 
containing multiple singularities. 

First, We apply the mapping method for the elliptic boundary value problems 
with multiple singularities of type 

( )i irλψ θ , where 0 1l< < , and iψ ’s are smooth functions. 

Example 1. Let 

( ) ( )1 2 1 2
1 1 1 2 2 1 1cos 2 sin 2 , , andu r r f u g uθ θ

Γ
= + = −∆ =  

where 

[ ]

( ) ( )
1

222 2
1 2

1 1
1 2

1 2

1,1 0,1 2

, 1 1 2

1cos , cos

r x y r x y

x x
r r

θ θ− −

 Ω = − × + 

= + = − + − −

   −
= = −   

              

(25) 

Then 1u  is the analytic solution of the Poisson equation: 
1 1in and onu f u g−∆ = Ω = Γ = ∂Ω              (26) 
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and has two singularities at ( )0,0  and ( )1,1 2+ . 

4.1. Patchwise NURBS Mappings and Interfaces 

In Example 1, we divide the physical domain into three patches: 

[ ] [ ]
[ ]

[ ]

1,1

1,2

1,3

1,1 0,1

0,1 1,1 2

1,0 1,1 2

Ω = − ×

 Ω = × + 
 Ω = − × + 

 

Let 1,iΩ ’s are physical patches. We construct NURBS geometrical mappings 

1,1F  and 1,2F  that generate singularities of the type ( )1 2
1 1r ψ θ  and ( )1 2

2 2r φ θ , 
respectively. They are also the design maps from the parameter space 1,

ˆ
iΩ  to 

the physical patch 1,iΩ , for each 1,2i = . To build up 1, , 1, 2iF i =  we use the 
following knot vectors: For 1,1F , 

{ }
{ }

1 2 30,0,0, , , ,1,1,1

0,0,0,0.5,0.5,1,1,1 ,

U

U
ξ

η

ζ ζ ζ=

=
                  

(27) 

where { }1 0.25,0.25ζ = , { }2 0.5,0.5ζ = , and { }3 0.75,0.75ζ = . For 1,2F , 

{ }
{ }

10,0,0, ,1,1,1

0,0,0,0.5,0.5,1,1,1 ,

U

U
ξ

η

ζ=

=
 

where { }1 0.5,0.5ζ = . 
In the design mappings, we observe the following: 
1) We employ control points and weights from Example 5.3 in [1] to build 

1,1F , and primary control points are shown in Figure 6(a). 
2) We design the NURBS geometrical mapping ( )1,2

ˆ ,F ξ η  that generates a 

singularity ( )
( )

1 42 2 1
1 22 2

cos xx y
x y

ψ −
  
  +     +  

 using the control points as de-

picted in Figure 6(b). 
3) Using the affine transformation we define 

( ) ( )( )1,2 1,2
ˆ, 1, 1 2 .F Fξ η ξ η≡ + + +  

In Figure 6, the quasi-physical patch is a physical patch translated. 
4) Since a singularity does not appear in the patch 1,3Ω , we employ the stan-

dard NURBS design technique to build the mapping ( )1,3 ,F ξ η  from the para-
meter space 1,3Ω̂  to 1,3Ω . 

4.2. Construction of Global Basis Functions over Interfaces and 
Approximation Space 

Now, we construct an approximation space by using B-spline functions which 
were used in the design mapping 1,iF . First, we consider connectivity among 
B-spline functions defined on different patches and are nonzero along the inter-
face as depicted in Figure 7(a). To obtain 0C  global basis functions crossing  
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Figure 6. Primary control points of the NURBS geometrical mapping ( )1,1 ,F ξ η  and ( )1,2

ˆ ,F ξ η  

from 1,
ˆ

iΩ  to (a) the physical patch 1,1Ω  (b) the quasi-physical patch 2Q  which has the singu-

larity at the origin. ( )1,2 ,F ξ η  is constructed by composition of 1,2F̂  with an affine transformation, 

and 1,2F̂  maps from the parameter space, 1,2Ω̂  to the physical space 1,2Ω . (a) Primary control 

points and design of the physical patch 1,1Ω ; (b) Primary control points and design of the qua-
si-physical patch 2Q . 

 
an interface between two different patches, we merge two B-spline local basis 
functions defined on different patches that have the same nonzero value on the 
interface between the two patches. In Figure 8(a), ,i jI ’s represent intervals cor-
responding to the interface on the physical domain in Figure 7(a). In ,i jI , the 
index i means the index of the patch belonging to the interval, the other index j 
indicate the index of patch such that 

( )( )1
1, 1, , , .j i i j j iF F I I− =
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Figure 7. The control points for NURBS surface with (a) three patches for the Example 1, and (b) 
three patches for the Example 2, respectively. (a) The control points with two singularities; (b) The 
control points with two singularities. 

 

 
Figure 8. (a) ,j lI  represents the interval along ξ- or η-directions corresponding to the interface in 

the physical domain. We follow directions of arrows when we set the global index. (b) We merge 
two B-spline basis functions which are interpolants for each parameter space. (a) Parameter spaces 
of 1,iF ’s; (b) Construction of new basis function from two interpolant B-spline basis functions de-
fined on two distinct parameter space. 

 
To construct global basis functions which are nonzero functions on 

, , ,i j j iI I i j≠ , we merge the nonzero basis function in ,i jI  and the nonzero 
basis function in ,j iI , where i j≠  such that they are reflection about the interface  

( ) ( )1, , 1, ,i i j j j iF I F I=  in the physical domain. In Figure 8(b), for example, let 
[ ] ( ),
i

s kB η′  and [ ] ( ), , 1, 2,3, 4j
s kB sη′ =  be B-spline basis functions of η  in 1,1Ω   

and 1,3Ω , in Figure 8(b), respectively. Note that i and j in the bracket [ ]⋅  
represent indices of patches. So 1i =  and 3j = . Let [ ] ( )1

,t kB ξ  and [ ] ( )3
,t kB ξ  be 

B-spline basis functions of ξ  such that 
[ ] ( )

1,3

1
, 0 when 1, , 2 1 1t k I

B t p pξ ξξ∈
≠ = + + −  

[ ]

3,1

3
, 0 when 1, , 1.t k I

B t pξξ∈
≠ = +  

Because 
• [ ] ( ) [ ] ( )

1,3 3,1

1 3
4, 1, 1k kI I

B Bη η′ ′= =  and 
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• [ ] [ ]( ) ( ) ( )
[ ] [ ]( ) ( ) ( )1 21,1 1,3 1,3 3,1

1 31 31 1
4, 1,1 1, 1,1, ,, ,k kt k t kF I F I

B B F x y B B F x y− −
′ ′⋅ = ⋅ 

, 

• ( ) ( ) ( ) ( )( )1 2, 1,1 , 2, 2 , , 2 1 1, 1t t p p p pξ ξ ξ ξ= + + + − + , 

• [ ] [ ]( ) [ ] [ ]( )1 2

1 31 3
4, 1,, ,k kt k t kB B B B′ ′⋅ = ⋅  on the inter face ( ) ( )( )1,1 1,3 1,3 3,1F I F I= . 

We merge two B-spline basis functions [ ] [ ]( )1

1 1
4,, kt kB B ′⋅  and [ ] [ ]( )2

3 3
1,, kt kB B ′⋅  so 

that we count the new function as one global basis function. The new function 
has a nonzero value on two distinct patches. Here, we should carefully set ( )1 2,t t , 
and we apply the same degree of p-refinement into each parameter space. 

For a space with the non-homogeneous boundary condition in Example 1, 

( ) ( ){ }
1

1 2
1 1 1, : ,w x y H w g

∂Ω
= ∈ Ω = Ω ⊂ 

           
(28) 

We decompose the space (28) into 

( ) ( ){ }
1

1 2
1,1 1 1, : 0,w x y H w

∂Ω
= ∈ Ω = Ω ⊂   

and 

( ) ( ){ }
1

1 2
1,2 1 1, : , .w x y H w g

∂Ω
= ∈ Ω = Ω ⊂   

The finite dimensional subspace i.e. approximation space of the Poisson equa-
tion (26) is 

{ }1 1,1 1,2 1 2 1 1,1 2 1,2: , ,h h h h hw w w w= ⊕ = + ∈ ∈      

1,1 1,1 1,2 1,2, ,h h⊂ ⊂     

1, ,1 ,1 ,2 ,2 ,3span , 1,2h new new
i i i i i i i = =           

[ ] [ ]( ){ }1 1 1
1,1 , , 1,1 1 1: 2, , 1, 2, , 1 ,i k j kB B F i n j n−

′ ′= ⋅ = − = −    

[ ] [ ]( ){ }2 2 1
1,2 , , 1,2 2 2: 2, , 1, 2, , 1 ,i k j kB B F i n j n−

′ ′= ⋅ = − = −    

[ ] [ ]( ){ }3 3 1
1,3 , , 1,3 3 3: 2, , 1, 2, , 1 ,i k j kB B F i n j n−

′ ′= ⋅ = − = −    

[ ] [ ]( ){
( ) }

1 1 1
2,1 , , 1,1 1 1

1 1 1

: 1, , when 1,

and 1, , , 1 , , when ,

i k j kB B F j n i n

i p n p n j nξ ξ

−
′ ′= ⋅ = =

′= − − =

 

 



              

(29) 

[ ] [ ]( ){ }2 2 1
2,2 , , 1,2 2 2: 1, , 1 when 1, ,i k j kB B F j n i n−

′ ′= ⋅ = − =   

[ ] [ ]( ){
}

3 3 1
2,3 , , 1,3 3

3 3

: 2, , when 1

and 2, , 1 when ,

i k j kB B F j n i

i n j n

−
′ ′= ⋅ = =

′= − =

 




 

[ ] [ ]( ) ( ){ }1 , 1 , 1
1,1 , , 1,1 1 1: 2, , 1 , ,new newnew

i k j kB B F i p n p j nξ ξ
−

′ ′= ⋅ = + − + =   

[ ] [ ]( ){ }2 , 2 , 1
1,2 , , 1,2 2 2: 2, , 1, 1, ,new newnew

i k j kB B F i p n i p j nξ ξ
−

′ ′= ⋅ = + − ≠ + =   

[ ] [ ]( ){ }1 , 1 , 1
2,1 , , 1,1 1 1: 1, , ,new newnew

i k j kB B F i p n p j nξ ξ
−

′ ′= ⋅ = + − =  
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[ ] [ ]( ){ }2 2

2 , 2 , 1
2,2 1,2, , ,new newnew

n k n kB B F −
′ ′= ⋅   

where 
1) in  and in′  are the number of B-spline functions in ξ- and η-direction of 

the patch 1,iΩ , respectively. 
2) [ ] [ ], ,

, ,,i new j new
s k t kB B ′  are new global basis functions by merging two B-spline 

functions in 1,iΩ  and 1, jΩ , respectively of ξ  and η , respectively. 
3) 1,i  and 1,

new
i  are the set of B-spline basis functions composition with 

the inverse of NURBS surface mapping 1,iF  on the physical domain 1Ω  satis-
fying homogeneous boundary condition. 

4) 2,i  and 2,
new

i  are the set of B-spline basis functions composition with 
the inverse of NURBS surface mapping 1,iF  on the physical domain 1Ω  satis-
fying non-homogeneous boundary condition. 

Figure 9 shows the relative errors (%) versus DOFs. In Figure 9(a) and Table 
4, we enrich the set of basis functions by p-refinement and increase the degree of 
polynomial pξ  and pη  up to 14. The DOF is 3061 when 15p pξ η= = . We 
can see that the proposed mapping method is effective to capture multiple sin-
gularities as well as a single crack or singularity. 

Example 2. Let 
3

2 2,
1

i
i=

Ω = Ω


 be the unit disk, where 2,iΩ ’s are minor sec-

tors whose central angles are 120˚ for each 1,2,3i = , and 

( ) ( )
3

1 2
2 2 2

1
, cos 2 , andi i

i
u x y r f u g uθ

Γ
=

= = −∆ =∑  

 

 
Figure 9. The relative error (%) in the maximum norm, the L2-norm, and the energy norm of the computed solutions of the Pois-
son equation (a) (26) (b) (31) versus number of degrees of freedom, respectively. (a) Rel error vs number of degrees of freedom; (b) 
Rel error vs number of degrees of freedom. 
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Table 4. The relative errors (%) of the Poisson equation on the rectangle (26): The com-
puted strain energy and the relative errors (%) of the approximate solution hu . The row 
“∞ ” indicates the exact values. 

p pξ η=  DOF ,rel

hu u
∞

−  
2 ,rel

h

L
u u−  

eng,rel

hu u−  Strain Energy 

2 71 5.376E−01 4.968E−01 1.219E−00 1.9224816355887329 

3 145 1.358E−01 4.062E−02 1.014E−00 1.9223933783586342 

4 245 2.655E−02 1.083E−02 3.504E−01 1.9221720544391365 

5 371 6.469E−03 3.201E−03 1.482E−01 1.9221998800087665 

6 523 1.613E−03 4.345E−04 6.126E−02 1.9221949350016059 

7 701 4.077E−04 6.766E−05 2.950E−02 1.9221958237730838 

8 905 1.031E−04 2.624E−05 1.424E−02 1.9221956174946071 

9 1135 2.433E−05 6.642E−06 6.643E−03 1.9221956649732888 

10 1391 5.681E−06 1.028E−06 3.238E−03 1.9221956544748704 

11 1673 1.302E−06 2.510E−07 1.508E−03 1.9221956569276313 

12 1981 2.926E−07 9.886E−08 8.398E−04 1.9221956563547675 

13 2315 6.736E−08 2.099E−08 1.512E−04 1.9221956564947542 

14 2675 2.232E−08 4.300E−09 4.330E−04 1.9221956564543110 

 ∞     1.9221956564903575 

 
where 

2 2 , ,
i

ix i
i ix iy

iy i

t x x
r t t T

t y yα

 +    = + =     +      
 

( ) ( )
( ) ( )

cos sin
, 1,2,3

sin cosi

i i

i i

x x
T i

y yα

α α
α α

 −    
= =     

                
(30) 

1 1 10.68cos12 , 0.68sin12 , 12x y α= − = − =    

2 2 20.7cos150 , 0.7sin150 , 150x y α= − = − =    

3 3 30, 0.5sin 90 , 90x y α= = =   

1

1

cos if 0,

cos if 0

i

i
i

i

i

x x
y

r

x x
y

r

θ

−

−

  +
>  

  = 
 +− ≤ 
 

 

Then 2u  solves the following elliptic boundary value problem: 

2 2in and on ,u f u g−∆ = Ω = Γ = ∂Ω              (31) 

and the solution 2u  has three crack singularities at ( ), , 1, 2,3i ix y i = . 
In Example 2, we divide the unit disk into three sectors 2, , 1, 2,3i iΩ =  in-

cluding each crack as depicted in Figure 7(b). 
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( ){ }
( ){ }
( ){ }

2,1 1 1 1 1

2,2 1 1 1 1

2,3 1 1 1 1

, | 0 1, 150 270

, | 0 1, 270 390

, | 0 1, 30 150

r r

r r

r r

θ θ

θ θ

θ θ

Ω = ≤ ≤ ≤ ≤

Ω = ≤ ≤ ≤ ≤

Ω = ≤ ≤ ≤ ≤

 

 

 

 

Then, we build a design mapping ( )2,
ˆ ,iF ξ η  from the parameter space 2,

ˆ
iΩ  

to a quasi-physical sector iQ  using the proposed mapping method, for 
1,2,3i = . Here, we define three physical patches 2,iΩ  by using quasi-physical 

sectors iQ  as follows: 

( ) ( ){ }2, , | , ,i i i ix x y y x y QΩ = + + ∈  

which means that iQ ’s are sectors having the same radii and the central angles 
as these of 2,iΩ ’s through the transformation (30) but the position of the crack 
tip in iQ  is the origin other than ( ),i ix y  in 2,iΩ  for 1, 2,3i = . A structural 
drawing detailed for 1Q  and 2Q  is shown in Figure 10, and 3Q  is designed 
by rotating 1Q  to −90˚. Finally, we define the NURBS geometrical mapping 
that generates singularities as follows: 

( ) ( ) ( )2, 2,
ˆ, , , .i i i iF F x yξ η ξ η≡ +  

Similar to that of Example 1, considering the continuity of the basis functions 
and the construction of the basis functions on interfaces, we merge two basis  

 

 

Figure 10. The NURBS geometrical mapping ( )2,
ˆ ,iF ξ η  from 2,

ˆ
iΩ  to the quasi-physical patch iQ  whose crack tip is the origin, 

generates the singularity of the type ( )1 2
i ir ψ θ , for 1,2,3i = . Once we design the mappings, we update them by composition with 

transformation so that the final NURBS geometrical mapping preserving the mapping technique in 2,
ˆ

iF  maps from the parame-

ter space, 2,
ˆ

iΩ  to the physical sector iΩ , for 1,2,3i = . (a) Primary control points and design of the quasi-physical patch 1Q ; (b) 

Primary control points and design of the quasi-physical patch 2Q . 
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Figure 11. The directions of arrows represent the order of the index t of [ ] ( ),

i
t kB ξ  along 

the boundaries 1η =  corresponding to interfaces on the physical domain. We need to 
consider these directions when we set the global index. Both right and left sides colored 
by red of each parameter spaces are lines corresponding to each cracks in the physical 
domain. 

 
functions defined on different patches that are nonzero along the interface as 
depicted in Figure 7(b). Figure 11 shows the order of the index t of [ ] ( ),

i
t kB ξ  

when we set the global index. Similar to the approximation space (29), the finite 
dimensional subspace of the weak solution of (31) has the form

 
2, ,1 ,1 ,2 ,2 ,3span , 1,2h new new

i i i i i i i = =           

where 
1) 1,i  and 1,

new
i  are the set of B-spline basis functions composited with the 

inverse of the NURBS surface mapping 2,iF  on the physical domain 2Ω  satis-
fying the homogeneous boundary condition. 

2) 2,i  and 2,
new

i  are the set of B-spline basis functions composited with the 
inverse of the NURBS surface mapping 2,iF  on the physical domain 2Ω  satis-
fying the non-homogeneous boundary condition. 

Figure 9(b) and Table 5 show that the relative errors (%) in the maximum 
norm, the 2L -norm, and the energy norm of the computed solution for equa-
tion (31). We can see that the relative errors in the maximum norm and 2L
-norm decrease exponentially, and the error in the energy norm decrease almost 
linearly. In Figure 9(b), we enrich the basis by p-refinement along ξ  and η
-directions, and the number of degrees of freedom and the degree of polynomial 
were increased up to 14 and 4915, respectively. Figure 12(a) and Figure 12(b) 
show the graph of the computed solution of Equation (26) and (31), respectively. 

5 Conclusions 

In this paper, the physical domains of the elliptic boundary value problems con-
taining multiple singularities, were re-designed by the patchwise mapping me-
thods. In the patchwise mapping method, the construction of the approximation 
space is different from that in the conventional mapping method [16] due to the 
use of multiple singular functions. 

One of the advantages of the patchwise NURBS mapping method including 
the NURBS mapping technique is to not only generate singular functions but 
also preserve the properties of IGA. The properties are the followings [15]: 
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Table 5. The relative errors (%) of the Poisson equation on the unit disk (31): The com-
puted strain energy and the relative errors (%) of the approximate solution hu . The row 
“∞ ” indicates the exact values. 

p pξ η=  DOF ,rel

hu u
∞

−  
2 ,rel

h

L
u u−  

eng,rel

hu u−  Strain Energy 

2 127 4.672E−01 1.908E−01 9.413E−00 1.0530977213691153 

3 262 1.616E−01 5.245E−02 3.107E−00 1.0448557851141744 

4 445 6.882E−02 1.994E−02 9.807E−01 1.0439482790063588 

5 676 9.847E−03 2.542E−03 1.508E−01 1.0438454972029929 

6 955 6.620E−03 1.562E−03 8.457E−02 1.0438471270008702 

7 1282 2.285E−03 5.035E−04 1.872E−02 1.0438478370927871 

8 1657 4.608E−04 9.087E−05 2.354E−02 1.0438479315458822 

9 2080 3.649E−04 7.207E−05 1.500E−02 1.0438478971863683 

10 2551 8.706E−05 1.537E−05 4.227E−03 1.0438478755531098 

11 3070 3.962E−05 6.597E−06 2.308E−03 1.0438478731313534 

12 3637 1.999E−05 3.376E−06 1.242E−03 1.0438478735263752 

13 4252 2.985E−06 5.006E−07 7.634E−04 1.0438478737484800 

14 4915 3.022E−06 4.563E−07 9.146E−04 1.0438478737749743 

 ∞     1.0438478737557377 

 

 
Figure 12. (a) The graph of approximate solution of the equation (26). The DOF was used 2675 with 14p pξ η= = . Under these 

parameters, we obtained the rel. maximum norm error 2.232E−08%, rel. 2L  norm error 4.300E−09%, and rel. energy norm error 
4.330E−04%. (b) The graph of approximate solution of the equation (31). The DOF was used 4915 with 14p pξ η= = . Under 

these parameters, we obtained the rel. maximum norm error 3.022E−06%, rel. 2L  norm error 4.563E−07%, and rel. energy norm 
error 9.146E−04%. (a) Approximate solution of the equation (26); (b)Approximate solution of the equation (31). 
 

1) The capability of more precise geometric representation of complex objects 
than conventional Finite Element Methods. 

2) Mesh refinement without altering the geometry throughout the refinement 
process. 

Thus, we expect that the patchwise mapping method will be effective for 
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dealing with multiple curved [17], angled, branched, or radiating cracks. Also, 
the proposed method can be applied to compute the stress intensity factor and 
energy release rate in the plate theory [18] [19]. These will be introduced in the 
subsequent paper. 

On the other hand, the drawback of the mapping method is that it is not eligi-
ble to use control points and weights imported from Computer Aided Design 
(CAD) whereas the conventional IGA is available. To overcome this drawback, 
the approximation space of the standard IGA can be enriched by the mapping 
method to deal with singularities [11]. The enrichment of IGA by the mapping 
method is more practical because there are several advantages in the view of en-
gineering designers and IGA users. First, the original design mapping is not 
needed to be changed. The enriched NURBS approximation space in IGA can 
generate singular functions through the proposed mapping method on a singu-
lar zone. In the mapping method, k- and h-refinement do not produce optimal 
results. But k-refinement is applicable in the space of NURBS basis in the 
enriched IGA for improved computational solution. So the enriched IGA for 
multiple singularities or cracks would be the future work. 
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