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Abstract 
In this paper, we first study some  -completely bounded maps between 
various numerical radius operator spaces. We also study the dual space of a 
numerical radius operator space and show that it has a dual realization. At 
last, we define two special numerical radius operator spaces MinE  and 
MaxE  which can be seen as a quantization of norm space E. 
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1. Introduction and Preliminaries 

The theory of operator space is a recently arising area in modern analysis, which 
is a natural non-commutative quantization of Banach space theory. An operator 
space is a norm closed subspace of ( )  . The study of operator space begins 
with Arverson’s [1] discovery of an analogue of the Hahn-Banach theorem. 
Since the discovery of an abstract characterization of operator space by Ruan [2], 
there have been many more applications of operator space to other branches in 
functional analysis. Effros and Ruan studied the mapping spaces ( ),CB V W  in 
[3] and the minimal and maximal operator spaces in [4]. The fundamental and 
systematic developments in the theory of tensor product of operator spaces can 
be found in [5] [6]. The tensor products provide a fruitful approach to mapping 
spaces and local property. For example, Effros, Ozawa and Ruan [7] showed that 
an operator space V is nuclear if and only if V is locally reflexive and **V  is in-
jective. Dong and Ruan [8] showed that an operator space V is exact if and only 
if V is locally reflexive and **V  is weak* exact. In [9], Han showed that an op-
erator space V satisfies condition C if and only if it satisfies conditions C′  and 
C′′ . Based on the work of Han, Wang [10] gave a characterization of condition 
C∧′  on the operator spaces. Amini, Medghalchi and Nikpey [11] proved that an 
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injective operator space is global exactness if and only if it is reflexive. The read-
ers may refer to [12] [13] for the basics on operator spaces. 

Recently, some new algebraic structures derived from operator spaces also 
have been intensively studied. An operator system is a matrix ordered operator 
space which plays a profound role in mathematical physics. Kavruk, Paulsen, 
Todorov and Tomforde gave a systematic study of tensor products and local 
property of operator systems in [14] [15]. In [16], Luthra and Kumar showed 
that an operator system is exact if and only if it can be embedded into a Cuntz 
algebra. The numerical radius operator space is also an important algebraic 
structure which is introduced by Itoh and Nagisa [17] [18]. The conditions to be 
a numerical radius space are weaker than the Ruan’s axiom for an operator space. 
It is shown that there is a  -complete isometry from a numerical radius oper-
ator space into a Hilbert space with numerical radius norm. They also studied 
many relations between the operator spaces and the numerical radius operator 
spaces. The category of operator space can be regarded as a subcategory of nu-
merical radius operator space. 

We now recall some concepts needed in our paper. An (abstract) operator 
space is a complex linear space V together with a sequence of norms ( )n ⋅  on 
the n n×  matrix space ( )nM V  for each n∈ , which satisfies the following 
Ruan’s axioms OI, OII:  

( ) ( ){ }0
OI : max , ;

0m n m n

v
v w

w+

  
=  

  
    

( ) ( )OII : n mv vα β α β≤   

for all ( ) ( ),m nv M V w M V∈ ∈  and ( ) ( ), ,,n m m nM Mα β∈ ∈  . If V is an (ab-

stract) operator space, then there is a complete isometry Ψ  from V to ( )  , 

that is, ( ) ( ), ,i j n i j
n

v v   Ψ =      for all ( ), ,i j nv M V n  ∈ ∈   . 

An abstract numerical radius operator space is a complex linear space V to-
gether with a sequence of norms ( )n ⋅  on the n n×  matrix space ( )nM V  
for each n∈ , which satisfies the following axioms WI, WII:  

( ) ( ){ }0
WI : max , ;

0m n m n

v
v w

w+

  
=  

  
    

( ) ( )2WII : n mv vα α α≤   

for all ( ) ( ),m nv M V w M W∈ ∈  and ( ),n mMα ∈  . Let ( )ω ⋅  be the numerical 
radius norm on ( )  . If V is an abstract numerical radius operator space, then 
there is a  -complete isometry Φ  from ( ), nV   to ( )( ), nω  , that is, 

( )( ) ( ), ,n i j n i jv vω  Φ =    for all ( ), ,i j nv M V n  ∈ ∈   . Given a numerical ra-
dius operator ( ), nV  , we can define an operator space ( ), nV   by  

( ) 2

01:
0 02 n n

v
OW v

  
=   

  
   

for all ( )nv M V∈ . 
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Given abstract numerical radius operator spaces (or operator spaces) ,V W  
and a linear map ϕ  from V to W, nϕ  from ( )nM V  to ( )nM W  is defined 
to be ( ),n i jvϕ     for each ( ), ,i j nv M V n  ∈ ∈   . We use a simple notation for 
the norm of ( ),i j nv v M V = ∈   to be ( )v  (resp. ( )v ) instead of ( )n v  
(resp. ( )n v ), and for the norm of ( )*nf M V∈  to be  

( ) ( ) ( ) ( ){ }*
,sup : , 1i j nf f v v v M V v = = ∈ ≤   .  

We denote the norm nϕ  by  

( ) ( )( ) ( ) ( ){ },sup : , 1n n i j nv v v M V vϕ ϕ  = = ∈ ≤      

(resp. ( ) ( )( ) ( ) ( ){ },sup : , 1n n i j nv x v M V vϕ ϕ  = = ∈ ≤    ).  

The  -completely bounded norm (resp. completely bounded norm) of ϕ  is de-
fined to be ( ) ( ){ }sup :ncb nϕ ϕ= ∈  , (resp. ( ) ( ){ }sup :ncb nϕ ϕ= ∈  ). 
We say ϕ  is  -completely bounded (resp. completely bounded) if  

( )cbϕ < ∞  (resp. ( )cbϕ < ∞ ), and ϕ  is  -completely contractive (resp. 
completely contractive) if ( ) 1cbϕ ≤  (resp. ( ) 1cbϕ ≤ ). We call ϕ  is a 
-complete isometry (resp. complete isometry) if ( )( ) ( )n v vϕ =   (resp. 

( )( ) ( )n v vϕ =  ) for each ( ) ,nx M V n∈ ∈ . 
In Section 2, we study the bounded maps on finite dimension numerical ra-

dius operators and commutation C*-algebras. We prove these maps are all 
-completely bounded. In Section 3, we study the dual space of a numerical ra-
dius operator space and prove its dual space has a dual realization on a Hil-
bert space  . In Section 4, we define the numerical radius operator spaces 
MinE  and MaxE  for a normed space E, and prove that ( )* *MaxE MinE=  
and ( )**MaxE MinE= . 

In order to improve the readability of the paper, we give an index of notation:   
 

Index of Notation 

( )   Hilbert space 

( ),m nM V  m by n matrix space over V 

( )0C Ω  Space of continuous complex functions vanishing at ∞  on Ω  

α  Matrix norm of α  

,v w  Scalar pairing of matrices 

,v w  Matrix pairing of matrices 

( ), nV   Operator space 

( ), nV   Numerical radius operator space 

( )ω ⋅  Numerical radius norm on ( )   

( ),B V W  Space of bounded mappings 

( ),B V Wσ  Space of w*-bounded mappings 

( ),CB V W  Space of completely bounded mappings 

( ),CB V W  Space of  -completely bounded mappings 
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2. Bound Linear Maps 

In this section, we study some bounded linear maps on the numerical radius op-
erator spaces.  

Proposition 2.1. If ( ), nV   is an operator space and ( ), nV   is a numerical 
radius operator space satisfies 1v = , then the mapping  

: :v C V vθ α α→ →  

is  -completely isometric.  
Proof. Since ( ) ( )max ω=  , by Lemma 3.8 and 3.9 in [18], we have  

( ) ( )( ) ( )max: 1v v cbcb
vθ θ→ ≤ =     

and  

( ) ( ) ( )( ): .v vcb cb
vθ θ ω≤ →    

So  

( ) ( )( ) ( ): 1.v v cbcb
vθ ω θ→ = =                  

Now we consider the condition for finite dimensional numerical radius oper-
ator spaces.  

Proposition 2.2. Given abstract operator spaces ( ), nV   and ( ), nW   with 
either V or W n-dimensional, ( ), nV   and ( ), nW   are numerical radius oper-
ator spaces, any linear mapping :V Wϕ →  satisfies  

( ) ( )( ) ( ) ( )( ): : .
cb

V W n V Wϕ ϕ→ ≤ →       

Proof. Let us suppose that W has dimension n. We may select an Auerbach basis 
for W, which by definition is a vector basis 1 2, , , nw w w  with ( ) 1jw = , there 
exist ( )*jg W∈  with ( ) 1jg =  and ( )j i ijg w δ= . Since  

1
.

j

n

W w j
j

id gθ
=

= ∑ 

 
We have  

1
,

j

n

w j
j

gϕ θ ϕ
=

= ∑    

where ( )
jw jwθ α α=  are  -complete isometries from   to W, and jg ϕ  

are bounded linear functionals on V. It follows from Lemma 2.3 in [18] that 

( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )( )
( ) ( )( )

1

1

:

: :

:

: .

j

cb
n

w j cbcbj

n

j
j

V W

W g V

g V

n V W

ϕ

θ ω ϕ ω

ϕ ω

ϕ

=

=

→

≤ → ⋅ →

= →

≤ →

∑

∑





 



  

   

 

  

 

Similarly, if V is n-dimensional, then we may replace W by ( )Wϕ , which has 
dimension less than or equal to n, and the result follows from the previous ar-
gument.                                                           
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Proposition 2.3. If ( ), nV   and ( ), nW   are n-dimensional operator spaces, 
( ), nV  , ( ), nW   are numerical radius operator spaces, then there exists a li-
near isomorphism ( ) ( ): V Wϕ →   such that  

( ) ( )( ) ( ) ( )( )1 2: : .
cb cb

V W W V nϕ ϕ−→ ⋅ → ≤       

Proof. We choose Auervach bases iv V∈  and ( ) 1, ,iw W i n∈ =  , together 
with dual bases ( )*if V∈  and ( )*ig W∈  with ( ) ( ) 1i if g= =  . We 
have that  

( )
1

: :
n

i i
i

V W v f v wϕ
=

→ ∑  

and  

( )
1

: :
n

i i
i

W V w g w vψ
=

→ ∑  

are inverse linear mappings. Since  

( ) ( )( )

( ) ( )( ) ( ) ( )( )
1

:

: :
i

cb
n

i wcb cbi

V W

f V W n

ϕ

ω θ ω
=

→

≤ → ⋅ → ≤∑  

  

   
 

and similarly  

( ) ( )( ): ,
cb

W V nψ → ≤    

the result follows.                                                   
For any commutative C*-algebra, we can assume that   coincides with 
( )0C Ω . We may identify ( )( )0nM C Ω  with ( )0 , nC MΩ . When given 

( )( )0ij nf f M C = ∈ Ω  , we define  

( ) ( )( ){ }sup ,ij
w

f f wω
∈Ω

=  

then ( )0C Ω  can be seen as a numerical radius operator space. We call such 
  a commutative C*-algebra with a numerical radius norm.  

Theorem 2.4. Let V be a numerical radius operator space, and let   be a 
commutative C*-algebra with a numerical radius norm. Then any bounded li-
near mapping :Vϕ →  satisfies ( ) ( )cbϕ ϕ=  .  

Proof. We can assume that   coincides with ( )0C Ω . Taking the supre-
mum over all w∈Ω  and nα ∈  with 

2 1α = , we have 

( )( ) ( )( ) ( )( )( ){ }
( )( ){ } ( )( ){ }

, ,

, ,
, ,

sup

sup sup

n i j i j
w

i j i i j j
w w

v v v w

v w v w
α α

ϕ ϕ ω ϕ

ϕ α α α ϕ α

∈Ω
= =

= = ∑

 
 

and thus letting α  also stand for column matrices,  

( )( ) ( )( ){ } ( ){ } ( ) ( )* *

,
sup ( )sup .n
w

v v w v v
α α

ϕ ϕ α α ϕ α α ϕ= ≤ ≤      

This shows that that ( ) ( )nϕ ϕ≤   for all n∈ , and thus  
( ) ( )cbϕ ϕ=  .                                                   
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3. Dual Spaces of Numerical Radius Operator Spaces 

In this section, we introduce a lemma first.  
Lemma 3.1. Suppose that V is a numerical radius operator space. Given any 

element ( )nv M V∈ , there exists a  -complete contraction : nV Mϕ →  such 
that ( )( ) ( )n v vω ϕ = .  

Proof. If we are given ( )nv M V∈ , then we may use the Hahn-Banach theorem to 
find a linear functional ( ) *

nF M V∈     with ( )* 1F =  and ( ) ( )F v v= . 
From Lemma 2.4 in [18], there is a corresponding  -complete contraction 

: nV Mϕ →  for which  

( )( ) ( ) ( ) ( ), .n nv v F v vω ϕ ϕ ξ ξ≥ = =  

The reverse inequality is trivial.                                        
There is a natural numerical radius operator space structure on the mapping 

space ( ),CB V W . In this paper, we consider the dual space  

( ) ( )* , ,V B V CB V= =  .  

Our task is to define ( )*
nM V  by introducing an appropriate norm on ( )*

nM V . 
Each ( )*

,i j nf f M V = ∈   determines a linear mapping : nf V M→ , where 
( ) ( ),i jf v f v =   . This gives us a linear isomorphism ( ) ( )* ,n nM V CB V M≅ , 

which we use to determine the norm on ( )*
nM V . Thus, if we let ( )*

nM V  be 
the corresponding normed space, we have the isometric identification  

( ) ( )* ,n nM V CB V M= . 

For any ( )*
nf M V∈ , we have from Lemma 2.3 in [18],  

( ) ( )( ) ( ) ( ){ }
( ) ( ) ( ){ }

sup : , 1

sup , : , 1 ,

n n

n

f f v v M V v

f v v M V v

ω

ω

= ∈ ≤

= ∈ ≤

 


 

where ,⋅ ⋅  is the matrix pairing. Conversely, the norm on ( )*
nM V  deter-

mines that on ( )nM V . Since we have from Lemma 3.1 that for any ( )nv M V∈ ,  

( ) ( )( ) ( ) ( ){ }
( ) ( ) ( ){ }

sup : , , 1

sup , : , , 1 .

n n cb

n cb

v f v f CB V M f

f v f CB V M f

ω

ω

= ∈ ≤

= ∈ ≤

  

 
 

Proposition 3.2. The matrix norms on *V  determine a numerical radius 
operator space.  

Proof. Let us suppose that we are given ( )*
nf M V∈ , ,n mMα ∈ . Then  

( )( ) ( ) ( )( )
( )

( )

**

2

2 ,

r r rr

r r

cb

f I f I

I f

f

α α α α

α

α

= ⊗ ⊗

≤ ⊗

≤

 





 

and hence ( ) ( )2*
cbcb

f fα α α≤  . We have WII. 

On the other hand, given ( ) ( )* *,n nf M V g M V∈ ∈ , and ( )rv M V∈  with 
( ) 1v ≤ ,  
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( ) ( )( ) ( ) ( )( )
( ) ( )( )

( )( ) ( )( ){ }
( ) ( ){ }

, ,

,

max ,

max , ,

i j i jr

r r i j

r r

cb cb

f g v f v g v

f v g v

f v g v

f g

ω ω

ω

ω ω

 ⊕ = ⊕ 

= ⊕

=

≤  

 

and hence ( ) ( ) ( ){ }max ,cb cb cbf g f g⊕ ≤   . We have WI.            

If :V Wϕ →  is  -completely bounded mapping, then we let * * *:W Vϕ →  
be the dual Banach space mapping. For any ( )nv M V∈  and ( )*

mg M W∈ , we 
have  

( ) ( )( ) ( )( ) ( ) ( )* *
, , , ,, , .n k l i j k l i j m

g v g v g v g vϕ ϕ ϕ ϕ   = = =    

Proposition 3.3. Given numerical radius operator spaces V and W, and a 

-completely bounded mapping :V Wϕ → , we have ( )( ) ( )*
nn

ϕ ϕ=   for 

all n∈ , and ( ) ( )*
cbcb

ϕ ϕ=  .  

Proof. The second relation is immediate from the first. The first follows from 
the calculation  

( )( ) ( ) ( ){ } ( )( ){ } ( )* *sup , sup , ,n nn n
g v g vϕ ω ϕ ϕ ϕ= = =    

where the supermum is taken over all ( )*
ng M W∈  and ( )nv M v∈  of norm 

less than 1.                                                         
We also note that given a  -completely bounded mapping ( ),CB V Wϕ ∈ , 

its second adjoint mapping ** ** **:V Wϕ →  is in ( )** **,CB V W  with 

( ) ( )**
cbcb

ϕ ϕ=  , where **ϕ  restricted to V is equal to ϕ . 

Given a numerical radius operator space W which is the dual of a complete 
numerical radius operator space V, and a Hilbert space  , we say that a map-
ping ( )( ): ,Wϕ ω→    is a dual realization of W on  , if it is a weak* ho-
meomorphic  -completely isometric injection. 

Theorem 3.4. If V is a complete numerical radius operator space, then *V  
has a dual realization on a Hilbert space  .  

Proof. Let ( ) ( ) 1n ns M Vσ
⋅ ≤

=


. We have from Lemma 2.3 [18] that if 

( ) ( )* ,n nf M V CB V M∈ = , then ( ) ( ){ }sup , , nf f sσω ϕ ϕ= ∈ . We de-

fine nn
s sσ σ

∈
=





 and we let ( )n
sσ

ϕ
ϕ∈

= ⊕  , where ( )n n ϕ=  is the integer 

with nsσϕ ∈ . The argument in the proof of Theorem 2.1 in [18] shows that the 
mapping  

( ) ( )( )*: :
s

V f f σϕ
ϕ

∈
Φ → →   

is a  -complete isometry. It is obvious that the mapping Φ  is continuous in 
the weak* topology. Since ( ) 1V ⋅ ≤  is weak* compact, then its domain ( )( )*

1V ⋅ ≤Φ   
is also weak* compact and is a closed subspace of ( )( ),ω  . Finally, Φ  is 
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one-to-one and weak* continuous on ( )
*

1V ⋅ ≤ , thus it is a weak* homeomor-
phism. Since V is complete, Φ  maps *V  weak* homeomorphically onto its 
image.                                                            

Proposition 3.5. If W is complete, then so is ( ),CB V W .  
Proof. Let us suppose that W is complete. It suffices to show that 

( ),CB V W  is a closed subspace of ( ),B V W . Given any Cauchy sequence 
( ),n CB V Wϕ ∈ , it is clear that nϕ  is a Cauchy sequence in ( ),B V W . From 

classical Banach space theory, ( ),B V W  is complete, and thus there is a 
bounded linear mapping :V Wϕ →  such that nϕ  converges to ϕ  in the 
norm topology, i.e., ( ) 0nϕ ϕ− → . Since nϕ  is Cauchy in ( ),CB V W , for 
any 0ε >  there exist a sufficiently large integer ( ) 0N ε >  such that whenever 

( ),n m N ε> , we have  

( ) .n m cb
ϕ ϕ ε− <  

Given any ( ),i j pv v M V = ∈   and p N∈ , we have  

( ) ( )( ) ( ) ( ) ( ).n m n mp cb
v v vϕ ϕ ϕ ϕ ε− ≤ − ⋅ <     

Since ( ),m i jvϕ  converges to ( ),i jvϕ  in W, we have  

( ) ( )( ) ( ) ,n p
v vϕ ϕ ε− ≤   

and thus ( )n cb
ϕ ϕ ε− ≤ . It follows that ( ),CB V Wϕ ∈  and nϕ  converges 

to ϕ  in ( ),CB V W .                                              

4. The Min and Max Numerical Radius Operator Spaces 
We let η  denote the category of normed spaces, in which the objects are the 
normed spaces and the morphisms are the bounded linear mappings. Similarly, 
we let D  be the category of numerical radius operator spaces with the mor-
phisms being the  -completely bounded mappings. We have a natural “for-
getful” functor :N η→D  which maps a numerical radius into its underlying 
normed space. We say that a functor :Q η →D  is a strict quantization if for 
each normed space E, ( )N Q E E= , and for each bounded linear mapping of 

normed space : E Fϕ → , the corresponding mapping ( ) ( ) ( ):Q Q E Q Fϕ →  

satisfies ( )( ) ( )cb
Q ϕ ϕ=  . 

For any Banach space E, we let ( ) ( ) ( ) 1,r rb E B E M
⋅ ≤

=


 and  

( ) ( )rr N
b E b E

∈
=


. We define the matrix norms ( )Minv  and ( )Maxv  for 

( )nv M E∈  by  

( ) ( )( ) ( ){ }sup :nMinv f v f b Eω= ∈  

and  

( ) ( )( ) ( ){ }1sup : .nMaxv f v f b Eω= ∈  

Proposition 4.1. ( ), MinV   and ( ), MaxV   are both numerical radius oper-
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ator spaces.  
Proof. To see that these are indeed numerical radius operator space matrix 

norms, it suffices to consider the linear injections  

( )( ) ( )( ) ( )1
1 :

f b E
E b E V f v∞ ∈
→ →

 

and  

( )( ) ( )( ) ( )( ), :
r

r r f b E rr
E b E M V f v∞ ∈ ∈∈

→ →∏


 

respectively. We have the natural numerical radius operator space identifications 
( )( ) ( )11 b Eb E∞ =∏   and ( )( ) ( ),

rr r rr r b Eb E M M∞∈ ∈
=∏ ∏ ∏

 


.         

Since the relative matrix norms on E are given above, it is evident that these 
determine numerical radius operator spaces, which we denote by Min E and 
Max E, respectively. We refer to these numerical radius operator spaces as the 
minimal and the maximal quantization of E. 

If V is a numerical radius operator space and ( )nv M V∈ , then it follows 
from Lemma 2.3 in [18] that  

( ) ( )( ) ( ){ }sup : .n nv f v f s Vω= ∈  

Since ( ) ( ) ( )1 nb v s v b v⊆ ⊆ , we conclude that ( ) ( ) ( )Min Maxv v v≤ ≤    
for any ( )nv M V∈ . 

Proposition 4.2. For any numerical radius operator space V and normed 
space E, and any linear mapping :V Eϕ → , we have  

( ) ( ) ( ), : : .cbCB V MinE V MinE V Eϕ ϕ= → = →    

Proof. Let us suppose that ( )nv M V∈  and ( ) 1v ≤ . Then  

( )( ) ( )( ) ( ){ }sup : : 1 .n n nMin
v f v f Eϕ ϕ= → ≤     

But ( ) 1f ≤  implies that  

( )( ) ( ) ( ) ( ) ( ) ( )n cbf f f fϕ ϕ ϕ ϕ ϕ≤ = ≤ ⋅ ≤         

and thus ( )( ) ( )n Min
vϕ ϕ≤   for all n∈ . The inversion is clear.        

If : E Fϕ →  is a contraction, then since : MinE MinFϕ →  is a contraction,  
= :Min MinE MinFϕ ϕ →  

is  -completely contractive. We conclude that Min  is a strict quantization 
functor. If : E Fϕ →  is an isometric injection, then it follows that ϕ  is 
-completely isometric since we may extend any ( )1f b E∈  to a functional 

( )1f b F∈ . 
Proposition 4.3. For any normed space E and numerical radius operator 

space W, we have  

( ) ( ), , ,CB MaxE W B E W=  

i.e., for any linear mapping : E Wϕ → ,  

( ) ( ): : .cbMaxE W E Wϕ ϕ→ = →   
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Proof. To prove this, it suffices to show that if ( ) 1ϕ ≤ , then ( ) 1cbϕ ≤ . 
For any n∈  and ( )nv M MaxE∈ , we have  

( )( )
( )( ) ( ){ }

( ) ( )( ) ( ){ }
( )( ) ( ){ }

( )

sup : : 1,

sup : : 1,

sup : : 1,

.

n

n n r cb

rn

n r

Max

v

f v f W M r

f v f W M r

g v g E M r

v

ϕ

ϕ

ϕ

= → ≤ ∈

≤ → ≤ ∈

≤ → ≤ ∈

=













 

 

 



 

From the above, we conclude that ( ) 1cbϕ ≤ .                           
In particular, if we are given normed spaces E and F and a contraction 
: E Fϕ → , since : E MaxFϕ →  is a contraction, we have  

:Max MaxE MaxFϕ →  

is a  -complete contraction. Thus Max  is a strict quantization. 
If there is a contraction : F Eψ →  such that Eidψ ϕ = , then Maxϕ  is 
-completely isometric since MaxMax Max id Eψ ϕ = . This is also the case for the 
canonical injection  **E E , since any contraction : nf E M→  automatically 
extends to the contraction ** **: nf E M→ . 

Proposition 4.4 If D is a subset of ( )
*

1V ⋅ ≤ , and the absolutely convex hull 
( )co D  is weak* dense in ( )

*
1V ⋅ ≤ . Then for any ( )nv M V∈ ,  

( ) ( )( ){ }sup : .nMinv f v f Dω= ∈  

Proof. Let us suppose that ( )( ) 1nf vω ≤  for all f D∈ . If k kkg t f∈∑  

where kf D∈  and 1kk t ≤∑ , then  

( )( ) ( ) ( ) 1.n k k kn
k k

g v t f v tω ω = ≤ ≤ 
 
∑ ∑  

For the absolutely convex hull ( )co D  is weak* dense in ( )
*

1V ⋅ ≤ , given an 
arbitrary element ( )

*
1g V ⋅ ≤∈  , we may find a net ( )g co Dβ ∈  converging to g 

in the weak* topology. Then ( ),i jg vβ  converges to ( ),i jg v  in the numerical 
radius norm topology. It follows that ( )( ) 1ng vω ≤ , and thus ( ) 1Minv ≤ .   

For any ( )nv M E∈ , the linear mappings ( ),:v i jf f vϕ  →    are just the 
weak* linear mappings from *E  into ( ),nM ω , and thus we have the isometric 
identification ( ) ( )* ,n nM MinE B E Mσ= . 

Theorem 4.5. Suppose E is a normed space, then ( )* *MaxE MinE= .  
Proof. Given a normed space E, n∈  and a linear mapping : nf E M→ , 

the second adjoint **f  provides an extension of f to a weak* continuous map-
ping from **E  to nM . This provides us with a natural identification  
( ) ( )**, ,n nB E M B E Mσ= . Thus, we have the isometries  

( )( ) ( ) ( ) ( )* *, , .n n n nM MaxE CB MaxE M B E M M MinE= = =  

The result follows.                                                   
If Ω  is a locally compact Hausdorff space and ( )0Z C= Ω  is the corres-
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ponding commutative C*-algebra, then we have a natural mapping  

( )( ) ( )*: : .Z x v v xδ δΩ→ =  

It is a simple consequence of the bipolar theorem that ( )( )co δ Ω  is weak* 
dense in ( )

*
1Z ⋅ ≤ . From our preceding observation, if ija a =    is an element of 

( )nM Z , we have  

( ) ( )( ) ( ){ } ( )( ){ }sup : sup : ,ij ijMina f a f a x xω δ ω   = ∈ Ω = ∈Ω    

i.e., ( ) ( )0 ,n nM Z C M≅ Ω . We conclude that as a numerical radius operator 
space, Z is just the minimal quantization of its underlying Banach space, i.e., 
Z MinZ= . 

Theorem 4.6. Suppose E is a normed space, then ( )* *MinE MaxE= .  
Proof. Given a normed space E, and an isometric injection  E Z , where Z 

is a commutative C*-algebra. We have a corresponding commutative diagram  

** **

E Z

E Z

→
↓ ↓

→
 

where the first column is an isometry, the second column is a  -complete 
isometry, and both rows are isometric. Since **Z  is a numerical radius operator 
space, it determines the minimal numerical radius operator space structure on 

**E , hence ( )** **MinE MinE= . Thus, we have the  -complete isometries  

( ) ( )
* *** ** ,MaxE MinE MinE= =  

and since these identifications are compatible with the dualities, we have the 
-complete isometry ( )**MaxE MinE= .                                 

5. Conclusion 

In this paper, we study the bounded linear operators and the dual spaces of the 
numerical radius operator spaces. We found that many of the basic results 
about the numerical radius operator space can be inspired by the theory of op-
erator space. In the future, we will study the tensor product theory and local 
property in the category of numerical radius operator spaces. We believe that 
the further developments of the numerical radius operator space theory could 
play an import role in the operator space theory as well as have its own intrin-
sic merit. 
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