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Abstract

In this paper, we first study some W -completely bounded maps between
various numerical radius operator spaces. We also study the dual space of a
numerical radius operator space and show that it has a dual realization. At
last, we define two special numerical radius operator spaces MiInE and
MaxE which can be seen as a quantization of norm space E.
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1. Introduction and Preliminaries

The theory of operator space is a recently arising area in modern analysis, which
is a natural non-commutative quantization of Banach space theory. An operator
space is a norm closed subspace of (). The study of operator space begins
with Arverson’s [1] discovery of an analogue of the Hahn-Banach theorem.
Since the discovery of an abstract characterization of operator space by Ruan [2],
there have been many more applications of operator space to other branches in
functional analysis. Effros and Ruan studied the mapping spaces CB(V,W) in
[3] and the minimal and maximal operator spaces in [4]. The fundamental and
systematic developments in the theory of tensor product of operator spaces can
be found in [5] [6]. The tensor products provide a fruitful approach to mapping
spaces and local property. For example, Effros, Ozawa and Ruan [7] showed that
an operator space Vis nuclear if and only if Vs locally reflexive and V™ is in-
jective. Dong and Ruan [8] showed that an operator space Vis exact if and only
it V'is locally reflexive and V™ is weak* exact. In [9], Han showed that an op-
erator space Vsatisfies condition Cif and only if it satisfies conditions C' and
C" . Based on the work of Han, Wang [10] gave a characterization of condition

C! on the operator spaces. Amini, Medghalchi and Nikpey [11] proved that an
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injective operator space is global exactness if and only if it is reflexive. The read-
ers may refer to [12] [13] for the basics on operator spaces.

Recently, some new algebraic structures derived from operator spaces also
have been intensively studied. An operator system is a matrix ordered operator
space which plays a profound role in mathematical physics. Kavruk, Paulsen,
Todorov and Tomforde gave a systematic study of tensor products and local
property of operator systems in [14] [15]. In [16], Luthra and Kumar showed
that an operator system is exact if and only if it can be embedded into a Cuntz
algebra. The numerical radius operator space is also an important algebraic
structure which is introduced by Itoh and Nagisa [17] [18]. The conditions to be
a numerical radius space are weaker than the Ruan’s axiom for an operator space.
It is shown that there is a )V -complete isometry from a numerical radius oper-
ator space into a Hilbert space with numerical radius norm. They also studied
many relations between the operator spaces and the numerical radius operator
spaces. The category of operator space can be regarded as a subcategory of nu-
merical radius operator space.

We now recall some concepts needed in our paper. An (abstract) operator
space is a complex linear space V together with a sequence of norms O, (-) on
the NxN matrix space M (V) for each neN, which satisfies the following

Ruan’s axioms OI, OII:

o0, [[\(’) ‘(')VD =max {0, (v), O, (w)};

Ol: 0, (avp) <[] O, (V)| A
forall veM, (V),weM (V) and aeM,  (C),feM_ (C).If Visan (ab-
stract) operator space, then there is a complete isometry ¥ from Vto B(H),
that is, H[\P(Vi'j)] i =0, ([Vi,j]) for all [Vi,j]E M, (V) neN.

An abstract numerical radius operator space is a complex linear space V to-

gether with a sequence of norms W, (-) on the NxN matrix space M, (V)

for each n e N, which satisfies the following axioms WI, WII:
wl:WwW v.o = max {W, (V). W, (w)};
=V ¥man 0w - m T7n !

WIL:W, (avar) <l W, (v)

forall veM,_ (V),weM_ (W) and aeM, (C).Let o(-) be the numerical
radius norm on B(H).If Vis an abstract numerical radius operator space, then
there is a W -complete isometry ® from (V,) to (B(H),®,), that is,
o, (CD(V” )) =W, ([v”]) for all [Viﬂe M, (V),neN. Given a numerical ra-
dius operator (V, ), we can define an operator space (V,0,) by

ow :%On (V) =W, ((8 ;D

forall ve M (V).
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Given abstract numerical radius operator spaces (or operator spaces) V,W
and a linear map ¢ from Vto W, ¢, from M (V) to M (W) is defined
tobe ¢, ([vi‘j ]) for each [vi’j ] eM,(V),neN. We use a simple notation for
the norm of v= [vi’j ] eM, (V) tobe W(v) (resp. O(v)) instead of W (V)
(resp. O, (V)), and for the normof f eM, (V) tobe

W () =sup{|f (v)]:v=[v,; Je M, (V),W(v)<1}.
We denote the norm ¢, by
W(p,)=supW(g, (v):v=[v,; ]eM, (V). W(v) <1
(resp. O(g,)=sup{O(, (v)):x=[v,; JeM,(V),0(v)<1}).

The W -completely bounded norm (resp. completely bounded norm) of ¢ is de-
fined tobe W(p), = Sup{VV((pn )ine N} , (resp. O(op),, = sup{@(q)n )ine N} ).
Wesay ¢ is W -completely bounded (resp. completely bounded) if

W(p),, <x (resp. O(p), <x), and ¢ is VW -completely contractive (resp.
completely contractive) if W(p), <1 (resp. O(p), <1). We call ¢ isa W
-complete isometry (resp. complete isometry) if W((pn (v)) =W(v) (resp.
O(@,(v))=0(v)) foreach xeM, (V),neN.

In Section 2, we study the bounded maps on finite dimension numerical ra-
dius operators and commutation C*-algebras. We prove these maps are all W
-completely bounded. In Section 3, we study the dual space of a numerical ra-
dius operator space and prove its dual space has a dual realization on a Hil-
bert space H. In Section 4, we define the numerical radius operator spaces
MinE and MaxE for a normed space £, and prove that (MaXE)* = MinE"
and MaxE”™ =(MinE) .

In order to improve the readability of the paper, we give an index of notation:

Index of Notation

B(H) Hilbert space
M,. (V) mby n matrix space over V'
C,(Q) Space of continuous complex functions vanishingat o on Q
lo| Matrix norm of «
(V, W> Scalar pairing of matrices
<<V, W>> Matrix pairing of matrices
v,0) Operator space
v, VV") Numerical radius operator space
o) Numerical radius norm on  B(H)
B(V.W) Space of bounded mappings
B° (V ,W) Space of w¥-bounded mappings
CB(V,W) Space of completely bounded mappings
WCB(V,W) Space of W -completely bounded mappings
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2. Bound Linear Maps

In this section, we study some bounded linear maps on the numerical radius op-
erator spaces.

Proposition 2.1. If (V,0,) is an operator space and (V,)V)) is a numerical
radius operator space satisfies |v||=1, then the mapping

6, Co>Via—-av

is W -completely isometric.
Proof. Since W, ((C) = a)((C) , by Lemma 3.8 and 3.9 in [18], we have

W(6, : Wy (C) > W(v)), <0O(8,),, =1

max
and

0(8,), <W(6,:0(C)>W(v))

So
W(6, :o(C)>W(v)), =0(8,), =1. O

Now we consider the condition for finite dimensional numerical radius oper-
ator spaces.

Proposition 2.2. Given abstract operator spaces (V,0,) and (W,0,) with
either Vor W n-dimensional, (V,)}) and (W,V)) are numerical radius oper-

ator spaces, any linear mapping ¢:V —W satisfies
W(p:W(V)>WW)), <nW(p:W(V)—>W(W)).
Proof. Let us suppose that Whas dimension n. We may select an Auerbach basis

for W, which by definition is a vector basis W,,W,,---, W, with W(Wj):l,there
exist g eW(W)* with W(gj):l and g, (w,)=d;. Since

dW = Zewj ° g
=1
We have
= ZHWJ_ o gj °Q,
=1

where 6, (a)=aw; are W -complete isometries from C to W, and g;c¢

are bounded linear functionals on V. It follows from Lemma 2.3 in [18] that

W(q):W(V)—)W(W))Cb

< W(8, :0(C) > WW))_W(g, e W(V) > (C)),

S (820 (V) > 0(C))

nW(go:W( ) > W(W)).

IA

Similarly, if Vis n-dimensional, then we may replace Wby ¢(W ), which has
dimension less than or equal to n, and the result follows from the previous ar-

gument. g
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Proposition 2.3. If (V,0,) and (W,0,) aren-dimensional operator spaces,
(V). (W,W,) are numerical radius operator spaces, then there exists a li-
near isomorphism ¢:W(V)—>W(W) such that

W(p:W(V)>WW)) - W(e": WW)— W(V))Cb <n2.

Proof. We choose Auervach bases v, eV and w, eW (i=1,--,n), together
with dual bases f, e W(V) and g, e W(W) with W(f,)=W(g;)=1. We
have that

p:V >W ZVI—)zn: f(v)w,
i1
and
w W >Viwe Zn:gi (w)y,
i1
are inverse linear mappings. Since
I W(f (V) > (C)), -W(8, :0(C)>W(W))_ <n
i-1 ¢
and similarly
W((// W(W) > W(V ))cb <n,
the result follows. U

For any commutative C*-algebra, we can assume that A coincides with
Co(Q) . We may identify M, (Cy(Q)) with C,(€,M,). When given

f= [ f ] eM, (C,(Q)), we define

W(f) =sup{a)( f; (W))}

weQ)

then C,(Q) can be seen as a numerical radius operator space. We call such
A acommutative C*-algebra with a numerical radius norm.

Theorem 2.4. Let V be a numerical radius operator space, and let A be a
commutative C*-algebra with a numerical radius norm. Then any bounded li-
near mapping ¢:V — A satisfies W(¢p), =W(9).

Proof. We can assume that A coincides with C,(Q). Taking the supre-

mum overall weQ and acC" with [af, =1, we have
Wig,(v)=W(o(v,))=sup (o (v,;)(w)}
-stp(o (v, )(w)ala)} =sun{[Eae(v, )(w)a, |
and thus letting o also stand for column matrices,
W(e, (v))= swgf{\go(awa)(w)\} <W(p) sgp{W(a*Va)} <W(@)W(V).

This shows that that W(g,)<W(¢) forall neN,and thus
W(@)g =W(0)- 0
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3. Dual Spaces of Numerical Radius Operator Spaces

In this section, we introduce a lemma first.
Lemma 3.1. Suppose that V'is a numerical radius operator space. Given any

element ve M, (V), there exists a )V -complete contraction ¢:V — M such
that (g, (v))=W(v).

Proof If we are given Ve M (V ), then we may use the Hahn-Banach theorem to
find a linear functional Fe[M, (V )T with W' (F)=1 and |F(v)|=W(v).
From Lemma 2.4 in [18], there is a corresponding WV -complete contraction

@:V > M, for which
o(e: (1) 2 (0, (V)& £)|=[F (W= (V)

The reverse inequality is trivial. O
There is a natural numerical radius operator space structure on the mapping

space WCB(V,W ). In this paper, we consider the dual space
V' =B(V,C)=WCB(V,C).
Our task is to define M, (V*) by introducing an appropriate normon M (V*) .
Each f = [ fi } eM, (V*) determines a linear mapping f :V — M, where
f(v)= [ fi (v)] This gives us a linear isomorphism M (V*) =WCB(V,M,),
which we use to determine the norm on M, (V*) . Thus, if we let M (V*) be

the corresponding normed space, we have the isometric identification
M, (V)=WCB(V,M,).
Forany feM,(V"),wehave from Lemma 2.3 in [18],
W(f)=sup{a)( f,(v)):veM, (V),W(v)sl}
=sup{w(<(f,v>>):VG M, (V),W(v)sl},
where ()} is the matrix pairing. Conversely, the norm on M, (V") deter-
mines that on M, (V). Since we have from Lemma 3.1 that forany ve M, (V),
W(v) =sup{a)( f,(v)): f eWCB(V,M, ), W(f), sl}
=sup{a)(<<f,v)>): f e WCB(V,M,),W(f), sl}.
Proposition 3.2. The matrix norms on V' determine a numerical radius

operator space.

Proof. Let us suppose that we are given f e M, (V"), @M, . Then
W((ata’) )=w((@e1,)f (@®1,))
<la@ 1, Fw(1,)
<Je W(F),,.
and hence W(afa') <[] W(f), . Wehave WIL

On the other hand, given f e Mn(V*),g e MH(V*), and veM, (V) with
W(v)<1,
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and hence W(f@®g), <max{W(f), ,W(g),}  We have WL O

If 9:V >W is W -completely bounded mapping, then we let ¢ :W" -V~
be the dual Banach space mapping. Forany veM, (V) and geM, (W*) , we

have

(9.0 ) =[ 9w (0(w)] = Lo (8 )(w,)] = {((#), (@).V)

Proposition 3.3. Given numerical radius operator spaces V and W, and a VW

-completely bounded mapping ¢ N —>W , we have W((go* )n): W(gon) for
all neN, and W((p*)cb =W(p)

cb ”
Proof The second relation is immediate from the first. The first follows from

the calculation

(o), )=suplo(((6), (9).v))} =sup ({300 (V)))} = (1),

where the supermum is taken over all geM, (W*) and ve M, (v) of norm

less than 1. O
We also note that given a )V -completely bounded mapping ¢ € WCB(V,W ),

its second adjoint mapping ¢ V" W~ is in WCB(V**,W**) with
W((p

Given a numerical radius operator space W which is the dual of a complete

*k

) L= W(p),,» where ¢~ restricted to Vis equal to ¢ .

numerical radius operator space V; and a Hilbert space H, we say that a map-
ping ¢:W —(B(H),w) is a dual realization of Won H, if it is a weak* ho-
meomorphic W -completely isometric injection.

Theorem 3.4. If V is a complete numerical radius operator space, then \I
has a dual realization on a Hilbert space H.

Proof. Let srf:Mn(V)W(_)gl. We have from Lemma 2.3 [18] that if

feM,(V)=WCB(V,M,), then W(f)=sup{a({(p,f)})),pesi}| We de-

fine s”=(J sy and welet H = S, .- C"¥, where n=n(gp) is the integer

neN"N

with @ €5/ . The argument in the proof of Theorem 2.1 in [18] shows that the
mapping
OV 5 B(H): f—>(p(f))

pes?

isa WV -complete isometry. It is obvious that the mapping @ is continuous in

the weak* topology. Since V), )., is weak* compact, then its domain CD(VV*V(_)Q)

is also weak* compact and is a closed subspace of (B(H)a)) Finally, ® is
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one-to-one and weak* continuous on V.| thus it is a weak* homeomor-

W(-)<1?
phism. Since V' is complete, ® maps V*()weak* homeomorphically onto its
image. O

Proposition 3.5. If W is complete, then so is VYWCB(V,W ).

Proof Let us suppose that W is complete. It suffices to show that
WCB(V ,W) is a closed subspace of B(V,W). Given any Cauchy sequence
@, e WCB(V,W), it is clear that ¢, isa Cauchy sequence in B(V,W).From
classical Banach space theory, B(V,W) is complete, and thus there is a
bounded linear mapping ¢:V —W such that ¢, converges to ¢ in the
norm topology, i.e, W(p, —¢)—0.Since ¢, is Cauchyin WCB(V,W), for
any &>0 there exist a sufficiently large integer N(&)>0 such that whenever
n,m> N (¢), we have

W((pn —On )cb <é.

Given any v:[vi'j]eMp(V) and pe N, wehave

W((20 =), () W0, =), (V) < EW(V).

Since ¢, (Vi’ j) converges to (p( in W, we have

Va,j)
W((0,~0), (v)) < W)

and thus W(¢p, —¢), <. It follows that ¢ € WCB(V,W) and ¢, converges
to ¢ in WCB(V,W). O

4. The Min and Max Numerical Radius Operator Spaces

We let 77 denote the category of normed spaces, in which the objects are the
normed spaces and the morphisms are the bounded linear mappings. Similarly,
we let © be the category of numerical radius operator spaces with the mor-
phisms being the W -completely bounded mappings. We have a natural “for-
getful” functor N :® — 7 which maps a numerical radius into its underlying
normed space. We say that a functor Q:7 —® is a strict quantization if for

each normed space £, NoQ(E)=E, and for each bounded linear mapping of
normed space ¢:E — F, the corresponding mapping Q(¢):Q(E)—>Q(F)

satisfies W(Q(¢)), =W(9)-
For any Banach space £, welet b (E)=B(E,M, )W(_)Sl and

b(E)={U,.,b (E). We define the matrix norms W(v),, ~and W(v)  for
veM, (E) by

W), =sup{a)( f,(v)):fe b(E)}
and

W(V), =sup{a)( f,(v)): f ebl(E)}.

Proposition 4.1. (V,W,,) and (V, W) are both numerical radius oper-
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ator spaces.
Proof. To see that these are indeed numerical radius operator space matrix

norms, it suffices to consider the linear injections
E—,(b(E)):V >(f (V))febl(E)

and
Eagﬂw(br(E)'Mr):V a((f(V))feb,(E))reN

respectively. We have the natural numerical radius operator space identifications
ém (bl(E)) = l_lbl(E)(C and HreNf“’ (bf (E)’ M r ) = HreNHbr(E)M re O

Since the relative matrix norms on F are given above, it is evident that these
determine numerical radius operator spaces, which we denote by Min £ and
Max E, respectively. We refer to these numerical radius operator spaces as the
minimal and the maximal quantization of E.

If Vis a numerical radius operator space and ve M, (V), then it follows
from Lemma 2.3 in [18] that

W(v)=sup{e(f,(v)): fes, (V)}.

Since b (v)cs,(v)=b(v), we conclude that W(v)
forany veM, (V).
Proposition 4.2. For any numerical radius operator space V and normed

win SW(V) W (V)
space E, and any linear mapping ¢ N — E, we have
WCB(V,MIinE) = W(p:V — MinE)_ = W(p:V — E).
Proof. Let us suppose that ve M (V) and W(v)<1.Then
W(p, (V) =sup{W(f, o0, (v)):W(f:E—>C)<1},
But W(f)<1 implies that
W((fop),)<W(fop), =W(Ffop)<W(F)-W(p)<W(p)
and thus W(g, (v)),, <W(¢) forall neN. The inversion is clear. O
If ¢:E — F isacontraction, then since ¢:MIinE — MinF is a contraction,
Ming = ¢ : MinE — MinF

is W -completely contractive. We conclude that Min is a strict quantization
functor. If ¢:E — F is an isometric injection, then it follows that ¢ is W
-completely isometric since we may extend any f eb (E) to a functional
feb (F).

Proposition 4.3. For any normed space E and numerical radius operator

space W, we have

WWCB(MaxE,W ) = B(E,W),

Le., for any linear mapping ¢:E ->W,

W(p:MaxE >W), =W(p:E—>W).
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Proof. To prove this, it suffices to show that if W (¢p)<1, then W(¢p) <1.
Forany neN and veM, (MaxE), we have

W(en(v))
=sup{W(f, o0, (v)):W(f:W >M,), <lreN]|
<sup{W((fop), (v)): W(f:W >M,)<1reN}
<sup{W(g,(v)):W(g:E>M,)<LreN|
= W(V)

From the above, we conclude that W(¢p), <1. O

In particular, if we are given normed spaces £ and F and a contraction
¢:E > F,since ¢:E — MaxF isa contraction, we have

Maxg : MaxE — MaxF

isa W -complete contraction. Thus Max is a strict quantization.
If there is a contraction y :F — E such that yogp=id., then Maxp is W
-completely isometric since Maxy o Maxe =id,,,,E . This is also the case for the
canonical injection E < E™, since any contraction f:E — M, automatically
extends to the contraction f~ :E~ — M,

Propos1t10n 4.4 If D is a subset of V), () and the absolutely convex hull
. Then forany veM, (V),

W(v)Min =sup{w( f,(v)): f D},
Proof. Let us suppose that o(f, (v))<1 for all feD.If ge tf,
where f, eD and ) |t |<1,then

o5, () =0 Th (%),

For the absolutely convex hull |co|(

|co|(D) is weak* dense in V

Q)EAE

D) is weak* dense in V;V(_)Sl, given an
arbitrary element g eV, we may find a net g, e|co|(D) converging to g
in the weak* topology. Then g, (Vi, j) converges to g (vi' j) in the numerical
radius norm topology. It follows that (g, (v))<1, and thus W(v),,. <1. O

For any ve M, (E), the linear mappings ¢, : f —)[f (vi‘j)J are just the
weak* linear mappings from E~ into (M, ®), and thus we have the isometric
identification M, (MinE)=B"(E",M, ).

Theorem 4.5. Suppose E is a normed space, then (MaxE)* =MinE".

Proof. Given a normed space E, neN and a linear mapping f:E—>M,,
the second adjoint f~ provides an extension of fto a weak* continuous map-
ping from E” to M, . This provides us with a natural identification
B(E,M,)=B" (E**, M n) . Thus, we have the isometries

M, ((MaxE)'} = WCB(MaxE, M, ) = B(E,M, ) =M, (Min€E").

The result follows. 0
If QO is a locally compact Hausdorff space and Z =C,(Q) is the corres-
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ponding commutative C*-algebra, then we have a natural mapping
5172 :5(x)(v)=v(x).
It is a simple consequence of the bipolar theorem that |co|(§ (Q)) is weak*

dense in Z;v(.)g .

M, (Z), we have
w(a),,. :sup{a)([f (a; )]) f eé‘(Q)} :sup{a)<[aij (x)]):x eQ},

ie, M (Z)=Cy(Q,M,). We conclude that as a numerical radius operator

From our preceding observation, if a= [aij] is an element of

space, Z is just the minimal quantization of its underlying Banach space, ‘e,
Z=MinZ.

Theorem 4.6. Suppose E is a normed space, then (MinE)* = MaxE".

Proof. Given a normed space £, and an isometric injection E < Z , where Z

is a commutative C*-algebra. We have a corresponding commutative diagram

E —- Z
J d
E" > zZ7

where the first column is an isometry, the second column is a W -complete
isometry, and both rows are isometric. Since Z is a numerical radius operator
space, it determines the minimal numerical radius operator space structure on

E”, hence (MinE)ﬁ = MInE™ . Thus, we have the W -complete isometries

(MaxE") =MinE™ = (MinE)",
and since these identifications are compatible with the dualities, we have the W
-complete isometry MaxE" =(MinE) . O

5. Conclusion

In this paper, we study the bounded linear operators and the dual spaces of the
numerical radius operator spaces. We found that many of the basic results
about the numerical radius operator space can be inspired by the theory of op-
erator space. In the future, we will study the tensor product theory and local
property in the category of numerical radius operator spaces. We believe that
the further developments of the numerical radius operator space theory could
play an import role in the operator space theory as well as have its own intrin-

sic merit.
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