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The study of physical systems endowed with a position-dependent
mass (PDM) remains a fundamental issue of quantum mechanics.
In this paper we use a new approach, recently developed by us
for building the quantum kinetic energy operator (KEO) within
the Schrodinger equation, in order to construct a new class of ex-
actly solvable models with a position varying mass, presenting a
harmonic-oscillator-like spectrum. To do so we utilize the formalis-
m of supersymmetric quantum mechanics (SUSY QM) along with
the shape invariance condition. Recent outcomes of non-Hermitian
quantum mechanics are also taken into account.
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1. Introduction

The idea of non-relativistic or relativistic particle whose mass is a
function of space becomes an intensive field of research for the past
few decades. Indeed, there are many problems in physics, chemistry,
biology and even in medicine where the evolution of a phenomenon
can be assimilated by a Schrodinger, Klein-Gordon or even Dirac type
equation, relative to a particle of variable mass in space. Especial-
ly, in the case of solid-state physics, the movement of a particle in
a periodic potential representing the crystalline lattice, is assimilated
to the movement of a free particle with an effective mass, which de-
pends essentially on the characteristics of the lattice. If the sample
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is composed of several parts representing different materials, called
heterostructures, the mass will take different values in each part of
the structure. Accordingly, Position Dependent Mass (PDM) model-
s [1-12] were successfully applied in the determination of electronic
properties of semiconductors [12-16], as well as for the description of
the properties of quantum dots [17] and nuclear clusters [18,19]. The
PDM issue has also attracted an increasing interest in molecular and
atomic physics [20, 21], density functional theory [2,5, 6,22, 23], and
even the theory of general relativity, where systems with PDM are de-
scribed with another origin of creation, different from the condensed
matter one [24]. Hence, quantum mechanics theorists continue to in-
vestigate the subject of PDM Hamiltonians as a fundamental issue
which is still far from being entirely resolved. In addition to the exact
solvability [25-32], the PDM problem raises several major conceptual
questions, like the boundary and continuity conditions [11,12,33], the
Galilean invariance of the theory [14,33] and the implementation of
path-integral technique [34, 35].

While the interest in searching exactly solvable quantum PDM sys-
tems is still increasing [25, 36], the most interesting question remains
how to order the mass operator with respect to the momentum op-
erator when it comes to building the KEO of the Hamiltonian. The
dilemma does not seem obvious when the mass is constant, but when
this latter becomes a function of the particle position, the bewilder-
ment appears in the non-commutativity between the mass and the
momentum operators. In other words, when a particle is endowed
with a variable mass (position-dependent mass), this latter will not
commute with the particle’s momentum operator anymore. Thus,
the Hermiticity condition of the Hamiltonian, seems to be inadequate
to definitely specify a unique form for the Kinetic Energy Operator
(KEO) with a position-dependent effective mass. Such a dilemma
brings us back to rethink about the general rule has to be followed in
associating operators in quantum-mechanical with respect to the clas-
sical quantities (see for example Ref. [37]). For this purpose, many
criteria have been adopted in order to define the right form of the
KEO, such as the current-density conservation and the agreement be-
tween theoretical and experimental results, but none of the proposed
forms of KEQ’s has been hitherto able to provide a clear-cut answer to
this question. In this regard, Ref. [38] can be reviewed to check more
details out about that issue. Moreover, many contributions to this
subject are also worthy of note, such as BenDaniel and Duke [7], Zhu
and Kroemer [11], Dutra and Almeida [31], Gora and Williams [10],
Von Roos [14], Trabelsi et al. [38] and Morrow and Brownstein [12].
Therein, several forms of the KEO are shown to be useful in lot of ap-
plications, as for example Li-Kuhn [8], BenDaniel and Duke [2], and
so on. However, the common denominator of all these researches is
the portrayal of the KEQ’s as different orderings of powers of the mass
and the momentum operators.

But on the other hand, it was proved by C. Bender works [39-47]
that there is no physical reason to restrict quantum mechanics to Her-
mitian Hamiltonian only. Although, this work proposes to explore
other uncustomary ways to build the quantum Hamiltonian KEO of
a PDM system with more simplicity and generality. In fact, we have
recently developed a novel approach for constructing the quantum op-
erator associated to the non-relativistic classical kinetic energy, within
the Schrodinger equation [48]. The idea behind lies on the fact that
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the coefficient-functions of the momentum in the KEO, may take, a
priori, an arbitrary form. As a matter of fact, in the literature [49-52],
these functions have been always assumed to be powers of the varying
mass. Moreover, in compliance with recent outcomes of non-Hermitian
quantum mechanics, the requirement that the Hamiltonian be Hermi-
tian has been dropped in favor of the pseudo-Hermiticity condition. In
this work, we intend to use this method to generate some new solvable
models with PDM, on the basis of the formalism of supersymmetric
quantum mechanics (SUSY QM) and the notion of shape invariance.

The paper is organized as follows: in Section 1, we outline the new
way we shall use to approach the problem of a quantum Hamiltonian
with PDM. In Section 2, we employ the SUSY approach relative to
this Hamiltonian along with the shape invariance condition, in order
to generate a class of exactly PDM solvable models with a harmonic-
oscillator (HO)-like spectrum. In the final section we give our conclu-
sion.

2. Outlines of the New Approach to
PDMSE

In Ref [48], we have addressed the problem of a one-dimensional PDM
Schrédinger equation, by suggesting a KEO T having the form:

N 1 RN

T'=5a(2)p8(2)py (2) (1)
where «, 8 and «y are arbitrary real functions of the position operator,
and not necessary powers of the mass function, as it is assumed in
the literature so far. But of course, these functions have to verify the
condition:

a(z) B (x)y (x) = 1/m () (2)

where m (x) is the position-dependent mass of the considered system.
Then, given a real potential interaction V (&), the resulting Hamil-
tonian is in general not Hermitian. As a matter of fact, it has been
shown that there is no physical reason to restrict quantum mechanic-
s to Hermitian Hamiltonian only [53-56]. Indeed, a quasi-Hermitian
Hamiltonian may brings back to a real spectrum. As proven in [56],
such an assumption requires that there exists a Hermitian, positive-
definite and bounded operator n, allowing to write:

HY =nHy™? (3)

where H is the standard Hermitian adjoint of H. Hence, considering
an operator 7 (z) = v (z) /o (z) allows to fulfill the condition (3), and
makes H quasi-Hermitian, provided that 7 is bounded and « (x) and
v (z) have the same sign. In that case, it will be possible to relate the
original H to a Hermitian counterpart, let it be Hh7 satisfying:

Hy =n"?Hy~'? = Sw (2) pB (&) pw (2) + V (2) (4)

with w = /a7y. Eventually, H and H), are iso-spectral, and the eigen-

vectors |) of the Hamiltonian H will be expressed as a function of
the solutions [¢) of the Hamiltonian Hj, as:

W) =02 ) (5)
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At this regard, the Hamiltonian Hj, can be factorized using two
intertwining operators, A and AT as

H,=A'A+ E, (6)

where Ej is the ground-state energy of Hj, and A and At are defined
by

1 - 1

— P)pw (&) —iW (&), Al = —w(2)p &) +iW (&

T5VE @ () W (2) 75 @) VB @) <(>
7)

with W (&) the corresponding real superpotential. Thus we can estab-

lish that
V (#) Nk
(8)

where ﬁl and ﬁg are the SUSY partner Hamiltonians, defined as

A:

ﬁ2:ﬁ1+

W () /m(z) b

m (&)

K2 { W@ V2

H =H,=A"A+E, , H,=AA"+E, (9)

Then, by imposing the integrability condition within the SUSY QM
theory, that is the shape invariance (SI) of the potential V (z), we
show that the eigenvalue problem corresponding to the Hamiltonian
(4) can solved exactly if the following condition is fulfilled:

" e Ve[
QW{W(Z‘)W+ h W(x)+W( )H = F(z) (10)

with F'(x) the function given, according to the SI condition, as

F(x)=V (z,f(a1)) =V (z,a1) + R (a2) (11)

where a; is in general the sets of parameters of the potential V (z).
In addition, the function 3 (), seen as the free function of the Hamil-
tonian Hyp, is related to the potential V' and the superpotential as

B 1 o ) [7V2m ) V)
)= p{/ h lw(y) W) dy}
(12)

where the integration constant has been set to one and this choice has
no restriction. Thus, given a mass function m (z) and a superpotential
W (x), Equation (10) can be used to fix the potential V (), for which
the corresponding quantum problem is exactly solvable. Then Equa-
tion (12) allows to determine the corresponding KEO. Notice that the
ground state wave function v (z), is determined from the equation
Az/;o = 0. This would give

o () = CV/B @) m (@) exp {— [y ) dy} (13

with C' a normalization constant. And let us recall that g (x) should
be normalizable in order to have an unbroken SUSY [57]. On the
other hand, we should note that Equation (10) is actually a Riccati
equation for W (x), so it can be always transformed to the a second
order linear differential equation.

In the next section, we shall start from Equation (10) in order to
generate a class of solvable systems having a HO-like spectrum.
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3. A Class of PDM Systems with a
HO-Like Spectrum

In this section, we shall be interested in the class of systems exhibit-
ing a HO-like spectrum. Such a class corresponds to the following
commutation relation:

[A, AT} _ (14)

with x a real positive constant. In that case the spectrum of the
Hamiltonian Hj, is given as

E,=+\rn+E,, n=012,.. (15)

On the other hand, according to Equation (10), this relation means
that the potential V' () can be written as a function of the mass and
the superpotential as:

K2 { W' (z) V2
2y/m (z)

+
W(x)y/m(z) I
or equivalently

V() = W (@) - W2 o)+ T2 [ By ()

2m (x)

V(@) _
W () +W (x)] } =r (16)

Furthermore, it is always possible to reexpress the superpotential
through a new function U as:

W)= [ e Ul dy 9

Inserting this from in Equation (17) we can readily show that the
potential V (z) takes the form

V(x>:—;[m+U(x)]+2;2{m2 Uzmdyr
—[/x \/WU(y)dyr} (19)

Now, this equation will be used to generate some concrete models
exhibiting a HO-like spectrum.

e Case 1: m(x) =mg (1 + az?)

With mg a constant mass and a a parameter which characterizes
the deviation from the usual HO. This form of the mass has been
extensively studied in the literature, as it is relevant for the description
of the GaAs/Al,Gay_,As system [58]. Now by choosing

U(x) (20)

- 1+ ax?

we find

mm:Q 2

V@) =30 ta) " 2va

zv/1+ az? (Vax) (21)

where we have omitted the constant term of the potential. This poten-
tial is roughly a double-well potential, thus it may have applications
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in molecular physics, for instance. The variations of the potential (21)
are shown in Figure 1 for some illustrative values of the free potential
parameter. Another interesting potential can be obtained by taking

U= 22, (22)
This gives
K K/2
V(z) = Y] + o [2° (1 + az?)

+%\/ 1+ az? (Vaxz) (23)

The last potential is sketched in Figure 2 for two illustrative values
of its free parameter.

2.5

2V(x)/x

| i
\ I
\ I
\ I
\ I
\ I
\ 1
\ I
\ I
\ I
] I
] I
\ I
\ 1
\ I

0.0

-0.5F

Figure 1. The potential (21) in units of k/2, as a function of y/az for
k/h%a = 0.05 (thick line), x/h%a = 0.2 (thin line) and x/h%a = 1 (dashed
line).

2V(x)/k

Figure 2. The potential (23) in units of x/2, as a function of /ax for
k/li2a = 0.02 (thick line) and x/f%a = 0.5 (thin line).
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e Case 2: m(z) =mo/ (1 + ax?) with a > 0

Here mg is a constant mass. This form recalls the Mathews-
Lakshmanan (ML) oscillator, a model which is attracting consider-
able interest recent years (see for instance [59,60]). Then by putting
U (x) = 0, we construct the following potential.

2
mo Hg

V(z) = 572 (Vaz) (24)

For ax < 1 this potential behaves like a harmonic potential. Thus
it may be used in physical situations when additional nonharmonic
terms should be included. The variations of the potential (21) are
represented in Figure 3 for two illustrative values of its free parameter.

Figure 3. The potential (24) in units of k, as a function of /ax for
ot =1 (thick line) and ™%F = 2.4 (thin line).

ah? T ah?

Let also point out that when U(x) = 0, Equations (18,19), yield

V() =W () — =

: (25)

and by virtue of Equation (12), this leads to 8 (z) = 1/+/m (z). Hence,
the resulting KEO corresponds to Li-Kuhn ordering [8], that is:

L1 1
T =~ Yp——=pr /4 (26)

e Case 3: m (z) = mge2®/ (1 + eo=)*

Here my is a constant mass and a a real parameter. Such kind of
mass distribution is extensively used in the physics of semiconductor
quantum well structures [61], and may have applications in molecular
physics [62]. Then by choosing

(27)

we obtain the following potential

—b b?
V(z)= o lHQ —

n 28
2(1—‘1-6‘”3) 2a2h2 (1+eam)2 4(1—|—6ax)2‘| ( )
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Such type of potential is very relevant especially for studies in molec-
ular physics. In particular for b = 0, i.e. U (x) = 0 it reduces to a
generalized Woods-Saxon potential. Figure 4 shows the variations of
potential (28) for some illustrative values of its free parameters.

V(x)/k

Figure 4. The potential (28) in units of , as a function of v/az for b/x = 8
and 7595 = 1 (thick line), b/k = 12 and 73%5 = 1 (thin line), b/xk = —20

a2h? a?h2 T

and 7355 = 1 (dashed line), b/x = —20 and 755 = 0.002 (dotted line).

e Case 4: m (x) = mg/ cosh(az)?

Here mg is a constant mass and a a real parameter. This mass
function depicts a solitonic profile and presents a form familiar in
effective models of condensed matter and low energy nuclear physics
[32]. It has been also used to describe variable diffractions coefficient
in nonlinear media [63]. Then the choice

Ulz) = cosh;) (ax) 29)

results in the following potential

10 [

V(x)/xk

Figure 5. The potential (30) in units of k, as a function of /az for
b/k = 0.2 and 7553 = 8 (thick line), b/k = 52 and 7355 = 1 (thin line),
b/k = —50 and 7555 = 2 (dashed line).
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V() = —b mg tanh? (az) 2 g B 4b?
~ 2cosh? (ax) 2a2h? 9  9cosh? (ax)
b2

" 9cosh? (ax) (30)

This hyperbolic potential yields in general a double well interaction.
Such kind of potential allows studying situations involving bound s-
tates and particle tunneling through a barrier. In particular for b = 0,
i.e. U(z) = 0 it reduces to a tanh? (azx) potential. In Figure 5 we
represent the variations of potential (30) for some illustrative values
of its free parameters [64].

4. Conclusion

To sum up, this work presents a new class of exactly solvable mod-
els, endowed with a position-dependent mass, exhibiting a harmonic-
oscillator-like spectrum. This class has been generated on the basis of
a new approach, recently developed by us for the quantum operator
relative to the classical non-relativistic kinetic energy, and using the
formalism of supersymmetric quantum mechanics. The latter involves
factorizing the corresponding Hamiltonian in terms of intertwining op-
erators, along with the requirement of the shape invariance condition.
Several concrete examples of PDM systems belonging to this class were
discussed.
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