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Abstract 
We consider a three-magnon system in the isotropic ferromagnetic Non- 
Heisenberg model with spin one and with a coupling between near-
est-neighbors. The structure of essential spectrum and discrete spectrum of 
the systems in a ν-dimensional lattice are investigated. We obtain the lower 
and upper estimates for the number of three-magnon bound states of the sys-
tem. 
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1. Introduction 

Two-magnon systems have attracted the attention of many researchers. Probably, 
such systems were first discussed by Bethe [1] in the context of one-dimensional 
integer-valued lattices. Bethe proved that no more than one bound state (BS) of 
the system can exist in the case of one-dimensional isotropic ferromagnet. N. 
Fukuda and M. Wortis [2] investigated the two-magnon systems in the 
one-dimensional Heisenberg ferromagnetic model and they have received the 
confirmation of Bethe results. Worts [3] examined the two-magnon system in a 
d-dimensional integer-valued lattice for an arbitrary d and proved that in this 
case, the system has 0,1,2, , 2d

 BSs. 
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Majumdar [4] investigated the two-magnon system in a one-dimensional 
Heisenberg ferromagnet with a coupling between nearest and second nearest 
neighbors for the full quasi-momentum πΛ = . He found the spectrum and the 
BSs of the system numerically. In [5], such a system was examined for the case of 
a one-dimensional Heisenberg isotropic ferromagnet with a nearest- and second  

nearest-neighbor interactions for πΛ =  and π
2

Λ = . The spectrum and the  

BSs of the system for these values of Λ  were studied with numerical methods. 
Gochev [6] considered the two-magnon system in a one-dimensional Heisenberg 
longitudinal ferromagnet with a coupling between nearest and second nearest 
neighbors for an arbitrary full quasi-momentum. He investigated the spectrum 
and the BSs of the system analytically. 

The two-magnon systems in the anisotropic Heisenberg model with a 
nearest-neighbor interaction were addressed in [7]. The focus in [8] was on 
two-magnon systems in a one-dimensional anisotropic Heisenberg ferromagnet 
with a interaction between nearest and second nearest neighbors. The spectrum 
and the BSs of such systems were investigated for all values of the full 
quasi-momentum. 

The usual starting point for theoretical studies of magnetically organized 
matter is the Heisenberg exchange Hamiltonian (with an arbitrary spin s)  

( )
,

,m m
m

H J τ
τ

+= ∑ S S                        (1) 

where J is the bilinear exchange interaction parameter for nearest-neighbor 
atoms; ( ), ,x y z

m m m mS S S=S  is the atomic spin operator of the mth node of the 
ν-dimensional integer-valued lattice Zν , and τ  denotes summation over the 
nearest neighbors. However, the actual isotropic spin exchange Hamiltonian 
with an arbitrary spin s has the form [9] 

( )
2

, 1
,

s n
n m m

m n
H J τ

τ
+

=

= ∑∑ S S                     (2) 

where nJ  are the multipole exchange interaction parameters for  
nearest-neighbors atoms. Hamiltonian (2) coincides with Hamiltonian (1) only 
for 1 2s = , while there are terms with higher powers of m m τ+S S  up to 

( )2s
m m τ+S S  inclusive for 1 2s > . These terms must be taken into account. 

Hamiltonian (2) is called the non-Heisenberg Hamiltonian. 
Spectrum and BSs of two-magnon system in the non-Heisenberg ferromagnet 

with the bilinear and biquadratic exchange interactions were studied in works 
[10]-[17]. The spectrum and the BSs of two-magnon systems in a non-Heisenberg 
ferromagnet with coupling between nearest neighbors by bilinear and biquadratic 
interactions were investigated in [10] [11] [12] [13] [14]. Different methods, such 
as the Green’s function method, the molecular field approximation method, the 
random phase approximation method, numerical methods, and the use of the 
creation and annihilation operators through the Holstein-Primakoff transformation, 
Dyson transformation, Dyson-Maleev transformation, Golghirch transformation, 
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and others, were applied in these works. In [15] [16], the spectrum and the BSs 
of this system were investigated for the case of a one-dimensional non-Heisenberg 
ferromagnet with 1s =  and with a coupling between second nearest and third 
nearest neighbors respectively. The values of the Hamiltonian parameters for 
which the BSs exist were found, and the energies of these BSs were calculated. In 
[17], the spectrum and the BSs of two-magnon system were investigated in a 
ν-dimensional non-Heisenberg ferromagnet with 1s =  and with a coupling 
between nearest neighbors. 

In [18], the spectrum and the three-magnon BSs of three-magnon systems 
were investigated in a two-dimensional isotropic and anisotropic Heisenberg 
ferromagnet in bounded lattice with numerical methods. 

In the work [19] [20] investigated the structure of essential spectrum and 
obtained the lower and upper estimates for the number of three-particle bound 
states (BS) of the energy operator of two-magnon system in a isotropic 
Heisenberg and Non-Heisenberg ferromagnet model with impurity in a 
ν-dimensional lattice Zν  with nearest-neighbor interactions. 

The spectrum and BSs of two-magnon systems in a non-Heisenberg ferromagnet 
with coupling between nearest-neighbors by linear and biquadratic interactions 
were investigated in [17]. 

2. Hamiltonian 

In this paper, we investigate the structure of essential spectrum and we obtain 
the lower and upper estimates for the number of three-magnon bound states of 
the energy operator of three-magnon system in a isotropic Non-Heisenberg 
ferromagnet model with spin one and nearest-neighbor interactions in a 
ν-dimensional lattice Zν . 

In this case the component z
mS  of spin operator mS  take up the values 

1,0, 1− , i.e. 0 0
z
mS ϕ ϕ= , or 0 0z

mS ϕ = , or 0 0
z
mS ϕ ϕ= − , where 0ϕ  be the 

vacuum vector. We consider these case the separately. From the beginning. We 
consider the case, when the spin component z

mS  take up the value 1. 
The system Hamiltonian has the form  

( ) ( )2
1

, ,
,m m m m

m m
H J Jτ τ

τ τ
+ += − −∑ ∑S S S S                (3) 

acts in the symmetrical Fo’ck space  , ( ), ,x y z
m m m mS S S=S  is the atomic spin 

1s =  operator in the node m, 10, 0J J> >  are the respective the bilinear and 
biquadratic exchange interaction parameters for nearest-neighbor atoms of the 
lattice, and τ  denotes summation over the nearest neighbors. We set 

x y
m m mS S iS± = ± , where mS −  and mS +  are the respective magnon creation and 

annihilation operators at the site m. Let 0ϕ  be the so-called vacuum vector, 
which is fully determined by the conditions 0 0mS ϕ+ =  and 0 0 0, 1z

mS ϕ ϕ ϕ= = . 
The vectors 0m n lS S S ϕ− − −  describe the state of the system of three magnons 
located at the nodes m, n and l. The vectors 0m n lS S S ϕ− − −  constitute an 
orthonormal system. We let   denote the Hilbert space spanned by these 
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vectors. It is called the space of three-magnon states of the operator H. The space 

  is invariant under operator H. We let H3 denote the restriction of the 
operator H in the space  . 

Theorem 1. The space   is invariant with respect to the operator H. The 
operator H3 is a bounded self-adjoint operator. It generates the bounded 
self-adjoint operator 3H , acting in the space ( )( )3

2l Zν  according to the 
formula  

( )( )

( ) ( )

( ) ( )

( )

3

, , , , , ,
, , ,

, , , ,

, , , ,

, ,

6 , ,

1 1 1 11 , , 1 , ,
2 2 2 2
1 1 1 11 , , 1
2 2 2 2

p q p r p q p r q r q r
p q r

p q p r q r p q

p r q r p q p r

H f p q r

J f p q r

f p q r f p q r

f p q r

τ τ τ τ τ τ
τ

τ τ τ τ

τ τ τ τ

δ δ δ δ δ δ

δ δ τ δ δ τ

δ δ τ δ δ

+ + + + + +

− − − −

− − + +


= − + + + + + −



   + − − + − + − − + −   
   

  + − − + − + − − +  
  

∑

( )

( ) ( ), , , ,

, ,

1 1 1 11 , , 1 , ,
2 2 2 2p q q r p r q r

f p q r

f p q r f p q rτ τ τ τ

τ

δ δ τ δ δ τ+ + + +

 +


   + − − + + + − − + +    
    

 

( )

1 , , , , , , , ,
, , ,

, , , , , , , , , ,

, , , , , ,

32 2 2 2 2 2
2

3 3 3 3 3 12
2 2 2 2 2

1 1 32 2 2 , ,
2 2 2

p q p r p q p r q r q r p q q r
p q r

p q p r p r p q p q q r p q p r p r p q

p q q r p r p q p r p

J

f p q r

τ τ τ τ τ τ τ
τ

τ τ τ τ τ

τ τ

δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ

− − + + + + +

+ + + + +

+ +

− − − − − − − −


− − − − − +

 + + + + + + 


∑

( )

( )

, , ,

, , , , , , , ,

, , , , , , , ,

3 1 1 32 , ,
2 2 2 2

3 1 12 , ,
2 2 2

q p r p q q r

p r p q p q p r q r p q p r p q

p q p r p q q r p q p r p r q r

f p q r

f p q r

τ τ

τ τ τ τ

τ τ τ τ

δ δ δ

δ δ δ δ τ δ δ δ δ

δ δ δ δ δ δ τ δ δ

+ +

+ + + +

+ + + +

+

 + − − − − + + + 
 

 + + − − − − + + 
 

 

( )

( )

, , , , , , , ,

, , , , , , , , ,

, , , , , , ,

, ,

3 3 2 , ,
2 2
1 1 3 3
2 2 2 2

1 1 32 , ,
2 2 2

3
2

p q q r p r p q p q p r p r q r

p q p r p q p r p q q r p r p q p q

p r p q q r p q q r p q p r

p r p q

f p q r

f p q r

τ τ τ

τ τ τ τ τ

τ τ τ τ

τ

δ δ δ δ δ δ δ δ τ

δ δ δ δ δ δ δ δ δ

δ τ δ δ δ δ δ δ

δ δ

+ + +

+ + + + +

+ + + +

+

+ + + − − − −


+ + + + + −


 − − + + + + + 


+ − ( )

( )

, , , ,

, , , , , , , ,

1 12 , ,
2 2

3 3 2 , ,
2 2

p q q r p r q r

p q q r p r p q p q p r p r q r

f p q r

f p q r

τ τ

τ τ τ

δ δ τ δ δ

δ δ δ δ δ δ δ δ τ

+ +

+ + +

 − − + + + 
 

+ + + − − − +


 

( ) ( ) ( ) ( )
( ) ( )

( )

( )

, , , , , ,

, , ,

, , , , ,

, , , , ,

, , , ,

, ,

3 3 , ,
4 4
3 3 , ,
4 4

p r p q p q p q p r p r

p q q r q r

p r p q p q q r p q

p q p r p r q r p q

f p q r f p q r

f p q r

f p q r

f p q r

τ τ

τ

τ τ τ

τ τ τ

δ δ δ τ τ δ δ δ τ τ

δ δ δ τ τ

δ δ δ δ δ τ τ

δ δ δ δ δ τ τ

+ +

+

+ + +

+ + +

+ − + − − + − + − −

+ − + − −

 + − + − − + 
 
 + − + − − + 
 
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( )

( )

( )

, , , , ,

, , , , ,

, , , , ,

3 3 , ,
4 4
3 3 , ,
4 4
3 3 , ,
4 4

p r p q p q q r p q

p q p r q r p r p q

q r p q p r p q p r

f p q r

f p q r

f p q r

τ τ τ

τ τ τ

τ τ τ

δ δ δ δ δ τ τ

δ δ δ δ δ τ τ

δ δ δ δ δ τ τ

+ + +

+ + +

+ + +

 + − + − + − 
 
 + − + − − + 
 
 + − + − + − 
 

 

( )

( ) ( )
( ) ( )

( ) ( )

, , , , ,

, , ,

, , ,

, , ,

3 3 , ,
4 4

, ,

, ,

, , ,

p q p r q r p r p q

p r p q p q

p q p r p r

p q q r q r

f p q r

f p q r

f p q r

f p q r

τ τ τ

τ

τ

τ

δ δ δ δ δ τ τ

δ δ δ τ τ

δ δ δ τ τ

δ δ δ τ τ

+ + +

+

+

+

 + − + − + − 
 

+ − + + +

+ − + + +


+ − + + + 



                  (4) 

where ,k jδ  is the Kronecker symbol. The operator H3 acts on the vector 

3ψ ∈  according to the formula  

( )( )3 3 0
, ,

, , .p q r
p q r

H H f p q r S S Sψ ϕ− − −= ∑                 (5) 

Proof. The proof is by direct calculation in which we use the well-known 
commutation relations between the operators ,m pS S+ − , and z

nS :  

,, 2 z
m p m p mS S Sδ+ −  =  , and ,,z

m n m n mS S Sδ± ±  = ±  . 
Lemma 1. The spectra of the operators 3H  and 3H  coincide. 
Proof. Because 3H  and 3H  are bounded self-adjoint operators, it follows 

from the Weyl criterion that there exist a sequence of vectors nψ  such that 
( ) 0, , , ,n n p q rp q r f p q r S S Sψ ϕ− − −= ∑ , 1nψ = , and  

3lim 0,n nn
H ψ λψ

→∞
− =                       (6) 

where ( )3Hλ σ∈ . On the other hand,  

( )
( ) ( )

( ) ( ) ( )

2
3 3 3

2
3

, ,

0 0
, , , ,

2
3 0 0

, ,

2 2

3 0 0 3

,

, , , ,

1 1,
8 8 8 8

1 ,
8 8

, 0,

n n n n n n

n n
p q r

p q r p q r
p q p r p q p r

n n p q r p q r
p q p r

n n

H H H

H f p q r f p q r

S S S S S S

H F F S S S S S S

H F H F

ψ λψ ψ λψ ψ λψ

λ

ϕ ϕ
δ δ δ δ

λ ϕ ϕ
δ δ

λ ϕ ϕ λ

− − − − − −

+ + + − − −

− = − −

= −

 
 ×
 − − 

 
= − ×  − 

= − = − →

∑

 

n →∞ . Here ( )( ) , ,
, ,n n p q r Z

F f p q r ν∈
=  and  

( ) 22 2
, , , , 1n n np q rF f p q r ψ= = =∑ . It follows that ( )3Hλ σ∈ . Consequently, 

( ) ( )3 3H Hσ σ⊂ . Conversely, let ( )3Hλ σ∈ . Again by the Weyl criterion, 

there then exist a sequence nF  such that ( ) 2

, , , , 1n np q rF f p q r= =∑  and 

3 0,n nH F Fλ− →                       (7) 
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as n →∞ . 

Setting ( ) 0, ,
, ,

1 , ,
8 8n n p q rp q r

p q p r

f p q r S S Sψ ϕ
δ δ

− − −=
−

∑ , we have  

1n nFψ = =  and 3 3n n n nH F F Hλ ψ λψ− = − . This, together with Formula 

(7) and the Weyl criterion, implies that ( )3Hλ σ∈ , and hence  

( ) ( )3 3H Hσ σ⊂ . These two relations imply that ( ) ( )3 3H Hσ σ= . 

We let   denote the Fourier transform:  

( )( ) ( )( )3 3

2 2 3: l Z L Tν ν→ ≡   , 

where Tν  is a ν-dimensional torus with the normalized Lebesgue measure dλ : 

( ) 1Tνλ = . We set 1
3 3H H −=   . 

Theorem 2. The Fourier transformation transforms the operator 3H  into 
the bounded self-adjoint operator 3H  acting in the space 3

  according to the 
formula  

( )( ) ( ) [ ] ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 1
1

1
1

1
1

1
1

, , 4 2 3 cos cos cos , ,

2 cos cos cos cos

, , d 2 cos cos cos

cos , , d 2 cos

i i i
i

i i i i i i i iT
i

i i i i iT
i

i i i i iT
i

H f J J f

J J s s s s

f s s s J J s s s

s f s s s J J s

ν

ν

ν

ν

ν

ν

ν

λ µ γ λ µ γ λ µ γ

λ µ λ µ

λ µ γ λ γ

λ γ µ λ γ µ

=

=

=

=

= − − − −

 − − − + − − − + − 

× + − − − − + − −

 − + − + − − − −

∑

∑∫

∑∫

∑∫



( ) ( ) ( )cos cos cos , , di i i i i is s s f s s sγ µ γ λ µ γ



+ − − − + − + −

 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

1
1

1
1

1
1

1
1

4 1 cos cos cos , , d

4 1 cos cos cos , , d

4 1 cos cos cos , , d

6 cos cos cos

i i i iT
i

i i i iT
i

i i i iT
i

i i i i i i i iT T
i

J f s s s

J f s s s

J f s s s

J s t s t

ν

ν

ν

ν ν

ν

ν

ν

ν

λ µ λ µ λ µ γ

λ γ λ γ µ λ γ

µ γ µ γ λ µ γ

λ µ λ µ

=

=

=

=

 − + + − − + − 

 − + + − − + − 

 − + + − − × + − 

+ − − + − + + − −

∑∫

∑∫

∑∫

∑∫ ∫ {
( ) ( ) ( ) ( )6 cos cos cos cosi i i i i i i i i i i it s t s s tλ µ µ λ µ λ

 

+ + − + − − + + − + − −

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) } ( )

cos cos 2 3cos 3cos 2cos

2cos 2cos 3 cos

cos cos cos cos

cos , , d d .

i i i i i i i i i i

i i i i i i i i i i

i i i i i i i i i i i i

i i

t s s t s t

s t t

s s t s s t

t f s t s t s t

µ γ λ γ

λ µ γ λ µ γ λ

µ µ γ γ λ γ

γ λ µ γ

 + + − + + − + + − + 
 − + + − − + + − − − 

+ − + + − − + − + + − −

+ − + + − −

.  (8) 

The following fact is important for further investigating the spectrum of the 
operator 3H . Let the full quasi-momentum of the three-magnon system, i.e. 
sum of quasi-momentum of each three magnons x y z Tν+ + = Λ∈  be fixed. 
Let ( )2L ΛΓ  be the space of functions that are quadratically integrable over the 
manifold ( ){ }, , :x y z x y zΛΓ = + + = Λ . It is known [21] that the operator 3H  
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and space 3
  can be expanded into the direct integrals  

3 3 3 3d , d
T T

H Hν νΛ Λ= ⊕ Λ = ⊕ Λ∫ ∫      of the operators 3H Λ
  and the spaces 3Λ

  
such that the spaces 3Λ

  are invariant with respect to the operators 3H Λ
 . 

In the isotropic non-Heisenberg Ferromagnet model with spin 1s = , the 
spectral properties of the considered operator of the energy of three-magnon 
systems are closely related to those of its two-magnon subsystems (see Formula 
(11)). We first study the spectrum and BSs of two-magnon systems. 

3. Two-Magnon Bound States 

The Hamiltoinian of a two-magnon subsystem also has form (3). We let 2  
denote the space of two-magnon states of the operator H. We let H2 denote the 
restriction of H to the space 2 . 

Theorem 3. The space 2  is invariant with respect of the operator H. The 
operator H2 is a bounded self-adjoint operator. It generates the bounded 
self-adjoint operator 2H , acting in the space ( )( )2

2l Zν  according to the 
formula  

( )( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 , , ,
, ,

, , ,

1 , , , ,
, ,

1, 4 , ,
2

1 1 1, , ,
2 2 2

, , , ,

2 2 2 8 , ,

p q p q p q
p q

p q p q p q

p q p q p q p q
p q

H f p q J f p q f p q

f p q f p q f p q

f p q f p q f p q f p q

J f p q f p q

τ τ τ
τ

τ τ τ

τ τ τ
τ

δ δ δ τ

δ τ δ τ δ τ

τ τ τ τ

δ δ δ δ τ τ

+ + −

− + +

+ + +

 = − + − − − 

− − − + − +


+ + + − + + + − 


 − − − + + − + 

∑

∑

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

, ,

, , ,

, , ,

, , ,

, 2 , 2 , ,

1, , , 2 ,
2

1 12 , , , ,
2 2

1 , , , .
2

p q p q

p q p q p q

p q p q p q

p q p q p q

f p q f p q f p q f p q

f p q f p q f p q f p q

f p q f p q f p q f p q

f p q f p q f p q

τ

τ τ

τ τ

τ

δ τ τ τ τ δ τ τ

δ τ τ δ τ δ τ τ

τ δ τ δ τ δ τ

δ τ δ τ δ τ

+

+ +

+ +

+

+ + − − − − + + − −

+ + + + − − − − +

− − + + − − + +

+ + − + − + 


 (9) 

The operator H2 acts on the vector 2ψ ∈  according to the formula 

( )( )2 2 0
,

, .p q
p q

H H f p q S Sψ ϕ− −= ∑                   (10) 

Lemma 2. The spectra of the operators H2 and 2H  coincide. 
Theorem 4. The Fourier transformation transforms the operator 2H  into 

the bounded self-adjoint operator 2H  acting in the space 2
  according to the 

formula  

( )( ) ( ) ( ) ( ) ( )2 1, , , , , , d ,
T

H f x y h x y f x y h x y t f t x y t tν= + + −∫      (11) 

where  

( ) ( )1
1

, 8 2 1 cos cos ,
2 2

i i i i

i

x y x y
h x y J J

ν

=

+ − = − −  
∑  
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( ) ( )

( )

1 1
1

1
1

, , 4 cos cos cos
2 2 2

4 1 2cos cos cos , , , .
2 2

i i i i i i
i

i

i i i i
i i

i

x y x y x y
h x y t J J t

x y x y
J x y x y t T

ν

ν
ν

=

=

− + +   = − − − −     
+ − − − + + ∈  

∑

∑
 

Let the full quasi-momentum of the two-magnon system, i.e. sum of 
quasi-momentum of each two magnons x y Tν+ = Λ∈  be fixed. Let ( )2L ΛΓ  
be the space of functions that are quadratically integrable over the manifold 

( ){ }, :x y x yΛΓ = + = Λ . It is known [21] that the operator 2H  and space 2
  

can be expanded into the direct integrals 2 2 2 2d , d
T T

H Hν νΛ Λ= ⊕ Λ = ⊕ Λ∫ ∫      of 
the operators 2H Λ

  and the spaces 2Λ
  such that the spaces 2Λ

  are 
invariant with respect to the operators 2H Λ

  and the operators 2H Λ
  act in the 

space 2Λ
  according to the formula  

( )( ) ( ) ( ) ( ) ( )2 1 , d ,
T

H f x h x f x h x t f t tνΛ Λ Λ Λ Λ Λ= + ∫          (12) 

where ( ) ( ) ( ) ( )1 1, , , , ,h x h x x h x t h x x tΛ Λ= Λ − = Λ −  and ( ) ( ),f x f x xΛ = Λ − . 
It is known that the continuous spectrum of the operator 2H Λ

  does not 
depend on the functions ( )1 ,h x tΛ  and consists of the intervals  

,G m Mν ν ν
Λ Λ Λ =   , 

where ( )inf
x T

m h xν
ν
Λ Λ∈
=  and ( )sup

x T
M h xν

ν
Λ Λ∈
= . 

Definition 1. The eigenfunction ( )2L T Tν νϕΛ ∈ ×  of the operator 2H Λ
  

corresponding to the eigenvalue z Gν
Λ Λ∉  is called the bound state (BS) of the 

operator 2H  with quasi-momentum Λ , and the quantity zΛ  is called the 
energy of this BS. 

We consider the operator ( )K zΛ , acting in the space 2Λ
  according to the 

formula  

( ) ( ) ( )
( ) ( )1 ,

d .
T

h x t
K z f x f t t

h t zν
Λ

Λ Λ Λ
Λ

=
−∫  

This operator is totally continuous in the space 2Λ
  for values of 

,z G m Mν ν ν
Λ Λ Λ ∉ =   . 

Let ( ) ( )detz D zν ν
Λ Λ∆ = , where  

( )

1,1 1,2 1,3 1, 1

2,1 2,2 2,3 2, 1

3,1 3,2 3,3 3, 1

,1 ,2 ,3 , 1

1,1 1,2 1,3 1, 1

,

d d d d
d d d d
d d d d

D z

d d d d
d d d d

ν

ν

νν

ν ν ν ν ν

ν ν ν ν ν

+

+

+
Λ

+

+ + + + +

 
 
 
 

=  
 
 
  
 







    





 

and  

( )
( )1,1 1

d
1 4 ,

T

g s s
d J

h s zν
Λ

Λ

= −
−∫  

( )
( )
( )1, 1 1

d
4 , 1, ,k k

k T

s s
d J J k

h s zν

ξ
νΛ

+
Λ

= − − =
−∫  
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( ) ( )
( )1,1 1

d
4 , 1, ,k k

k T

s g s s
d J k

h s zν

η
νΛ Λ

+
Λ

= − =
−∫  

( )
( ) ( )

( )1, 1 1

d
1 4 , 1, ,k kk k

k k T

s s s
d J J k

h s zν

η ξ
νΛ Λ

+ +
Λ

= − − =
−∫  

( )
( ) ( )

( )1, 1 1

d
4 , 1, , 1, , .k ik i

k i T

s s s
d J J k i k i

h s zν

η ξ
ν νΛ Λ

+ +
Λ

= − − = = ≠
−∫  

In these formulas,  

( ) 1 1 cos 2cos cos ,
2 2

k k
k kkg s sν

Λ =

 Λ Λ  = + Λ − −  
  

∑   

( ) ( )cos cos , cos , 1, .
2 2 2k k

k k k
k k k ks s s s kξ η νΛ Λ

Λ Λ Λ   = − − = − =   
   

 

Lemma 3. A number 0z Gν
Λ∉  be an eigenvalue of the operator 2H Λ

  if and 
only if it is a zero of the function ( )D zν

Λ , i.e. ( )0 0D zν
Λ = . 

Proof. In the case under consideration, the equation for the eigenvalues is an 
integral equation with a degenerate kernel. It is therefore equivalent to a system 
of linear homogeneous algebraic equations. It is known that such a system has a 
nontrivial solution if and only if its determinant is equal to zero. In this case, the 
determinant of this linear homogeneous algebraic system is equal to function 

( )zν
Λ∆ . 
Theorem 5. Let 12J J=  and ν  be arbitrary. Then the operator 2H  has 

two BSs 1ϕ  and 2ϕ  (not taking the order of the energy degeneration into 
account) with the energy values 1 12z J= − , ( )2 1 1 14 2 4 cos iiz J J νν

=
= − + − Λ∑ , 

and 1z  is degenerate ν  times, while 2z  is not degenerate, , 1, 2iz m iν
Λ< = , 

for all TνΛ∈ , i.e. the energy values of these BSs lie below the continuous 
spectrum domain of the operator 2H .  

Proof. If 12J J= , then ( ) 0h sΛ ≡ , and  

( ) ( )
2

21 1 1 1
2

1 1

2 2 4 16
1 1 1 1 cos cos .

2
i

i
i i

J J J Jz
z z z z

ν ν ν
ν
Λ

= =

 Λ    ∆ = + + + + Λ −            
∑ ∑  

Solving the equation ( ) 0zν
Λ∆ = , we prove the theorem. 

Let ( ), , , Tνπ π π π= ∈
 . 

Theorem 6. Let πΛ =   and 1J J≠ . Then the operator 2H  has only one BS 
ϕ  with the energy value ( ) ( )1 18 2 2z J J J Jν= − − − , and this energy level is 
degenerate ν  times. In addition, if 1J J> , then z mν

Λ< , and if 1J J< , then 
z M ν

Λ> . When 1J J= , this BS vanishes because it is incorporated into the 
continuous spectrum. 

Proof. The proof of this theorem is based on the equality  
( ) ( )18 2h x J JνΛ = −  with πΛ =   and also on the corresponding form of the 

determinant ( ) ( )
( )

1

1

2
1

8 2
J J

z
J J z

ν

ν

νΛ

 −
∆ = −  − − 

. 

From Theorem 5 and 6 and later is obviously, what the spectrum of the 
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Hamiltonian   by different value of ν  differ from one another. 
In the case where 1ν = , the change of the energy spectrum of the operator 

2H  is described by the following theorems. 
Theorem 7. 
1) Let 1J J<  and ] [0,πΛ∈  or ] [π, 2πΛ∈ . 

a) If respectively 1

1

cos
2 2

J J
J
−Λ

> −  or 1

1

cos
2 2

J J
J
−Λ

< , then the operator 2H  

has two BSs 1ϕ  and 2ϕ  with the corresponding energy values 1 , 1, 2iz m iΛ< = . 

b) If respectively 1

1

cos
2 2

J J
J
−Λ

≤ −  or 1

1

cos
2 2

J J
J
−Λ

≥ , then the operator 2H  

has only one BS 1ϕ  with the energy value 1z , and 1
1z mΛ< .  

2) Let 1J J=  and ] [0,πΛ∈  or ] [π, 2πΛ∈ . 
a) If respectively 10 α< Λ <  or 2 2πα < Λ < , then the operator 2H  has 

only one BS ϕ  with the energy value 1z mΛ< . 
b) If [ [ ] [1 2,π π,α αΛ∈  , then the operator 2H  has no BS. Above, 

1 2100 , 260α α≈ ≈  , and 

2 2
1

1

8 cos 1 2 3 cos
2 2

8
3

J
z J

 Λ Λ
+ +  

 = − − .  

3) Let 1 12J J J< <  and ] [0,πΛ∈  or ] [π, 2πΛ∈ . 

a) If respectively 1

1

cos
2 2

J J
J
−Λ

≤  or 1

1

cos
2 2

J J
J
−Λ

≥ − , then the operator 2H  

has two BSs 1ϕ  and 2ϕ  with the corresponding energy values 1
1z mΛ< , and 

1
2z MΛ> . 

b) If respectively 1

1

cos
2 2

J J
J
−Λ

>  or 1

1

cos
2 2

J J
J
−Λ

< − , then the operator 2H  

has three BSs 1ϕ , 2ϕ , and 3ϕ  with the corresponding energy values 1
1z mΛ< , 

and 1 , 2,3iz M iΛ> = . 

4) Let 1 12 3J J J< <  and ] [0,πΛ∈  or ] [π, 2πΛ∈ . 

a) If respectively 1

1

cos
2 2

J J
J
−Λ

>  or 1

1

cos
2 2

J J
J
−Λ

< − , then the operator 2H  

has two BSs 1ϕ  and 2ϕ  with the corresponding energy values 1 , 1, 2iz m iΛ< = . 

b) If respectively 1

1

cos
2 2

J J
J
−Λ

≤  or 1

1

cos
2 2

J J
J
−Λ

≥ − , then the operator 2H  

has only BS 1ϕ  with the energy value 1
1z mΛ< . In this case, the second BS 

vanishes because it is incorporated into the continuous spectrum. 
5) Let 13J J=  and 0Λ ≠ . Then the operator 2H  has only one BS ϕ  with 

the energy value 2 1
14 1 cos

2
z J mΛ

Λ = − < 
 

. 

6) Let 13J J>  and 0Λ ≠ . Then the operator 2H  has two BSs 1ϕ  and 2ϕ  
with the corresponding energy values 1

1z mΛ< , and 1
2z MΛ> . 

In the case where 1ν =  and 0Λ = , the change of the energy spectrum is 
described by the following theorem. 
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Theorem 8.  
1) If 1J J<  and 0Λ = , then the operator 2H  has two BSs 1ϕ  and 2ϕ  

with the corresponding energy values 1 , 1, 2iz m iΛ< = . 
2) If 1J J=  and 0Λ = , then the operator 2H  has only one BS ϕ  with the 

energy value 1
1

64
3

z J mΛ= − < . 

3) If 1 12J J J< <  and 0Λ = , then the operator 2H  has two BSs 1ϕ  and 

2ϕ  with the corresponding energy values 1
1z mΛ<  and 1

2z MΛ> . 
4) If 1 12 3J J J< <  and 0Λ = , then the operator 2H  has two BSs 1ϕ  and 

2ϕ  with the corresponding energy values 1 , 1, 2iz m iΛ< = . 
5) If 13J J=  and 0Λ = , then the operator 2H  has no BS. 
6) If 13J J>  and 0Λ = , then the operator 2H  has only one BS ϕ  with 

the energy value 1z MΛ> . 
A sketch proof of Theorems 7-8 is given below. In the case under 

consideration, the equation for the eigenvalues is an integral equation with a 
degenerate kernel. It is therefore equivalent to a system of linear homogeneous 
algebraic equations. It is known that such a system has a nontrivial solution if 
and only if its determinant is equal to zero. In this case, the equation ( )1 0zΛ∆ =  
it therefore equivalent to the equation stating that the determinant of the system 
is zero. Expressing all integrals in the equation ( )1 0zΛ∆ = , through the integral  

( ) ( )
d

T

tJ z
h t zΛ

=
−∫ , we find that the equation ( )1 0zΛ∆ =  is equivalent to the 

equation  

( ) ( )( ) ( ) ( )

( ) ( )( )

( ) ( ) ( )

2
1 1 1 1

2 4
1 1 1 1

1
22

1 1 1

8 2 5 cos 8 2
2

128 2 cos 8 2
2

cos 8 2 8 2 .
2

J z J J J J J J z J J

J J J J J J J

z J J J J z J J
−

Λ = − − − − − −    
Λ× − + − +



Λ × − − + − − −        



     (13) 

Because 
( )
1

h t zΛ −
 is a continuous function for 1 1;z m MΛ Λ ∉    and 

( )
( ) 2

d 0
T

tJ z
h t zΛ

′  = > 
−  

∫ , the function ( )J z  is an increasing function  

of z for 1 1;z m MΛ Λ ∉   . Moreover, ( ) 0J z →  as z → −∞ , ( )J z → +∞  as 
1 0z mΛ→ − , ( )J z → −∞  as 1 0z MΛ→ +  and ( ) 0J z →  as z → +∞ . 

Analysis of Equation (13) outside the set 1 1;G m MΛ Λ Λ =   , leads to the proof of 
Theorems 7-8. 

The energy spectrum in the case where 2ν =  for the full quasi momenta of 
the form ( ) ( )1 2 0 0, ,Λ = Λ Λ = Λ Λ  is described below. It is easy to see that if the 
parameters 1,J J , and 0Λ  satisfy the conditions of Theorems 7-8, the 
statements of the theorems are true. Only one additional BS ϕ  appears, whose 
energy value is z , moreover ( )2 2z m z MΛ Λ< >  , if ( )1 1J J J J> < . If 1J J= , 
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the operator 2H  has no additional BS. 
The proof of this statements is based on the fact that if = 2ν  and 

0 0= ( , ),Λ Λ Λ  then the function ( )2 zΛ∆  has the form  

( ) ( ) ( ) ( )2

2
0 0

1 2 1 2
2

1
1 2

cos cos d d
2 2

1 2 ,
,T

t t t t
z J J z

h t t zΛ Λ
Λ

  Λ Λ    − − −     
     ∆ = − − Ψ − 

  

∫   (14) 

where  

( ) ( )

( ) ( )

( )

2

2

2

0 0 0
0 1 2

1
1 2

0 0 0 0
1 1 2

1
1 2

1 1

1 cos cos cos cos
2 2 2

1 8 d
,

cos cos cos 2cos
2 2 2 2

1 4 d
,

1 cos
64

T

T

T

t t
z J t

h t t z

t t t
J J t

h t t z

J J J

Λ
Λ

Λ

 Λ  Λ Λ    + Λ − − + −          Ψ = − 
− 

  
 Λ  Λ Λ Λ      − − + − −       

       × − −
 −
 
 

+ Λ

− −

∫

∫

∫ ( )

( )2

0 0 0 0
0 1 2 1

1 2
1 2

0 0
1

1 2
1 2

cos cos cos cos
2 2 2 2

d d
,

cos cos
2 2 d d .

,T

t t t
t t

h t t z

t
t t

h t t z

Λ

Λ

 Λ  Λ Λ  Λ     − − + − −       
       

−

Λ Λ − − 
 ×

−∫

 

The equation ( )2 0zΛ∆ =  is therefore equivalent to the equation  

( ) ( )2

2
0 0

1 2 1 2

1
1 2

cos cos d d
2 2

1 2 0
,T

t t t t
J J

h t t zΛ

 Λ Λ    − − −    
    − − =

−∫        (15) 

and  

( ) 0.zΛΨ =                            (16) 

It is easy to see that Equation (15) has a unique solution 2z mΛ<  if 1J J> ; if 

1J J< , this solution satisfies the condition 2z MΛ> . If 1J J= , Equation (15) 
has no solution. Expressing the integrals in Equation (16) through the integral  

( ) ( )2
1 2

1 2

d d
,T

t tJ z
h t t zΛ

=
−∫ , we obtain an equation of the form  

( ) ( ) ( )z J z zη ξΛ Λ=  

where  

( ) ( ) ( )( ) ( )2 2 40 0
1 1 1 1 116 2 cos 512 2 cos ,

2 2
z J J z J J J J z J J JηΛ

Λ Λ
= − + − + + −   

and ( ) ( )( ) ( )2 0
1 1 116 2 5 cos

2
z J J J J J J zξΛ

Λ
= − − − −  . In this case,  

https://doi.org/10.4236/jamp.2019.74059


S. M. Tashpulatov 
 

 

DOI: 10.4236/jamp.2019.74059 886 Journal of Applied Mathematics and Physics 
 

( )116 2z z J J= − − . In turn, for ( ) 0zηΛ ≠ , the latter equation is equivalent to 
the equation of the form  

( ) ( )
( )

.
z

J z
z

ξ
η
Λ

Λ

=                       (17) 

Analyzing Equation (17) outside the set 2GΛ  and taking into account that the 
function ( )J z  is monotonic for 2 2;z m MΛ Λ ∉   , we obtain statements similar 
to the statements in Theorems 7-8. 

For all other quasi momenta ( )1 2 1 2, ,Λ = Λ Λ Λ ≠ Λ , there exist sets 
, 0,5jR j = , of the parameters 1,J J , and Λ  such that in every set jR  the 

operator 2H  has exactly j BSs (taking the energy degeneration order into 
account) with the corresponding energy values 2 , 1,5kz G kΛ∉ = . 

Indeed, in this case and for 2ν = , the function ( )2 zΛ∆  has the form  

( ) ( )2 2detz D zΛ Λ∆ = , 

where ( )
1 2 3

2
1 2 3

1 2 3

a a a
D z b b b

c c c
Λ

 
 =  
 
 

, and 
( )
( )21 1

d
1 4

T

g s s
a J

h s z
Λ

Λ

= −
−∫ ,  

( )
( )
( )21 1

d
4 , 1,2k k

k T

f s s
a J J k

h s z
Λ

+
Λ

= − − =
−∫ ; 

( ) ( )
( )

1
2

1
1 1

d
4

T

s g s s
b J

h s z
ηΛ Λ

Λ

= −
−∫ ,  

( )
( ) ( )

( )
1 1

2
1 1

2 1

d
1 4

T

s f s s
b J J

h s z
ηΛ Λ

Λ

= − −
−∫ , ( )

( ) ( )
( )

1 2
2

1 2
3 1

d
4

T

s f s s
b J J

h s z
ηΛ Λ

Λ

= − −
−∫ , 

( ) ( )
( )

2
2

2
1 1

d
4

T

s g s s
c J

h s z
ηΛ Λ

Λ

= −
−∫ , ( )

( ) ( )
( )

2 1
2

2 1
2 1

d
4

T

s f s s
c J J

h s z
ηΛ Λ

Λ

= − −
−∫ ,  

( )
( ) ( )

( )
2 2

2
2 2

3 1

d
1 4

T

s f s s
c J J

h s z
ηΛ Λ

Λ

= − −
−∫ . 

In these formulas, ( ) 2
1 1 cos 2cos cos

2 2
k k

k kkg s sΛ =

 Λ Λ  = + Λ − −  
  

∑ ,  

( ) cos cos , 1,2
2 2k

k k
k kf s s kΛ

Λ Λ = − − = 
 

, ( ) cos , 1,2,
2k

k
k ks s kηΛ

Λ = − = 
 

  

2TΛ∈ , 2t T∈ . 
Expressing all integrals in the equation ( )2 0zΛ∆ =  through ( )J z  and 

rearranging algebraically, we reduce the latter equation to the form  

( ) ( ) ( ) ,z J z zθ χΛ Λ=                      (18) 

where ( )zθΛ  is a fifth-order polynomial in z, and ( )zχΛ  is a lower-order 
polynomial in z. Analyzing Equation (18) outside the set 2GΛ  and taking into 
account that the function ( )J z  with 2 2,z m MΛ Λ ∉    is monotonic, we can 
easily verify that the equation has no more than five solutions outside the set 

2GΛ . 
We now consider the case of 3ν = . Let the full quasi-momentum have the 

form ( ) ( )1 2 3 0 0 0, , , ,Λ = Λ Λ Λ = Λ Λ Λ . If the parameters 0 , JΛ  and 1J  satisfy 
the conditions in Theorems 7-8, then statements similar to those in the theorems 

https://doi.org/10.4236/jamp.2019.74059


S. M. Tashpulatov 
 

 

DOI: 10.4236/jamp.2019.74059 887 Journal of Applied Mathematics and Physics 
 

are true. Only one additional BS ϕ  appears, whose energy value is z . This 
energy level is twice degenerate and ( )3 3z m z MΛ Λ< > 

  , if ( )1 1J J J J> < . This 
additional BS vanishes when 1J J=  because it is incorporated into the 
continuous spectrum. 

To prove this, we note that in this case, the function ( )3 zΛ∆  has the form  

( ) ( ) ( ) ( )3

22
0 0

1 2 1 2 3
3 3

1
1 2 3

cos cos d d d
2 2

1 2 , ,
, ,T

t t t t t
z J J z t T

h t t t zΛ Λ
Λ

  Λ Λ    − − −     
     ∆ = − − Ψ ∈ − 

  

∫   

where 

( ) ( )

( ) ( )

( )

3

3

3

0 0
0

1
1

1 2 3

3
0 0 0

1
1

1
1 2 3

0
0

1
1 1

3 3cos 2cos cos
2 2

1 4 d
, ,

cos cos 3cos
2 2 2

1 4 d
, ,

3 3cos 2cos
2

48

i
i

T

i
i

T

i

T

t
z J t

h t t t z

t t
J J t

h t t t z

J J J

ν

=
Λ

Λ

=

Λ

=

 Λ  Λ  + Λ − −      Ψ = − 
− 

  
 Λ  Λ Λ    − − −     

     × − −
 −
 
 

Λ
+ Λ −

− −

∑
∫

∑
∫

∫



( )

( )3

3
0 0

1

1 2 3
1 2 3

0 0
1

1 2 3
1 2 3

cos cos
2 2

d d d
, ,

cos cos
2 2 d d d .

, ,

i

T

t t
t t t

h t t t z

t
t t t

h t t t z

Λ

Λ

  Λ  Λ   − −     
     
−

Λ Λ − − 
 ×

−

∑

∫
 

Therefore the equation ( )3 0zΛ∆ =  is equivalent to the equations 

( ) ( )3

22
0 0

1 2 1 2 3

1
1 2 3

cos cos d d d
2 2

1 2 0
, ,T

t t t t t
J J

h t t t zΛ

  Λ Λ    − − −     
     − − = − 

  

∫      (19) 

and  

( ) 0.zΛΨ =                         (20) 

It is easy see that Equation (19) has a unique double solution z′  if 1J J≠  

and ( )3 3z m z MΛ Λ′ ′< > , if ( )1 1J J J J> < . Expressing all integrals in Equation 

(20) through ( ) ( )3
1 2 3

1 2 3

d d d
, ,T

t t t
J z

h t t t zΛ

=
−∫ , we obtain the equation  

( ) ( ) ( ) ,z J z zη θΛ Λ= 

                   (21) 

where  

( ) ( ) ( )( ) ( )22 2 40 0
1 1 1 1 1= 24 2 cos 1152 2 cos

2 2
z J J z J J J J z J J JηΛ

Λ Λ
− + + − + −

  , 
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and ( ) ( )( ) ( )2 0
1 1 124 2 5 cos

2
z J J J J J J zθΛ

Λ
= − − − −

 . Here  

( )124 2z z J J= − − . If ( ) 0zηΛ ≠ , Equation (21) is, in turn, equivalent to the 
equation  

( ) ( )
( )

.
z

J z
z

θ
η
Λ

Λ

=




                         (22) 

Analyzing Equation (22) outside the set 3GΛ  and taking into account that the 
function ( )J z  for 3z GΛ∉ , is monotonic, we prove the statements made 
above. 

If ( )0 0 0, ,Λ ≠ Λ Λ Λ , the system has no more than seven BSs (taking the 
energy degeneration order into account), and there exist sets , 0,7kR k = , of the 
parameters 1,J J , and Λ  such that in every set kR  the system has exactly k 
BSs. The energy values of these BSs lie outside the set 3GΛ . When passing from 
one of these sets to another, either some additional BSs of the operator 2H  
appear or some existing BSs vanish. 

In this case, the function ( )3 zΛ∆  has the form ( ) ( )3 3detz D zΛ Λ∆ = , where  

( )

1 2 3 4

1 2 3 43

1 2 3 4

1 2 3 4

,

a a a a
b b b b

D z
c c c a
d d d d

Λ

 
 
 =
 
 
 

 

and 
( )
( )31 1

d
1 4

T

g s s
a J

h s z
Λ

Λ

= −
−∫ , ( )

( )
( )31 1

d
4 , 1,2,3k k

k T

f s s
a J J k

h s z
Λ

+
Λ

= − − =
−∫ ;  

( ) ( )
( )

1
3

1
1 1

d
4

T

s g s s
b J

h s z
ηΛ Λ

Λ

= −
−∫ , ( )

( ) ( )
( )

1 1
3

1 1
2 1

d
1 4

T

s f s s
b J J

h s z
ηΛ Λ

Λ

= − −
−∫ ,  

( )
( ) ( )

( )
1

3
1

1 1

d
4 , 2,3k k

k T

s f s s
b J J k

h s z
ηΛ Λ

+
Λ

= − − =
−∫ ; 

( ) ( )
( )

2
3

2
1 1

d
4

T

s g s s
c J

h s z
ηΛ Λ

Λ

= −
−∫ , 

( )
( ) ( )

( )
2

3
2

1 1

d
4 , 1,3,k k

k T

s f s s
c J J k

h s z
ηΛ Λ

+
Λ

= − − =
−∫ ; 

( )
( ) ( )

( )
2 2

3
2 2

3 1

d
1 4

T

s f s s
c J J

h s z
ηΛ Λ

Λ

= − −
−∫ , 

( ) ( )
( )

3
3

3
1 1

d
4

T

s g s s
d J

h s z
ηΛ Λ

Λ

= −
−∫ ,  

( )
( ) ( )

( )
3

3
3

1 1

d
4 , 1,2k k

k T

s f s s
d J J k

h s z
ηΛ Λ

+
Λ

= − − =
−∫ ;  

( )
( ) ( )

( )
3 3

3
3 3

4 1

d
1 4

T

s f s s
d J J

h s z
ηΛ Λ

Λ

= − −
−∫ . In these formulas  

( ) 3
1 1 cos 2cos cos

2 2
k k

k kkg s sΛ =

 Λ Λ  = + Λ − −  
  

∑ ,  

( ) cos cos , 1,2,3
2 2k

k k
k kf s s kΛ

Λ Λ = − − = 
 

, ( ) cos , 1,2,3,
2k

k
k ks s kηΛ

Λ = − = 
 

. 

3TΛ∈ , 3t T∈ . 
Expressing all integrals in the equation ( )3 0zΛ∆ =  through ( )J z  and 

rearranging algebraically, we reduce this equation to the form  

https://doi.org/10.4236/jamp.2019.74059


S. M. Tashpulatov 
 

 

DOI: 10.4236/jamp.2019.74059 889 Journal of Applied Mathematics and Physics 
 

( ) ( )
( )

A z
J z

B z
Λ

Λ

=  

where ( )B zΛ  is a seventh-order polynomial in z, and ( )A zΛ  is a lower-order 
polynomial in .z  Therefore, this equation has no more than seven solutions 
outside the set 3GΛ . 

For an arbitrary 3ν >  and ( ) ( )1 2 0 0 0, , , , , ,νΛ = Λ Λ Λ = Λ Λ Λ  , if the 
parameters 1,J J  and 0Λ  satisfy the conditions in Theorems 7-8, statements 
similar to those in the theorems are true. In this situation, the operator 2H  
with 1J J≠  has only one additional BS. The energy z of this additional BS is 
degenerate ( )1ν −  times. Moreover, ( )z m z Mν ν

Λ Λ< > , if ( )1 1J J J J> < . For 
all other values of the full quasi-momentum Λ  of the system, the operator 2H  
has no more than 2 1ν +  BSs (taking the energy degeneration order into 
account) with the energy values lying outside the set Gν

Λ . 
The proof of these statements is based on finding zeros of the determinants 
( )zν

Λ∆  of the operators. Expressing all integrals in ( )zν
Λ∆  through ( )J z , 

we can bring the equation ( ) 0zν
Λ∆ =  to the form  

( ) ( )
( )

,
C z

J z
D z
Λ

Λ

=                     (23) 

where ( )D zΛ  is a ( )2 1ν + th-order polynomial in z and ( )C zΛ  is also a 
polynomial in z whose order (with respect to ( )D zΛ ) is lower. Analysis of 
Equation (23) outside the set Gν

Λ  leads to the proof of the statements made 
above. 

Theorem 9. Let 1J J=  and ν  be an arbitrary number. Then the operator 

2H  has no more than one BS, and the corresponding energy level z mν
Λ<  is 

not degenerate. 
Proof. If 1J J= , the relations  

( )1 1 1, 4 1 2cos cos cos
2 2

i i
i iih x t J xν

Λ =

 Λ Λ  = − − − + Λ  
  

∑ ,  

( ) 1 14 1 cos cos
2 2

i i
iih x J xν

Λ =

 Λ Λ  = − − −  
  

∑  hold. Using the determinant 

( )zν
Λ∆  and solving the corresponding equation, we obtain the statement in 

Theorem 9. 

4. Structure of Essential Spectrum and Discrete Spectrum of  
Three-Magnon Systems 

We first determine the structure of the essential spectrum of the three-magnon 
system and then estimate the number of three-magnon BSs in this system. 
Comparing Formulas (8) and (11) and using tensor products of Hilbert spaces 
and tensor products of operators in Hilbert spaces [22], we can verify that the 
operator 3H Λ

  can be represented in the form  

( )1 2 33 2 2 2 ,H H I I H H KΛ Λ Λ Λ Λ= ⊗ + ⊗ + +                (24) 
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where I is the unit operator in the space 1 , and 
12H Λ

  and 
22H Λ

  and 
32H Λ

  
are the energy operator of two-magnon systems, and KΛ  are finite-dimensional 
operator, λ µ γΛ = + + , 1 λ µΛ = + , 2 λ γΛ = + , 3 µ γΛ = + . 

The spectrum of A I I B⊗ + ⊗ , where A and B are densely defined bounded 
linear operators, was studied in [23] [24] [25]. Explicit formulas expressing 

( )ess A I I Bσ ⊗ + ⊗  and ( )disc A I I Bσ ⊗ + ⊗  in terms of  
( ) ( ) ( ), ,discA A Bσ σ σ  and ( )disc Bσ  were given in those papers:  

( )
( ) ( )( ) ( ) ( )( ){ } ( ) ( )( ) ( ) ( )( ){ }\ \ \ ,

disc

ess ess ess ess

A I I B

A A B B A B A B

σ

σ σ σ σ σ σ σ σ

⊗ + ⊗

= + + +

 

( ) ( ) ( )( ) ( ) ( )( )ess ess essA I I B A B A Bσ σ σ σ σ⊗ + ⊗ = + + . It is clear that 
( ) ( ) ( ){ }1 2 1 2: ,A E E B z z z A z Bσ σ σ⊗ + ⊗ = + ∈ ∈ . 
Note that, what the problems of finite-rank perturbations for the compact 

operators be considered in the work [26] [27] [28]. 
The following theorems describe the structure of the essential spectrum of 

( )1 2 32 2 2H I I H HΛ Λ Λ⊗ + ⊗ +   . 
Theorem 10. If 12J J=  and ν  be arbitrary. Then the essential spectrum of 

the operator 3H Λ
  consists of the set of five points:  

( ) ( ){
( ) ( )}

3 1 1 1 1 1,1

1 1 2, 3,1

0, 2 , 4 , 4 2 4 cos ,

2 4 2 4 cos cos

ess ii

i ii

H J J J J

J J

ν

ν

σ ν

ν

Λ =

=

= − − − + − Λ

− + − Λ + Λ

∑

∑



, and the inequality 

4 8 4N ν≤ ≤ +  holds for the number N of three-magnon BSs. 
Proof. It can be seen from Theorem 5, that for 12J J=  the operator 2H  has 

exactly two BSs 1ϕ  and 2ϕ  (not taking the order of the energy  
degeneration into account) with the energy values 1 12z J= − ,  

( )2 1 1 1,14 2 4 cos iiz J J νν
=

= − + − Λ∑ , while the continuous spectrum of the 
operator 2H  is consists of one point 0z = , therefore the essential spectrum of  
operator 3H Λ

  is consists of points 1 0z = , 2 12z J= − , 3 14z J= − ,  

( )4 1 1 1,14 2 4 cos iiz J J νν
=

= − + − Λ∑ ,  

( ) ( )5 1 1 2, 3,12 4 2 4 cos cosi iiz J J νν
=

= − + − Λ + Λ∑ , i.e.  

( ) ( ){
( ) ( )}

3 1 1 1 1 1,1

1 1 2, 3,1

0, 2 , 4 , 4 2 4 cos ,

2 4 2 4 cos cos

ess ii

i ii

H J J J J

J J

ν

ν

σ ν

ν

Λ =

=

= − − − + − Λ

− + − Λ + Λ

∑

∑



. The operator  

( )1 2 32 2 2H I I H HΛ Λ Λ⊗ + ⊗ +    has a eigenvalues to equally 1 16z J= − ,  

( )2 1 1 1,14 6 4 cos iiz J J νν
=

= − + − Λ∑ ,  

( ) ( )3 1 1 2, 3,18 6 4 cos cosi iiz J J νν
=

= − + − Λ + Λ∑ , and  

( ) ( )4 1 1 1, 2, 3,112 6 4 cos cos cosi i iiz J J νν
=

= − + − Λ + Λ + Λ∑ . The operator KΛ  is a 

finite rank operator, to rank is equal to 8ν . Consequently, in this case the 
number of three-magnon BS 8 4N ν≤ + . 

Theorem 11. Let 1 2 3, ,π π πΛ = Λ = Λ =    and 1J J≠ . Then the essential 
spectrum of the operator 3H Λ

  consists of the set of three points:  
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( ) ( ) ( ) ( ) ( ) ( ){ }3 1 1 1 1 124 2 ,24 2 4 ,24 2 2ess H J J J J J J J J J Jσ ν ν νΛ = − − − − − − − , 
and the inequality 1 8 1N ν≤ ≤ +  holds for the number N of three-magnon BSs. 

Proof. It can be seen from Theorem 6, that for πΛ =   and 1J J≠  the 
operator 2H  has a unique BS ϕ  with the energy value  

( ) ( )1 18 2 2z J J J Jν= − − − , and this energy level is ν-fold degenerate. The 
continuous spectrum of the operator 2H  is consists of point ( )18 2z J Jν= − , 
therefore the essential spectrum of the operator 3H Λ

  consists of points 
( )1 124 2z J Jν= − , ( ) ( )2 1 124 2 4z J J J Jν= − − − ,  
( ) ( )3 1 124 2 2z J J J Jν= − − − , i.e.  

( ) ( ) ( ) ( ) ( ) ( ){ }3 1 1 1 1 124 2 ,24 2 4 ,24 2 2ess H J J J J J J J J J Jσ ν ν νΛ = − − − − − − − . 
The operator ( )1 2 32 2 2H I I H HΛ Λ Λ⊗ + ⊗ +    has a eigenvalues equal to 

( ) ( )1 124 2 6z J J J Jν= − − − . The operator KΛ  has a finite rank operator, with 
rank to equal to 8ν . Consequently, in this case, the number of three-magnon 
BS 8 1N ν≤ + . 

We let ( ) 31 2
18 2 3 cos cos cos

2 2 2
a J J

ΛΛ Λ = − − − − 
 

,  

( ) 31 2
18 2 3 cos cos cos

2 2 2
b J J

ΛΛ Λ = − + + + 
 

,  

( ) 32
18 2 2 cos cos

2 2
c J J

ΛΛ = − − − 
 

, ( ) 32
18 2 2 cos cos

2 2
d J J

ΛΛ = − + + 
 

,  

( ) 1
18 2 1 cos

2
e J J Λ = − − 

 
, ( ) 1

18 2 1 cos
2

f J J Λ = − + 
 

. 

Theorem 12. Let 1ν = , 1J J<  and ] [1 0,πΛ ∈ , ] [2 0,πΛ ∈ , ] [3 0,πΛ ∈  
or ] [1 π, 2πΛ ∈ , ] [2 π, 2πΛ ∈ , ] [3 π, 2πΛ ∈ .  

a) If 1 1

1

cos
2 2

J J
J

Λ −
> − , 2 1

1

cos
2 2

J J
J

Λ −
> − , 3 1

1

cos
2 2

J J
J

Λ −
> −  or  

1 1

1

cos
2 2

J J
J

Λ −
< , 2 1

1

cos
2 2

J J
J

Λ −
< , 3 1

1

cos
2 2

J J
J

Λ −
< , then the essential 

spectrum of the operator 3H Λ
  consists of the union of five intervals:  

( ) [ ] [ ] [ ]
[ ] [ ]

3 1 1 2 2

3 4 3 4 5 6 5 6

, , ,

, ,
ess H a b z c z d z c z d

z z e z z f z z e z z f

σ Λ = + + + +

+ + + + + + + +



 

 

 

and the inequality 4 8 4N ν≤ ≤ +  holds for the number N of three-magnon 
BSs.  

b) If 1 1

1

cos
2 2

J J
J

Λ −
≤ − , 2 1

1

cos
2 2

J J
J

Λ −
≤ − , 3 1

1

cos
2 2

J J
J

Λ −
≤ −  or  

1 1

1

cos
2 2

J J
J

Λ −
≥ , 2 1

1

cos
2 2

J J
J

Λ −
≥ , 3 1

1

cos
2 2

J J
J

Λ −
≥ , then the essential 

spectrum of the operator 3H Λ
  consists of the union of three intervals:  

( ) [ ] [ ] [ ]3 1 1 2 3 2 3, , ,ess H a b z c z d z z e z z fσ Λ = + + + + + +

  , and the inequality 

1 8 1N ν≤ ≤ +  holds for the number of three-magnon BSs N.  

c) If 1 1

1

cos
2 2

J J
J

Λ −
> − , 2 1

1

cos
2 2

J J
J

Λ −
< , 3 1

1

cos
2 2

J J
J

Λ −
<  or  
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1 1

1

cos
2 2

J J
J

Λ −
< , 2 1

1

cos
2 2

J J
J

Λ −
> , 3 1

1

cos
2 2

J J
J

Λ −
>  or 1 1

1

cos
2 2

J J
J

Λ −
< − ,  

2 1

1

cos
2 2

J J
J

Λ −
> , 3 1

1

cos
2 2

J J
J

Λ −
>  or 1 1

1

cos
2 2

J J
J

Λ −
> , 2 1

1

cos
2 2

J J
J

Λ −
< ,  

3 1

1

cos
2 2

J J
J

Λ −
< , then the essential spectrum of the operator 3H Λ

  consists of 

the union of four intervals:  

( ) [ ] [ ] [ ] [ ]3 1 1 2 2 3 4 3 4, , , ,ess H a b z c z d z c z d z z e z z fσ Λ = + + + + + + + +

   , and 

the inequality 2 8 2N ν≤ ≤ +  holds for the number of three-magnon BSs N.  
Theorem 13. Let 1J J=  and ] [1 0,πΛ ∈ , ] [2 0,πΛ ∈ , ] [3 0,πΛ ∈  or 

] [1 π, 2πΛ ∈ , ] [2 π, 2πΛ ∈ , ] [3 π, 2πΛ ∈ . 
a) If 1 10 α< Λ <  or 2 1 2πα < Λ < , and 2 10 α< Λ <  or 2 2 2πα < Λ < , and 

3 10 α< Λ <  or 2 3 2πα < Λ < , respectively, then the essential spectrum of the 
operator 3H Λ

  consists of the union of three intervals:  

( ) [ ] [ ] [ ]3 1 1 2 3 2 3, , ,ess H a b z c z d z z e z z fσ Λ = + + + + + +

  , and the inequality 
1 8 1N ν≤ ≤ +  holds for the number of three-magnon BSs N.  

b) If [ [ ] [1 1 2,π π,α αΛ ∈   and [ [ ] [2 1 2,π π,α αΛ ∈   and  
[ [ ] [3 1 2,π π,α αΛ ∈  , then the essential spectrum of the operator 3H Λ

  consists 
of single interval: ( ) [ ]3 ,ess H a bσ Λ = , and the inequality 0 8N ν≤ ≤  holds for 
the number of three-magnon BSs N. Here 1 2100 , 260α α≈ ≈  .  

c) If 1 10 α< Λ <  or [ [ ] [2 1 2,π π,α αΛ ∈   or [ [ ] [3 1 2,π π,α αΛ ∈  , then the 
essential spectrum of the operator 3H Λ

  consists of the union of two intervals: 

( ) [ ] [ ]3 1 1, ,ess H a b z c z dσ Λ = + +

 , and the inequality 0 8N ν≤ ≤  holds for the 
number of three-magnon BSs N.  

Theorem 14. Let 1 12J J J< <  and ] [1 0,πΛ ∈ , ] [2 0,πΛ ∈ , ] [3 0,πΛ ∈  or 
] [1 π, 2πΛ ∈ , ] [2 π, 2πΛ ∈ , ] [3 π, 2πΛ ∈ .  

a) If 1 1

1

cos
2 2

J J
J

Λ −
≤ , 2 1

1

cos
2 2

J J
J

Λ −
≤ , 3 1

1

cos
2 2

J J
J

Λ −
≤  or  

1 1

1

cos
2 2

J J
J

Λ −
≥ − , 2 1

1

cos
2 2

J J
J

Λ −
≥ − , 3 1

1

cos
2 2

J J
J

Λ −
≥ − , then the essential 

spectrum of the operator 3H Λ
  consists of the union of five intervals:  

( ) [ ] [ ] [ ]
[ ] [ ]

3 1 1 2 2

3 4 3 4 5 6 5 6

, , ,

, ,
ess H a b z c z d z c z d

z z e z z f z z e z z f

σ Λ = + + + +

+ + + + + + + +



 

 

, and the inequality  

4 8 4N ν≤ ≤ +  holds for the number of three-magnon BSs N.  

b) If 1 1

1

cos
2 2

J J
J

Λ −
> , 2 1

1

cos
2 2

J J
J

Λ −
> , 3 1

1

cos
2 2

J J
J

Λ −
>  or  

1 1

1

cos
2 2

J J
J

Λ −
< − , 2 1

1

cos
2 2

J J
J

Λ −
< − , 3 1

1

cos
2 2

J J
J

Λ −
< − , then the essential  

spectrum of the operator 3H Λ
  consists of the union of seven intervals: 

( ) [ ] [ ] [ ]
[ ] [ ]
[ ] [ ]

3 1 1 2 2

3 3 4 5 4 5

6 7 6 7 8 9 8 9

, , ,

, ,

, ,

ess H a b z c z d z c z d

z c z d z z e z z f

z z e z z f z z e z z f

σ Λ = + + + +

+ + + + + +

+ + + + + + + +



 

 

 

, and the inequality  

https://doi.org/10.4236/jamp.2019.74059


S. M. Tashpulatov 
 

 

DOI: 10.4236/jamp.2019.74059 893 Journal of Applied Mathematics and Physics 
 

9 8 9N ν≤ ≤ +  holds for the number of three-magnon BSs N.  

c) If 1 1

1

cos
2 2

J J
J

Λ −
≤ , 2 1

1

cos
2 2

J J
J

Λ −
> , 3 1

1

cos
2 2

J J
J

Λ −
>  or  

1 1

1

cos
2 2

J J
J

Λ −
≥ − , 2 1

1

cos
2 2

J J
J

Λ −
< − , 3 1

1

cos
2 2

J J
J

Λ −
< −  or 1 1

1

cos
2 2

J J
J

Λ −
≥ − , 

2 1

1

cos
2 2

J J
J

Λ −
> , 3 1

1

cos
2 2

J J
J

Λ −
> , then the essential spectrum of the operator 

3H Λ
  consists of the union of six intervals:  

( ) [ ] [ ] [ ] [ ]
[ ] [ ]

3 1 1 2 2 3 3

4 5 4 5 6 7 6 7

, , , ,

, ,
ess H a b z c z d z c z d z c z d

z z e z z f z z e z z f

σ Λ = + + + + + +

+ + + + + + + +



  

 

, and the 

inequality 6 8 6N ν≤ ≤ +  holds for the number of three-magnon BSs N.  
Theorem 15. Let 1 12 3J J J< <  and ] [0,πΛ∈  or ] [π, 2πΛ∈   

a) If 1 1

1

cos
2 2

J J
J

Λ −
> , 2 1

1

cos
2 2

J J
J

Λ −
> , or 1 1

1

cos
2 2

J J
J

Λ −
< − ,  

2 1

1

cos
2 2

J J
J

Λ −
< − , then the essential spectrum of the operator 3H Λ

  consists of 

the union of five intervals: ( ) [ ] [ ] [ ]
[ ] [ ]

3 1 1 2 2

3 4 3 4 5 6 5 6

, , ,

, ,
ess H a b z c z d z c z d

z z e z z f z z e z z f

σ Λ = + + + +

+ + + + + + + +



 

 

, 

and the inequality 4 8 4N ν≤ ≤ +  holds for the number of three-magnon BSs 
N.  

b) If 1 1

1

cos
2 2

J J
J

Λ −
≤ , 2 1

1

cos
2 2

J J
J

Λ −
≤  or 1 1

1

cos
2 2

J J
J

Λ −
≥ − ,  

2 1

1

cos
2 2

J J
J

Λ −
≥ − , then the essential spectrum of the operator 3H Λ

  consists of 

the union of three intervals:  

( ) [ ] [ ] [ ]3 1 1 2 3 2 3, , ,ess H a b z c z d z z e z z fσ Λ = + + + + + +

  , and the inequality 

1 8 1N ν≤ ≤ +  holds for the number of three-magnon BSs N.  

c) If 1 1

1

cos
2 2

J J
J

Λ −
> , 2 1

1

cos
2 2

J J
J

Λ −
≤ , or 1 1

1

cos
2 2

J J
J

Λ −
< − ,  

2 1

1

cos
2 2

J J
J

Λ −
≥ − , then the essential spectrum of the operator 3H Λ

  consists of 

the union of four intervals:  

( ) [ ] [ ] [ ] [ ]3 1 1 2 2 3 4 3 4, , , ,ess H a b z c z d z c z d z z e z z fσ Λ = + + + + + + + +

   , and 

the inequality 2 8 2N ν≤ ≤ +  holds for the number of three-magnon BSs N.  

d) If 1 1

1

cos
2 2

J J
J

Λ −
≤ , 2 1

1

cos >
2 2

J J
J

Λ −
 or 1 1

1

cos
2 2

J J
J

Λ −
≥ − ,  

2 1

1

cos
2 2

J J
J

Λ −
< − , then the essential spectrum of the operator 3H Λ

  consists of 

the union of four intervals:  

( ) [ ] [ ] [ ]
[ ]

3 1 1 2 3 2 3

4 5 4 5

, , ,

,
ess H a b z c z d z z e z z f

z z e z z f

σ Λ = + + + + + +

+ + + +



 



, and the inequality 

2 8 2N ν≤ ≤ +  holds for the number of three-magnon BSs N.  
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Theorem 16. Let 13J J=  and 1 20, 0Λ ≠ Λ ≠ . Then the essential spectrum 
of the operator 3H Λ

  consists of the union of three intervals:  

( ) [ ] [ ] [ ]3 1 1 2 3 2 3, , ,ess H a b z c z d z z e z z fσ Λ = + + + + + +

  , and the inequality 
1 8 1N ν≤ ≤ +  holds for the number of three-magnon BSs N.  

Theorem 17. Let 13J J>  and 1 20, 0Λ ≠ Λ ≠ . Then the essential spectrum 

of the operator 3H Λ
  consists of the union of five intervals:  

( ) [ ] [ ] [ ]
[ ] [ ]

3 1 1 2 2

3 4 3 4 5 6 5 6

, , ,

, ,
ess H a b z c z d z c z d

z z e z z f z z e z z f

σ Λ = + + + +

+ + + + + + + +



 

 

, and the inequality  

4 8 4N ν≤ ≤ +  holds for the number of three-magnon BSs N.  
If 1Λ  and 2Λ  and 3Λ  has the form  

( ) ( )1 1,1 1,2 1, 1,0 1,0 1,0, , , , , ,νΛ = Λ Λ Λ = Λ Λ Λ  ,  
( ) ( )2 2,1 2,2 2, 2,0 2,0 2,0, , , , , ,νΛ = Λ Λ Λ = Λ Λ Λ  , and  
( ) ( )3 3,1 3,2 3, 3,0 3,0 3,0, , , , , ,νΛ = Λ Λ Λ = Λ Λ Λ  , then the essential spectrum of the 

operator 3H Λ
  is investigated to analogously to one-dimensional case. 

In the essential spectrum of the operator 3H Λ
  is appear only two additional 

intervals and corresponding estimation for the number of three-magnon BSs, in 
the case of, when the operator 

12H Λ
  and 

22H Λ
  and 

32H Λ
  has a 

correspondingly, correspondingly to equal to number a and b and c, BSs, that 
the estimation ( ) ( )8a b c N a b cν+ ≤ ≤ + +  changed to the estimation 
( )( ) ( )( )1 1 8 1 1a b c N a b cν+ + + ≤ ≤ + + + + . 

For arbitrary values 1Λ  and 2Λ  and 3Λ  and 2ν ≥ , the essential spectrum 
of the operator 3H Λ

  is consists of the union of no more that ( )32 1 1ν + +  
intervals, and the relation 1 18N N Nν≤ ≤ + , holds for the number of 
three-magnon BSs N, where ( )3

10 2 1N ν≤ ≤ + . 
Theorem 18. If 1J J=  and the number ν  be arbitrary. Then the essential 

spectrum of the operator 3H Λ
  consists of the union of no more then three 

intervals: ( ) [ ] [ ] [ ]3 1 1 2 3 2 3, , ,ess H a b z c z d z z e z z fσ Λ = + + + + + +

  , and the 
inequality 0 8 1N ν≤ ≤ +  holds for the number of three-magnon BSs N.  

The cases, when 1 0Λ =  or 2 0Λ =  or 3 0Λ =  investigated the similarly. 
Analogously is investigated essential spectrum and discrete spectrum of the 
operator 3H Λ

  for the other cases. 
Obviously, that the case, when the of spin component zS  take the value −1 

coincide, with cases when spin component zS  take the value 1. 

5. Case, When z
mS ϕ0 0=   

We already say,what the spin component z
mS  can by take on a value −1, 0, 1, i.e. 

can by 0 0
z
mS ϕ ϕ= −  or 0 0z

mS ϕ =  or 0 0
z
mS ϕ ϕ= . 

Now we consider the case, when the of spin component zS  take value 0. 
Hamiltonian of the system also has the form (3) and acts in the symmetrical 

Fo'ck space  . In this case the vacuum vector 0ϕ  uniquely determined by the 
conditions: 0 0 00, 0, 1z

m mS Sϕ ϕ ϕ+ = = = . 
Theorem 19. The space 3  is invariant with respect of the operator H. The 

operator H3 is a bounded self-adjoint operator. It generates the bounded  
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self-adjoint operator 3H , acting in the space ( )( )3

2l Zν  according to the 

formula  

( )( )
( ){

( ) ( )

( ) ( )

3

, , , , , ,
, , ,

, , , ,

, , , ,

, ,

, ,

1 1 1 1, , , ,
2 2 2 2
1 1 1 1, , , ,
2 2 2 2
1

p q p q p r p r q r q r
p q r

p q p r q r p q

q r p r p q p r

H f p q r

J f p q r

f p q r f p q r

f p q r f p q r

τ τ τ τ τ τ
τ

τ τ τ τ

τ τ τ τ

δ δ δ δ δ δ

δ δ τ δ δ τ

δ δ τ δ δ τ

+ + + + + +

− − − −

− − + +

 = − + + + + + 

   − + − − + −   
   
   − + − − + +   
   

−

∑

( ) ( ), , , ,
1 1, , , ,

2 2 2q r p q p r q rf p q r f p q rτ τ τ τδ δ τ δ δ τ+ + + +
   + + − + +    

    

 

( )

1 , , , , , , , ,
, , ,

, , , , , , , , , ,

, , , , , , , ,

5
2

5 5 5 5 5 , ,
2 2 2 2 2
1 1 3 3
2 2 2 2

p q p q p r p r q r q r p q q r
p q r

q r p r q r p q p r q r q r p r q r p q

p q p r q r p q q r p r p q q r

J

f p q r

τ τ τ τ τ τ τ
τ

τ τ τ τ τ

τ τ τ τ τ

δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ

+ + + + + + +

+ + + + +

− − + + +

− + + + + + +


+ + + + + 


− + + + +

∑

( )

( )

( )

, , , , , , , ,

, , , , , , , ,

, ,

1 1 3 3 , ,
2 2 2 2
1 1 3 3 , ,
2 2 2 2

p q q r q r p q p r q r q r p r

p r q r q r p r p r q r q r p q

f p q r

f p q r

f p q r

τ τ τ τ τ

τ τ τ τ τ

τ

δ δ δ δ δ δ δ δ τ

δ δ δ δ δ δ δ δ τ

+ + + + +

+ + + + +

  − 
 
 − + + + + − 
 
 − + + + + − 
 

 

( )

( )

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

1 1 3 3 , ,
2 2 2 2
1 1 3 3 , ,
2 2 2 2
1 1 3 3
2 2 2 2

p q p r p r q r q r p q q r p r

p q q r p r q r q r p q q r p r

p r q r p r q r q r p r q r p q

f p q r

f p q r

f

τ τ τ τ τ

τ τ τ τ τ

τ τ τ τ τ

δ δ δ δ δ δ δ δ τ

δ δ δ δ δ δ δ δ τ

δ δ δ δ δ δ δ δ

+ + + + +

+ + + + +

+ + + + +

 − + + + + + 
 

 − + + + + + 
 

 − + + + + 
 

( )

( ) ( )
( ) ( )

, , , ,

, , , ,

, ,

, , , ,

, , , ,
q r p q p r q r

p r q r q r p q

p q r

f p q r f p q r

f p q r f p q r
τ τ

τ τ

τ

δ δ τ τ δ δ τ τ

δ δ τ τ δ δ τ τ
+ +

+ +

+

+ − − + − −

+ − − + + +

 

( ) ( )

( )

( )

( )

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

1 1 , ,
4 4
1 1 , ,
4 4
1 1 , ,
4 4
1 1
4 4

q r p r p r q r

p r q r p r q r

p q q r p r q r

p r q r p r q r

p q q r q r p r

f p q r f p q r

f p q r

f p q r

f p q r

τ τ

τ τ

τ τ

τ τ

τ τ

δ δ τ τ δ δ τ τ

δ δ δ δ τ τ

δ δ δ δ τ τ

δ δ δ δ τ τ

δ δ δ δ

+ +

+ +

+ +

+ +

+ +

+ + + + + +

 + + − + 
 

 + + − + 
 

 + + + − 
 

 + + 
 

( ), ,f p q rτ τ− +

 

( )

( )

, , , ,

, , , ,

1 1 , ,
4 4
1 1 , , .
4 4

p r q r p q q r

p q q r p r q r

f p q r

f p q r

τ τ

τ τ

δ δ δ δ τ τ

δ δ δ δ τ

+ +

+ +

 + + + − 
 

 + + +  
  

                        (25) 
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where ,k jδ  is the Kronecker symbol. The operator H3 acts on the vector 

3ψ ∈  according to the formula  

( )( )3 3 0
, ,

, , .p q r
p q r

H H f p q r S S Sψ ϕ− − −= ∑               (26) 

Theorem 20. The Fourier transformation transforms the operator 3H  into 
the bounded self-adjoint operator 1

3 3H H −=   , acting in the space 3
  

according to the formula  

( )( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

3

1 1

1 1

2

, ,

4 , , , , d

, , , , d , , , , d

, , , , , , d d ,

T

T T

T T

H f

J J h s f s s s

h s f s s s h s f s s s

J h s t f s t s t s t

ν

ν ν

ν ν

λ µ γ

λ µ λ µ γ

λ γ µ λ γ µ γ λ µ γ

λ µ γ λ µ γ

= − + + −
+ + − + + − 

+ + + − −

∫

∫ ∫
∫ ∫



 (27) 

where  

( ) ( ) ( ) ( )1
1

, , cos cos cos cos ,i i i i i i i i
i

h s s s s s
ν

λ µ λ µ λ µ
=

 = − + − − − + − ∑  

( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

2

1

, , , ,

4cos 4cos 4cos

6cos 6cos 6cos

3cos 3cos 3cos 3cos

i i i i i i i i i i
i

i i i i i i i i i i i i

i i i i i i i i

h s t

s t t s

s t s t s t

s t t s

ν

λ µ γ

λ µ γ λ µ γ

µ γ λ γ λ µ

λ λ µ µ

=

= + + + + − + + + −

+ + − − + + − − + + − −

+ − + − + − + −

∑  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )

3cos 3cos 4cos 4cos 4cos

4cos 5cos 5cos

5cos 6cos 6cos

5cos .

i i i i i i i i i

i i i i i i i i i

i i i i i i i i i

i i i i i

s t s t s

t s t s t

s t s s

s t

γ γ λ µ

λ µ µ λ

γ µ γ λ γ

λ µ γ

+ − + − − − − + −

− + − − − − − − −

− − − − + − − + −

− + + − − 

 

The spectral properties of the considered energy operator of three-magnon 
systems in the isotropic ferromagnetic non-Heisenberg model are closely related 
to those of its two-magnon subsystems. We first study the spectrum and bound 
states of two-magnon subsystems. 

Theorem 21. The space 2  is invariant with respect of the operator H. The 
operator H2 is a bounded self-adjoint operator. It generates the bounded 
self-adjoint operator 2H , acting in the space 2

2 (( ) )l Zν  according to the 
formula  

( )( )

( ) ( ) ( )

( ) ( ) ( )

2

1 , , ,
, ,

, , ,

,

1, ,
2

1 1 1, , , .
2 2 2

p q p q p q
p q

p q p q p q

H f p q

J J f p q f p q

f p q f p q f p q

τ τ τ
τ

τ τ τ

δ δ δ τ

δ τ δ τ δ τ

+ + −

− + +

 = − + + − − 

− − + + + + 


∑    (28) 

The operator H2 acts on the vector 2ψ ∈  according to the formula  

( )( )2 2 0
,

, .p q
p q

H H f p q S Sψ ϕ− −= ∑                  (29) 

Theorem 22. The Fourier transformation transforms the operator 2H  into 
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the bounded self-adjoint operator 1
2 2H H −=   , acting in the space 2

  
according to the formula  

( )( ) ( ) ( )2 1, , , , d ,
T

H f x y h x y s f s x y s sν= + −∫             (30) 

where  

( ) ( )1 1
1

, , 4 cos cos cos .
2 2 2

i i i i i i
i

i

x y x y x y
h x y s J J s

ν

=

− + +   = − + − −     
∑  

Let the full quasi-momentum of the system x y+ = Λ  be fixed. Let ( )2L ΛΓ  
be the space of functions that are quadratically integrable over the manifold 

( ){ }, :x y x yΛΓ = + = Λ . It is known [21] that the operator 2H  and space 2
  

can be expanded into the direct integrals 2 2 2 2d , d
T T

H Hν νΛ Λ= ⊕ Λ = ⊕ Λ∫ ∫      of 
the operators 2H Λ

  and the spaces 2Λ
  such that the spaces 2Λ

  are 
invariant with respect to the operators 2H Λ

  and the operators 2H Λ
  act in the 

space 2Λ
  according to the formula  

( )( ) ( ) ( )2 1 , d ,
T

H f x h x t f t tνΛ Λ Λ Λ= ∫                (31) 

where ( ) ( )1 1, , ,h x t h x x tΛ = Λ −  and ( ) ( ),f x f x xΛ = Λ − . 
Theorem 23. Let full quasi-momentum of the system Λ  by arbitrary. Then 

the operator 2H  has a unique BS ϕ  with the energy value ( )12z J J= − +  
and it is ν-fold degenerated. 

Let the full quasi-momentum of the system x y z+ + = Λ  be fixed. Then the 
operator 3H  and space 3

  can be expanded into the direct integrals 

3 3 3 3d , d
T T

H Hν νΛ Λ= ⊕ Λ = ⊕ Λ∫ ∫     . 
We now determine the structure of the essential spectrum of the three-magnon 

system and then estimate the number of three-magnon BSs in this system. 
Comparing Formulas (27) and (30) and using tensor products of Hilbert spaces 
and tensor products of operators in Hilbert spaces [22], we can verify that the 
operator 3H Λ

  can be represented in the form  

( )1 2 33 2 2 2 ,H H I I H H KΛ Λ Λ Λ Λ= ⊗ + ⊗ + +                 (32) 

where I is the unit operator in the space 1
 , and KΛ

  are finite-dimensional 
operator (see (27)). 

Theorem 24. Let full quasi-momentum of the system Λ  by arbitrary. Then 
the essential spectrum of the operator 3H Λ

  consists of the three points: 0, 1z  
and 2 3z z+ , where 1z  and 2z  and 3z  is a eigenvalue of the operators 

12H Λ
  

and 
22H Λ

  and 
32H Λ

 , correspondingly, and the inequality 1 8 1N ν≤ ≤ +  
holds for the number of three-magnon BSs N.  

The finding results shown the structure of essential spectra and discrete 
spectrum of three-magnon system, in the cases, when the component zS  of 
spin is receive the value 1 and 0, is strongly different one another. 
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